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1.  Effective Dictionary, Mutual Coherence, and 

Average Mutual Coherence  

A. Effective Dictionary 

Let 1nR ×∈s  be a signal of interest and consider compressive 
sampling of s by linear projection =y P s  with m nR ×∈P  and 
m n. Let n LR ×∈D  with L n≥  be a dictionary that sparsifies s : 
=s Dθ  where θ  is sparse or near sparse. By convention the 2-

norm of each column of D  is normalized to unity. The 
compressed measurement can be expressed as =y PDθ  
where the product matrix = PDD  is called effective 
dictionary. 
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B. Mutual Coherence and Averaged Mutual Coherence 

In CS, a popular approach to reconstruct signal s based on 
measurement y is to solve the convex l1-minimization 
problem 

                                                                                        
1minimize    || ||

subject to:  = y
θ
θD

                           (1) 

It turns out that the performance of a CS system is closely 
related to the mutual coherence between projection P  and 
dictionary D, which is defined by 

                                                                                   
1 ,
   

max
|| || || ||

T
i j

i j L
i ji j

μ
≤ ≤
≠

=
⋅

d d
d d

  (2) 

where id  is the ith column of the effective dictionary D . It was 
argued [2] that an average measure of coherence describes 
true behavior of a CS system. In [2], the t - averaged mutual 
coherence for a given t > 0 is defined as 
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where , /(|| || || ||)T
i j i j i jg = ⋅d d d d , ,{( , ) : | | }t i ji j g t= ≥I ,  and | |tI  denotes 

the cardinality of index set tI .  

II. Problem Formulation 

Unlike the methods in [2] where the t-averaged mutual 
coherence is minimized and in [4] where an equiangular tight 

frame is approximated, we deal with the design of projection 
matrix by minimizing the mutual coherence μ  in (2). Thus the 
design problem is formulated as 

                             
1 ,
   

| |
minimize max

|| || || ||

T
i j

i j L
i ji j

≤ ≤
≠

⋅P

d d
d d

  (5) 

where the projection matrix P  is related to { ,1 }i i L≤ ≤d  by 
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                                                                           [ ]1 2 L= =PD d d dD   (6) 

with a given dictionary D . A natural way to address the 
problem in (5) is to treat the di’s as unknowns, then find P  via 
(6) (typically using a least squares technique). Thus we 
consider the minimax problem 

                             
,1 1 ,

   

| |
minimize max

|| || || ||i

T
i j

i L i j L
i ji j

≤ ≤ ≤ ≤
≠

⋅d

d d
d d

  (7) 

Evidently, (7) is a nonconvex problem with a total of mL 
unknowns. For a small problem size e.g. m = 30, n = 80, and L = 
120, the number of unknowns mL = 3600 is already fairly large. 
Furthermore, operation “max” and the absolute values 
involved within “max” imply a highly nonsmooth objective 
function in (7). 
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III. A SUBGRADIENT PROJECTION ALGORITHM 

A. Problem Reformulation 

Let ix  be the normalized vector id , i.e., / || ||i i i=x d d . In terms 
of ix , (7) becomes 

                                                                                 
,1 1 ,

   

minimize max  | |

subject to:  1  for 1

i

T
i ji L i j L

i j

T
i i i L

≤ ≤ ≤ ≤
≠

= ≤ ≤

x
x x

x x
    (8a-b) 

We replace | |T
i jx x by 2( )T

i jx x in (8a) to get an equivalent 
problem with an objective function that is smoother than the 
magnitude of inner product: 
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x
x x

x x
  (9a-b) 
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The objective function in (9a), however, remains non-
differentiable because of the “max” operation. Furthermore, 
(9) is a highly nonconvex problem because the objective 
function is nonconvex and the feasible region defined in (9b) 
is also nonconvex.  

Define  

                                                                                                           

1

2

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
x

x

x

     (10) 

and let 0 0= P DD  be an initial effective dictionary matrix with D 
a given dictionary and 0P  an initial random projection matrix. 
The columns of 0D   are normalized to have unity 2-norm and 
an initial point of (9), 0x , is then constructed by stacking the 
columns of 0D   .  
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Now assume that we are in the kth iteration to update point 

kx  to 1k k+ = +x x δ  where [ ]1 2
T

L=δ δ δ δ is supposed to 
improve the current iterate kx  in the sense of reducing the 
objective function (i.e., mutual coherence) in (9a). To 
construct a convex model, it is critical that δ  is maintained 
small in magnitude so that each term in (9a) is well 
approximated by 

( ) ( )
2 2T T T T

i i j j i j j j i j
⎡ ⎤ ⎡ ⎤+ + ≈ + +⎣ ⎦⎣ ⎦x x x x x xδ δ δ δ  

This leads to a convex problem with respect to δ : 

                                                          

2

1 ,
   

2

minimize max  ( )

subject to:  || ||     for 1

T T T
i j j i i ji j L

i j

i i Lβ

≤ ≤
≠

+ +

≤ ≤ ≤

x x x x
δ

δ δ

δ
  (11a-b) 

where β  > 0 is a small constant that controls the size of the 

feasible region. Once (11) is solved, the optimal ∗δ  is used to 
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update kx  to k
∗+x δ , then each length-m block of k

∗+x δ  is 
normalized to have unit 2-norm so as to satisfy the 
constraints in (9b). It is this normalized k

∗+x δ  that becomes 
the next iterate 1k+x . 

If we define  

                                                         
2

1 ,
   

( , ) max  ( )T T T
k i j j i i ji j L

i j

f
≤ ≤
≠

= + +x x x x xδ δ δ   (12) 

which is a convex model of the coherence surrounding kx , 
problem (11) becomes 

                                                                   

2

minimize     ( , )

subject to:  || ||     for 1
k

i

f

i Lβ≤ ≤ ≤

x
δ

δ

δ
            (13a-b) 

B. Solving (13) by Subgradient Projection 

Function ( , )kf xδ  involves a “max” operation, hence it does 
not have a gradient. However ( , )kf xδ is convex and possesses 
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subdifferential ( , )kf∂ xδ  which is defined as the set of vectors  
satisfying 

                                                    1 1( , ) ( , ) ( , ) ( )T
k k kf f f≥ + ∂ −x x xδ δ δ δ δ   (14) 

for any δ  and 1δ . Using (14), it is easy to verify that a 
subgradient of ( , )kf xδ  is given by 

                                                                 
,

( th block)
( , ) 2
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0

0

0
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δ   (15) 

where ( , )i j∗ ∗  denotes the index pair at which the maximum of 
2( )T T T

i j j j i j+ +x x x xδ δ  is achieved and 
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,

T T T
i j i j j i i j

p ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + +x x x xδ δ   (16) 

Note that the subgradient in (15) can be evaluated efficiently 

because it has only two nonzero length-m blocks to fill. With 

(15), the subgradient projection method [6][7] can be applied 

to iteratively solve problem (13) as 

                                                                            1 [ ( , )]l l l l kfβ α+ = ∏ − ∂ xδ δ δ   (17) 

for l = 1, 2, . . . where lα  > 0 is a step size and ( )β∏ v  is a 

projection operator that applies to each length-m block in 
vector v  so that if the 2-norm of the vector block does not 
exceed β , then the operator leaves it unaltered, otherwise 
the vector block is multiplied by a scaling factor 0 < γ  < 1 
such that the 2-norm of the scaled block equals to β . It can 
be shown [6][7] that if the step size lα  in (17) is chosen such  
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that ll
α = ∞∑  and 2

ll
α < ∞∑ , then lδ  in (17) converges to a 

global solution of (13) as l → ∞. For example, sequence lα  = 
1/( 1)l +  shall work. In practice, iteration (17) is carried out for 
a finite number (M) of times, and the step size is often 
chosen as a constant e.g. /l c Mα =  with an appropriate 
constant c. 

C. An Algorithm for Solving (9) 
Based on the above development, an algorithm for solving (9) 
(hence (7)) can be outlined as follows. 

Input: A sparsifying dictionary n LR ×∈D , an initial random 
projection 0

m nR ×∈P , number of outer iterations K, and number 
of inner iterations M. 

Outer iteration 

for k = 0, 1, . . . , K − 1 
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     Inner iteration  

      set 0 = 0δ  

      for l = 0, 1, 2, . . .M − 1 

           use (17) to obtain 1l+δ  

      end 

                k M= +x x δ  

      use (10) to get individual 'i sx  

      construct  

                              [ ]1 2 L= x x xD                      (18) 

                 Find 1k+P  by solving 

                               minimize   || ||F−
P

PD D                    (19) 
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      Compute [ ]1 1 1 2k k L+ += ≡P D d d dD  

                  Normalize columns of 1k+D  to get / || ||i i i=x d d  

      Construct iterate 1k+x  using (10). 

end 

Concerning the problem in (19), we consider two cases. The 

first case is when L = n and D is an orthonormal basis. In this 
case the solution of (19) is simply 1

T
k+ =P DD , and the effective 

dictionary is 1k+ =D D   which is obtained from (18). The second 
case is when L > n, thus D is an overcomplete dictionary. In 
this case we assume D has full row-rank, i.e. rank(D) = n. It 
can readily be shown that the solution of (19) is given by 

                                                                         
† 1

1 ( )T T
k

−
+ = =P D D DDD D   (20) 
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IV. EXPERIMENTAL STUDIES 

A. Coherence Minimization 

The purpose of this part of experimental studies is to 
demonstrate the proposed algorithm offers a good local 
solution for problem (7). To this end, the proposed algorithm 
as well as the algorithms in [2] and [4] were applied to a CS 
system of size m = 30, n = 200, and L = 400, where the dictionary 

200 400R ×∈D is a random matrix drawn from i.i.d. zero-mean, 
unit-variance Gaussian distributions. In our simulations, each 
algorithm run 2000 iterations (this means to set K = 2000, the 
number of subgradient projections was set to M = 100). For 
the algorithm in [2], parameters γ and t were set to 0.95 and 
0.2, respectively; for the algorithm in [4], μ  was set to 0.175; 
and for the proposed algorithm parameters β and c were set 
to 0.025 and 0.1, respectively. The profiles of mutual 
coherence μ  versus iterations for the three algorithms are 
shown in Fig. 1 where the curves generated by the 
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algorithms of [2] and [4] are marked as “Elad” and “Yu-Li-
Chang”, respectively. The value of μ  associated with the 
initial projection matrix was 0.7440. From Fig. 1, it is evident 
that the proposed algorithm does minimizing the mutual 
coherence. 
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Fig. 1 Mutual coherence μ  versus iterations for [2], [4], and the proposed 
algorithm. 



 18

The value of μ  after 2000 iterations was found to be 0.3439. 
The profiles associated with the methods of [2] and [4] do 
not appear to converge. The minimum values of μ  achieved 
by [2] was 0.7083 and by [4] was 0.4781. This non 
convergence is not surprising because the algorithms in [2] 
and [4] are not designed for minimizing μ , rather they are 
developed for minimizing t-averaged μ  and approximating 
the equiangular tight frame, respectively. 

Let T=G D D   be the Gram matrix of the effective dictionary D  
whose columns are normalized to the unit 2-norm. The 
histograms of the absolute off-diagonal elements of G  (only 
those above the diagonal are counted as G  is symmetrical) 
for the three algorithms are evaluated and averaged over 100 
CS systems of the same size m = 30, n = 200, and L = 400. Each 
algorithm run 1000 iterations with all parameters involved set 
to the same values as before. The results are depicted in Fig. 
2.  
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Fig. 2 Histogram of absolute off-diagonal elements of G  produced by (a) 
algorithm [2], (b) algorithm [4], and (c) the proposed algorithm versus those of 
the initial G .  
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It is observed that  

(a) the algorithm in [2] was able to reduce the number of 
absolute inner products that are greater than 0.24. However, 
the algorithm also reduces the number of absolute inner 
products that are less than 0.135 that is evidently 
undesirable;  

(b) the algorithm in [4] was able to push the histogram 
profile of the initial Gram matrix further relative to that 
achieved by the algorithm in [2]. However it reduces the 
number of absolute inner products less than 0.14; 

(c) the proposed algorithm exhibits a clear-cut profile with a 
much smaller upper bound μ  = 0.3618. In addition, the 
algorithm maintains the histogram of the initial G  for small 
absolute inner products. In effect, the number of absolute 
inner products that are less than 0.16 was even slightly 
increased. 
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B. Reconstruction Performance 

The performance of the optimized projection matrix was 
evaluated by applying it to the l1-minimization (known as 
basis pursuit (BP)) method for signal reconstruction. The CS 
system is of size (m, n, L) with n = L = 128 and m varying from 31 
to 41. The dictionary is a random matrix of size 128 × 128 with 
all columns normalized. For each m∈ [31, 41], a total of 105 
sparse signals with sparsity 6 were used and a reconstruction 
instance was deemed erroneous if the 2-norm reconstruction 
error exceeded 10−4. The relative number of errors versus the 
number of measurements m is shown in Fig. 3. For 
comparison, the methods of [2] and [4] were also evaluated 
with the same system setting. Since the performance of 
these two methods for BP are very close to each other (see 
Sec. 4 of [4]), Fig. 3 only compares the proposed algorithm 
with the algorithm in [2]. Performance improvement by the 
proposed algorithm is observed for most values of m.  
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Fig. 3 Relative number of errors versus m for BP-based CS systems. 
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