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Motivation

I By the year 2005, it is projected that the
number of wireless subscribers will exceed that
of wire-line subscribers:

• Explosive Growth in wireless services

• Rapid Convergence with the Internet
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Wireless Applications

I Mobile Telephony/data/multimedia (3G)

I Wireless LANs (IEEE 802.11)

I Digital Broadcasting (DAB, DVB)

I Bluetooth

I Wireless Internet/m-commerce
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Wireless Challenges

I High Data Rate (multimedia traffic)

I Networking (seamless connectivity)

I Resource Allocation (quality of service-QOS)

I Mobility (rapidly changing physical channel)

I Portability (battery life)

I Privacy/Security (encryption)
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Wireless Channel Impairments

I Fading (data rates depend on time, frequency
and space)

I Limited Bandwidth

I Dynamism (random access, mobility)

I Limited Power (at the mobile)

I Interference
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Multipath Fading
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The Current Situation

I Spectrum is limited

I Battery power is growing at a slow rate

I Terminal size is decreasing

I Processor performance is growing
exponentially

I Consumers like (demand) wire-line quality

I Wire-line data rates are growing rapidly making
expectations much higher
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Conclusion

Providing high speed, high quality wireless
services given the quality of wireless
channels is a challenging task.
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Diversity

I Deep fade ⇒ A replica of the transmitted
signal must be sent to the receiver ⇒ Diversity

I Diversity:

• Temporal Diversity (well understood)

• Frequency Diversity (well understood)

• Spatial (Antenna) Diversity

¨ receive antenna diversity
(well understood)

¨ transmit antenna diversity
(subject of current research)
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Wireless Channel: Diversity

I In many cases the wireless channel is

• Rayleigh: requires diversity

• slowly time-varying: no temporal diversity

• non-frequency selective: no frequency
diversity

I ⇒ Spatial Diversity is needed
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Multiple Antenna Systems

I N transmit and M receive antennas

I At each time, N signals are transmitted
simultaneously each from a different antenna.

I Signals transmitted from different antennas
undergo independent fading.

I The signal at each receive antenna is a linear
superposition of the transmitted signals
perturbed by noise (and interference).
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Capacity of MIMO Systems

I Telatar, and independently Foschini and Gans,
determined that for a multiple antenna system
with N transmit and M = N receive antennas

The Capacity Increases Linearly
as a function of N as N →∞.

I How to exploit this capacity?

Space-Time Codes!
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Notation

I Codewords are written as a matrix:

S =




s1,1 s1,2 s1,3 · · · · · · s1,N

s2,1 s2,2 s2,3 · · · · · · s2,N

...
...

. . . . . . . . .
...

sL,1 sL,2 sL,3 · · · · · · sL,N




I To send codeword S, at time t = 1, 2, · · · , L, we
send st,1, st,2, · · · st,N simultaneously from
transmit antennas 1, 2, · · · , N , respectively.
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Space-Time Block Codes

I A simple example for two transmit antennas:

• Suppose the signal constellation has 2b

elements, i.e. BPSK, QPSK, 8-PSK, 16-QAM

• At time t1, 2b bits arrive at the encoder and
pick up constellation symbols s1 and s2

• The transmission matrix is then:

S =


 s1 s2

−s∗2 s∗1



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Space Time Block Code Example (2x2)

2b

bits

s1, s2- Symbol

Calculation
- Transmit

Antennas
- s1

−s∗2

s2

s∗1

time1

time2

Ant1 Ant2

Transmitter Block Diagram
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Capacity of STBC over Fading Channels

I Rayleigh/Ricean/Nakagami-m fading with
PAM/PSK/QAM modulation

I Closed form expressions for Shannon Capacity

C = log2(1 + SNR) bits/s/Hz

For a Ricean channel

C = R
∫∞
0

log2(1 + γs)p(γs)dγs bits/s/Hz

=
∑∞

i=0
R log2 e(MNβ)ie−MNβ

Γ(i+1)Γ(MN+i)γMN+i
c

f(γc,MN + i− 1)

First closed form expressions for STBC Shannon
Capacity with PAM/PSK/QAM and fading
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Capacity of STBC with QPSK in Rayleigh
Fading
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Probability of Error Analysis for STBC

I SER of STBC over Rayleigh/Ricean/Nakagami-m
fading channels (given below for Ricean)

P =
∫∞
0

Pq(γs)p(γs)dγs

=
∑∞

n=0
(MNβ)ne−MNβ

Γ(n+1)

×λ

[
1−∑MN+n−1

i=0 µ
(

1−µ2

4

)i
(

2i
i

)]

I First exact closed form probability of error
expressions for STBC over fading channels
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BER of STBC with QPSK in Rayleigh Fading
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STBC in a DS-CDMA System
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Capacity of DS-CDMA with BPSK and STBC
in Rayleigh Fading

5 10 15 20 25
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of User − K

bi
ts

/s
/H

z
2T1R x G2
2T2R x G2
2T4R x G2
4T1R x G4
4T2R x G4
4T4R x G4
4T1R x H4
4T2R x H4
4T4R x H4

23



Performance of DS-CDMA wth BPSK and G2

in Rayleigh Fading (PG = 64, K = 20)
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Correlated Channels

I Channel correlation occurs when antennas
are not separated sufficiently

I On small wireless devices, receive antennas
must be close together

I This correlation results in a diversity loss and
performance degradation
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BER of STBC over Correlated Channels

I BER for Correlated Rayleigh Channels

P = λ
Γ1

2(Γ1 − Γ2)
[1− µ1]− λ

Γ2

2(Γ1 − Γ2)
[1− µ2]

I BER for Correlated Ricean and Nakagami
fading channels

P =
λ

π

∫ π
2

0

Φγs

(
aγs

2sin2φ

)
dφ
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BER of STBC with BPSK in Uncorrelated
Ricean Fading (β = 1, ρ = 0)
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BER of STBC with BPSK in Correlated Ricean
Fading (β = 1, ρ = 0.8)

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R
SISO−(1TX,1RX)
ALAMOUTI−(2TX,1RX)
ALAMOUTI−(2TX,2RX)

28



BER of STBC with BPSK in Correlated Ricean
Fading (β = 1, ρ = 1.0)
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BER of STBC with BPSK in Correlated
Nakagami Fading (m = 1, ρ = 0− .9)
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STBC with Turbo Codes in Unstructured
Interference

I STBC and Turbo Codes (TC) are used for high
data-rate wireless communications (3G, 4G)

I Industry measurements show that surrounding
electronics cause noise in STBC receivers
leading to poor performance

I Solution: use a robust STBC receiver for
unknown interference suppression
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Space-Time Block Coding with Cyclic
Maximum-Likelihood Detection

I Received signal in matrix form

R =

√
ρ

M
HX + N + I

I
√

ρ
M

= Transmit energy ρ normalized by M

I H = Channel between each transmit-receive antenna pair

I X = Transmitted signal matrix

I N = AWGN noise at the receiver

I I = External localized interference
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Concatenated STBC and TC System Model
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Maximum-Likelihood Detection and CML

I Detection of received frame of codeword
matrices incorporating noise statistics
R = [R1trRKtrR1 . . .RL]

ĉt,l = argmax
c

L∑

l=1

2∑
t=1

Re((Re(Tr{R∗
l Q

−1HAt})

+ iIm(Tr{R∗
l Q

−1HBt}))c(l)
t )

I CML obtains and refines initial channel H and
noise Q estimates based on training data
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Interference Suppression
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Interference Suppression with Coding
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Differential Space Time Modulation
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Performance versus Training
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Impact of Doppler Fading

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10

−3

10
−2

10
−1

10
0

Normalized Doppler Frequency (Fd*Ts)

B
E

R

OSTBC with Known H and Q
TML
1 Iter WML
1 Iter CML
2 Iter WML
2 Iter CML

39



Coherent versus Noncoherent
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Future Work

I Successive Interference Cancellation with STBC

I Space Time Multilevel Codes

I Space Time Turbo Codes

I Performance and Capacity of MC-CDMA and
OFDM systems with STBC

I Wavelet OFDM (Multicarrier Modulation)

I STC for PAPR reduction in OFDM

I PAPR estimation and reduction techniques for
OFDM
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A New STBC Cellular System Structure - 1

I This Structure consists of edge-excited cells

I Each base station covers part of the cells with
SDMA

I Eliminates channel correlation

I Reduces interference between users
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A New STBC Cellular System Structure - 2

User 2

User 1
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A New STBC Cellular System Structure - 3
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Wavelets

I DSP tool used for analysis of signals

I Wavelets are simultaneously scalable in time
and frequency

I Lower complexity than FFT

I Provides high temporal and frequency
resolution

I Can be used for partial removal of AWGN
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Wavelets

Wavelet transform
Fourier transform
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Multilevel STBC
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Space Time Turbo Code with Bit Selection
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The Error Matrix
For two distinct codewords

C =

(
c1 c2

−c∗2 c∗1

)

and

D =

(
d1 d2

−d∗2 d∗1

)

the error matrix

C−D =

(
c1 − d1 c2 − d2

−c∗2 + d∗2 c∗1 − d∗1

)

has full rank → diversity!
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Properties

I Simple decoding: Each symbol is decoded
separately using only linear processing.

I Maximum diversity: Same performance as
two-level maximum ratio combining.

Is it possible to design similar codes for more
number of transmit antennas?
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Orthogonal Designs

I What is the reason for these properties?

S =


 s1 s2

−s∗2 s∗1




I The columns of S are orthogonal

S∗S = (|s1|2 + |s2|2)I.

I We call such an S an orthogonal design.
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Existence of Real Orthogonal Designs

A real orthogonal design exists if and only if
n = 2, 4, 8.

(
s1 s2

−s2 s1

)




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1



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Example




s1 s2 s3 s4 s5 s6 s7 s8

−s2 s1 s4 −s3 s6 −s5 −s8 s7

−s3 −s4 s1 s2 s7 s8 −s5 −s6

−s4 s3 −s2 s1 s8 −s7 s6 −s5

−s5 −s6 −s7 −s8 s1 s2 s3 s4

−s6 s5 −s8 s7 −s2 s1 −s4 s3

−s7 s8 s5 −s6 −s3 s4 s1 −s2

−s8 −s7 s6 s5 −s4 −s3 s2 s1



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Existence of Complex Orthogonal Designs

Given a complex orthogonal design of size n, we
replace each complex variable
si = s1

i + s2
i j , 1 ≤ i ≤ n by the 2× 2 real matrix


 s1

i s2
i

−s2
i s1

i


 .

In this way s∗i is represented by

 s1

i −s2
i

s2
i s1

i


 .
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Existence of Complex Orthogonal Designs

I The 2n× 2n matrix formed in this way is a real
orthogonal design of size 2n.

I Result: A complex orthogonal design of size n

exists only if n = 2.

How can we design space-time block codes for
higher number of transmit antennas?
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Generalized Orthogonal Designs

I Instead of orthogonal designs that are square
matrices, we construct generalized orthogonal
designs that are rectangular matrices.

I We only allow linear combinations of symbols
(linear processing at the transmitter).

I This leads to space-time block coding.
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Example

I K = 3, L = 8, N = 4, R = 0.5




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 s∗4 s∗1 −s∗2

−s∗4 −s∗3 s∗2 s∗1



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Example

I K = 4, L = 8, N = 3, R = 0.5




s1 s2 s3

−s2 s1 −s4

−s3 s4 s1

−s4 −s3 s2

s∗1 s∗2 s∗3

−s∗2 s∗1 −s∗4

−s∗3 s∗4 s∗1

−s∗4 −s∗3 s∗2



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Example

I K = 3, L = 4, N = 4, R = 0.75




s1 s2 s3 0

−s∗2 s∗1 0 s3

s∗3 0 −s∗1 s2

0 s∗3 −s∗2 −s1



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STBC for MIMO wireless channels

I Space-time block codes from orthogonal
designs can provide maximum diversity.

I Real space-time block codes can provide
maximum diversity and rate for any number of
transmit antennas, N .

I Rate half complex space-time block codes
can provide maximum diversity for any number
of transmit antennas, N .

I Rate 3/4 complex space-time block codes can
provide maximum diversity for N = 3, 4, and
rate one code for N = 2.
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