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Although it is being successfully implemented for exploration of
the genome, discovery science has eluded the functional neuro-
imaging community. The core challenge remains the development
of common paradigms for interrogating the myriad functional
systems in the brain without the constraints of a priori hypoth-
eses. Resting-state functional MRI (R-fMRI) constitutes a candidate
approach capable of addressing this challenge. Imaging the brain
during rest reveals large-amplitude spontaneous low-frequency
(<0.1 Hz) fluctuations in the fMRI signal that are temporally corre-
lated across functionally related areas. Referred to as functional
connectivity, these correlations yield detailed maps of complex
neural systems, collectively constituting an individual's “functional
connectome.” Reproducibility across datasets and individuals sug-
gests the functional connectome has a common architecture, yet
each individual’s functional connectome exhibits unique features,
with stable, meaningful interindividual differences in connectivity
patterns and strengths. Comprehensive mapping of the functional
connectome, and its subsequent exploitation to discern genetic
influences and brain-behavior relationships, will require multicen-
ter collaborative datasets. Here we initiate this endeavor by gath-
ering R-fMRI data from 1,414 volunteers collected independently
at 35 international centers. We demonstrate a universal architec-
ture of positive and negative functional connections, as well as
consistent loci of inter-individual variability. Age and sex emerged
as significant determinants. These results demonstrate that inde-
pendent R-fMRI datasets can be aggregated and shared. High-
throughput R-fMRI can provide quantitative phenotypes for
molecular genetic studies and biomarkers of developmental and
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pathological processes in the brain. To initiate discovery science of
brain function, the 1000 Functional Connectomes Project dataset is
freely accessible at www.nitrc.org/projects/fcon_1000/.

database | neuroimaging | open access | reproducibility | resting state
M uch like the challenge of decoding the human genome, the

complexities of mapping human brain function pose a
challenge to the functional neuroimaging community. As dem-
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onstrated by the 1000 Genomes Project (1), the accumulation
and sharing of large-scale datasets for data mining is necessary
for the first phase of discovery science.

Although the neuroimaging community has traditionally focused
on hypothesis-driven task-based approaches, resting-state func-
tional MRI (R-fMRI) has recently emerged as a powerful tool for
discovery science. Imaging the brain during rest reveals large-
amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the
fMRI signal that are temporally correlated across functionally
related areas (2-5). A single R-fMRI scan (as brief as 5 min) can be
used to interrogate a multitude of functional circuits simulta-
neously, without the requirement of selecting a priori hypotheses
(6). Building on the term “connectome,” coined to describe the
comprehensive map of structural connections in the human brain
(7), we use “functional connectome” to describe the collective set of
functional connections in the human brain.

Buttressed by moderate to high test-retest reliability (8-10) and
replicability (11, 12), as well as widespread access, R-fMRI has
overcome initial skepticism (13) regarding the validity of examining
such an apparently unconstrained state (5, 8, 14). Recent R-fMRI
studies have identified putative biomarkers of neuropsychiatric
illness (12, 15-18), provided insight into the development of func-
tional networks in the maturing and aging brain (19-22), demon-
strated a shared intrinsic functional architecture (23) between
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humans and nonhuman primates (24, 25), and delineated the
effects of sleep (26), anesthesia (27), and pharmacologic agents on
R-fMRI measures (28, 29). Given the many sources of variability
inherent in fMRI, the remaining challenge is to demonstrate the
feasibility and utility of adopting a high-throughput model for R-
fMRI, commensurate with the scale used by human genetics studies
to have the power to detect both single gene and combinatorial
genetic and environmental effects on complex phenotypes.

Accordingly, the 1000 Functional Connectomes Project was
formed to aggregate existing R-fMRI data from collaborating cen-
ters throughout the world and to provide an initial demonstration of
the ability to pool functional data across centers. As of December
11, 2009, the repository includes data from 1,414 healthy adult
participants contributed by 35 laboratories (Table S1). The intent is
to expand this open resource as additional data are made available.

Here we provide an initial demonstration of the feasibility of
pooling R-fMRI datasets across centers. Specifically, we (i)
establish the presence of a universal functional architecture in
the brain, consistently detectable across centers; (ii) investigate
the influence of center on R-fMRI measures; (iii) explore the
potential impact of demographic variables (e.g., age, sex) on R-
fMRI measures; and (iv) demonstrate the use of an intersubject
variance-based method for identifying putative boundaries
between functional networks.
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Fig. 1. Independent center-, age-, and sex-related variations detected in R-fMRI measures of functional connectivity and amplitude fluctuation. The first row

depicts group-level maps for representative seed-based (column 1) and ICA-based (column 3) functional connectivity analyses (S/ Results), as well as fALFF
(column 2). Group-level maps were derived from one-way ANOVA across 1,093 participants from 24 centers (factor: center; covariates: age and sex). All group-
level maps depicted were corrected for multiple comparisons at the cluster level using Gaussian random-field theory (Z > 2.3; P < 0.05, corrected). For each
measure, the second row shows robust between-center concordances (Kendall's W), with the voxelwise coefficients of variation above the diagonal and the
voxelwise means below the diagonal. Kendall's W concordance between any two centers was calculated across all voxels in the brain mask for the mean (or
coefficient of variation) connectivity map across all participants included in each center. Rows 3, 4, and 5 depict voxels exhibiting significant effects of center,
age, and sex, respectively, as detected by one-way ANOVA. “Male” refers to significantly greater connectivity (or amplitude, i.e., fALFF) in males; similarly,
“female” refers to significantly greater connectivity (or amplitude) in females. “Older” refers to significantly increasing connectivity (or amplitude) with
increasing age, whereas “younger” refers to significantly increasing connectivity (or amplitude) with decreasing age. “Pos” refers to positive functional
connectivity, and “neg” refers to negative functional connectivity. The PCC seed region is indicated by a white dot. (Top Left) Surface map legend: LL, left
lateral; RL, right lateral; LM, left medial; RM, right medial. All surface maps are rendered on the PALS-B12 atlas in CARET (http://brainvis.wustl.edu).
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Results

We applied three distinct analytic methods commonly used in the
R-fMRI literature: seed-based functional connectivity, inde-
pendent component analysis (ICA), and frequency-domain
analyses. Across the three approaches, we found evidence of (i) a
universal intrinsic functional architecture in the human brain, (ii)
center-related variation in R-fMRI measures, and (iii) consistent
effects of age and sex on R-fMRI measures, detectable across
centers despite the presence of center-related variability (Fig. 1).
Specifically, seed-based correlational analyses revealed highly
consistent patterns of functional connectivity across centers for
both the “default mode” (30) and “task-positive” networks (31),
supporting a universal functional architecture (Fig. S1). Similarly,
a data-driven, temporal concatenation ICA approach, combined
with dual regression (32-34), revealed consistent patterns of
functional connectivity across centers for 20 spatially independent
functional networks (Fig. 1 and Figs. S2 and S3). In addition, for
each of the functional connectivity measures, within-center
coefficient of variation maps showed a high degree of con-
cordance across centers (Fig. S4). This suggests that common loci
of variation exist: centers demonstrated a high degree of agree-
ment on which connections are characterized by relative variance
or invariance. Despite the high degree of concordance between
centers, there were appreciable center-related variations in the
strength of functional connectivity throughout the brain (8). The
effect of center was especially prominent in regions exhibiting
greater interregional connection strength, because these have the
least within-center variability (See SI Results and Fig. S5 for fur-
ther discussion of center-related variability.) However, even when
taking this center-related variability into account, robustly reliable
effects of age and sex remained appreciable (Fig. 2 and Figs. S1
and S2). (See SI Results and Fig. S6 for an examination of the
impact of sample size on effects of age and sex.)

The detection of sex differences was particularly noteworthy,
because these differences are rarely appreciated in the R-fMRI
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literature (35). Sexual dimorphism in human genomic expression
(36) is known to affect numerous physiological variables that can
influence the fMRI signal (37, 38). For example, males and
females differ in terms of hemoglobin concentrations and hema-
tocrit (39). However, global variables such as these do not explain
the regionally specific sex-related phenomenon noted in the
present work. Hormonal effects (e.g., estrogen), operating both
during brain development (40) and acutely (41), are known to
have regional specificity (42), making them potential contributors
to the differences observed. Given the discovery nature of the
present work and the lack of prior coordination among centers,
the specific sex differences that we observed should be interpreted
with caution until replicated in an independent sample.

Along with examining patterns of functional connectivity, we
measured the amplitude of low-frequency fluctuations at each
voxel using two common periodogram-based measures: ampli-
tude of low frequency fluctuation (ALFF; total power <0.1 Hz) (2,
17, 43) and fractional ALFF (fALFF; total power <0.1 Hz/total
power in the measured spectrum) (44). Concordant with previous
work, the dominance of low-frequency fluctuations was con-
sistently noted within gray matter regions, but not white matter
(44). As with our analyses of functional connectivity, despite clear
evidence of center-related effects, we were again able to dem-
onstrate age- and sex-related differences in the magnitude of low-
frequency fluctuations in various regions, particularly medial wall
structures (Fig. 2 and Fig. S7).

Beyond data pooling for statistical analyses, we demonstrate
the potential to use high-throughput datasets to develop norma-
tive maps of functional systems in the brain, which is a pre-
requisite for clinical applications. Specifically, we exploit a key
property of functional connectivity maps, the presence of well-
differentiated borders between functionally distinct regions (45).
The voxelwise measures of coefficients of variation for each type
of functional connectivity map delineate putative functional
boundaries based on the presence of marked variability in func-
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Fig. 2. [lllustrative areas exhibiting age- and sex-related variation in R-fMRI properties. Significant group-level variance in functional connectivity maps was

explained by age and sex (cluster-based Gaussian random-field corrected: Z > 2.3; P < 0.05). For each of three methods (seed-based, fALFF, and ICA), variance
in connectivity strength explained by age (Left) and sex (Right) is illustrated both anatomically and graphically. Age-related differences are represented as
scatterplots. Sex-related differences are represented as histograms depicting the distributions of resting-state functional connectivity (RSFC) values for males
and females separately. Vertical lines indicate peak values. Corresponding topographical brain areas are indicated with dots. “Male” refers to significantly
greater connectivity (or amplitude, i.e., fALFF) in males; similarly, “female” refers to significantly greater connectivity (or amplitude) in females. “Older”
refers to significantly increasing connectivity (or amplitude) with increasing age, whereas “younger” refers to significantly increasing connectivity (or
amplitude) with decreasing age.
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tional connectivity across participants. The variation observed at
these boundaries stands in contrast to the low degree of variability
observed in regions exhibiting consistently positive or negative
connectivity (Fig. 3). In addition, examination of the coefficients
of variation for fALFF measures revealed sharp boundary zones
between white matter and gray matter. It also identified areas of
variability in the amplitude of spontaneous fluctuations that
coincided with anatomic areas of notable sulcal variability (e.g.,
cingulate and frontal opercular regions).

Discussion

The present work represents a watershed event in functional
imaging: demonstration of the feasibility of sharing and pooling
functional data across multiple centers, alongside the establish-
ment of an open-access data repository. We have demonstrated (i)
the presence of a universal functional architecture, with remark-
able stability in the functional connectome and its loci of variation
across participants and centers; (ii) evidence of systematic sex
differences in R-fMRI measures, as well as age-related gradients
even in middle adulthood; and (iii) a method for highlighting the
complex array of putative functional boundaries between net-
works from which normative maps can be developed. Future work
should focus on using the functional connectome to catalog phe-
notypic diversity in brain-behavior relationships.

Functional connectivity is both related to and distinct from ana-
tomic connectivity. Specifically, a recent study reported that a
structural core appears to play “a central role in integrating infor-
mation across functionally segregated brain regions” (23). As such,
our finding of a universal functional architecture was not unex-
pected. But structure and function are not completely coupled, as
illustrated by the robust homotopic (i.e., contralateral) functional
connectivity for such regions as the primary visual cortex or the
amygdala, both of which lack direct callosal projections (24, 46).
Such findings imply that functional connectivity is subserved by
polysynaptic as well as monosynaptic anatomic circuits. In addition,
functional connectivity exhibits dynamic properties that are absent

in structural connectivity. For instance, functional connectivity is
modulated by cognitive (47) and emotional state (48), arousal, and
sleep (26), whereas structural connectivity is grossly unaffected by
such factors. In short, the presence of a demonstrable structural
connection does not necessitate that of a functional connection, nor
does the demonstration of a functional connection imply the pres-
ence of a direct structural connection.

Task-based fMRI and R-fMRI approaches have comple-
mentary roles in the study of human brain function. Task-based
approaches require sufficient a priori knowledge to articulate
specific hypotheses, and they are invaluable in refining such
hypotheses. But when the knowledge base is insufficient, task-
based approaches may be compared to candidate gene studies,
which have had limited success when applied to complex genetic
disorders. In contrast, genome-wide association studies are
increasingly providing initial findings for complex traits (49) and
diseases that are subsequently validated through replication,
extension, and deep sequencing (50). Our demonstration that R-
fMRI data can be aggregated and pooled, and that variability
among individuals can be explained in terms of specific subject
variables (e.g., sex, age), suggests that this approach can provide
quantitative phenotypes to be integrated into molecular studies.

Our results must be considered in light of several limitations of
the present study. First, we used a convenience sample com-
prising previously collected data from an array of centers, with-
out prior coordination of acquisition parameters or scanning
conditions. Although the robustness of our results attests to the
consistency of intrinsic brain activity, it still represents a potential
underestimate of the true across-center consistency. Our dem-
ographic data warrant caution, because centers were heteroge-
neous with respect to male:female ratio, mean age, and age
range. Our findings should motivate more systematic exploration
of these variables, because future high-throughput imaging
studies will need to take such factors into account.

Despite the promise of R-fMRI, some theoretical and pragmatic
issues need to be addressed. Examples include the determination of
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Fig. 3. Variation across individuals reveals functional boundaries. Previous work has noted that functionally segregated regions are frequently characterized
by well-demarcated boundaries for an individual (45). As such, variability in boundary areas is detectable across participants. Here we detect functional
boundaries via examination of voxelwise coefficients of variation (absolute value) for fALFF and selected seed-based [intraparietal sulcus (IPS), posterior
cingulate/precuneus (PCC)] and ICA-based (IC13) functional connectivity maps. For the purpose of visualization, coefficients of variation were rank-ordered,
whereby the relative degree of variation across participants at a given voxel, rather than the actual value, was plotted to better contrast brain regions.
Ranking coefficients of variation efficiently identified regions of greatest interindividual variability, thus delineating putative functional boundaries.
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the origins and biological significance of spontaneous low-frequency
fluctuations of neuronal and hemodynamic activity, the impact of
intrinsic activity on evoked responses (and vice versa), and the ideal
means of acquiring, processing, and analyzing R-fMRI data. Nev-
ertheless, the potential of discovery science is vast, from the devel-
opment of objective measures of brain functional integrity to help
guide clinical diagnoses and decision-making, to tracking treatment
response and assessing the efficacy of treatment interventions.
Finally, whereas the present work examines functional connectivity
alone, future studies may combine R-fMRIwith other modalities (e.
g, EEG, magnetoencephalography, diffusion-tensor imaging,
volumetrics) and genetics to achieve a more complete under-
standing of the human brain.

All data and analytic tools used in the present work will be made
available at www.nitrc.org/projects/fcon_1000/. We anticipate that
the open availability of the 1000 Functional Connectomes dataset will
recruit the broad participation and collaboration among the scientific
community necessary for successful implementation of discovery-
based science of human brain function. In addition, we hope that it
will further advance the ethos of data sharing and collaboration ini-
tiated by such efforts as fMRIDC (www.fmridc.org), FBIRN (www.
birncommunity.org), OASIS (www.oasis-brains.org), BrainScape
(www.brainscape.org), and BrainMap (www.brainmap.org).

Methods

Resting-state fMRI scans were aggregated from 35 community-based datasets
(n = 1,414). The present analysis was restricted to 24 centers (n = 1,093; 21
published, 3 unpublished; mean age <60 years; only participants over age 18;
one scan per participant; duration: 2.2-20 min;n=970at3T,n=123at1.5T;
voxel size, 1.5-5mm within plane; slice thickness, 3-8 mm). Each contributor’s
respective ethics committee approved submission of deidentified data. The
institutional review boards of NYU Langone Medical Center and New Jersey
Medical School approved the receipt and dissemination of the data.

For functional connectivity, we used seed-based correlation analysis, based on
six previously identified seed regions (31), and model-free ICA, using temporal
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