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Acquisition of the Head-Centered Peri-Personal
Spatial Representation Found in VIP Neuron

Sawa Fuke, Masaki Ogino, and Minoru Asada, Fellow, IEEE

Abstract—Both body and visuo–spatial representations are sup-
posed to be gradually acquired during the developmental process
as described in cognitive and brain sciences. A typical example is
face representation in a neuron (found in the ventral intraparietal
(VIP) area) of which the function is not only to code for the lo-
cation of visual stimuli in the head-centered reference frame, but
also to connect visual sensation with tactile sensation. This paper
presents a model that enables a robot to acquire such represen-
tation. The proprioception of arm posture is utilized as reference
data through the “hand regard behavior,” that is, the robot moves
its hand in front of its face, and the self-organizing map (SOM) and
Hebbian learning methods are applied. The simulation results are
shown and discussions on the limitation of the current model and
future issues are given.

Index Terms—Body representation, learning and adaptive
system, sensor fusion, ventral intraparietal (VIP) neuron.

I. INTRODUCTION

A CQUIRING BODY representation is the most funda-
mental issue not only for robotics, in order to accomplish

different kinds of tasks, but also for cognitive and brain sci-
ences and related disciplines, since how humans acquire such
representation is one of the great unresolved issues of human
cognitive development. General consensus of body representa-
tion is roughly categorized into two types: “body schema,” an
unconscious neural map in which multimodal sensory data is
unified, and “body image,” an explicit mental representation of
the body and its functions [1], [2]. The body representations
in biological systems are apparently flexible and acquired
by spatio–temporal integration of different information from
different sensory modalities (i.e., [3] and [4]).

Among different modalities, vision is the most representa-
tive spatial perception that is expressed in various kinds of ref-
erence frames in different brain regions. A typical example is
that the visual stimulus of a target is perceived in a retinotopic
manner [5]. On the other hand, the adjacent ventral intraparietal
(VIP) area includes neurons which encode bimodal sensory in-
formation in a head-centered space coordinate system [6]–[8].
They are supposed to play an important role for the avoidance
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Fig. 1. The table shows the examples of visual and somatosensory receptive
fields of neurons in VIP area that are observed in [6]. The same VIP neuron is
activated when something is shown on the screen’s shaded area in front of the
monkey and when the face’s shaded area is stimulated regardless of where the
monkey is fixating.

of obstacles and projectiles. Not only tactile stimuli on the face,
but surprisingly also visual stimuli, whose locations can be ex-
pressed in a head-centered reference frame regardless of ocular
angles, can activate these neurons. Fig. 1 shows examples of the
visual and somatosensory receptive fields of the same neuron,
which are not affected by gaze directions.

We may hypothesize that in the brain, the locations of visual
stimuli on the retina are transformed to the locations in the ab-
stract reference frames by integrating them with the proprio-
ception (i.e., neck and ocular angles) and associated with other
sensor information (i.e., tactile sense). Intriguingly, it is sug-
gested that not only the body image (schema), but also this trans-
formation system between reference frames in the visuo–space
is also adaptively acquired through experiences (i.e., [9]). How-
ever, the way humans acquire such representations in the brain
in spite of the changes in body structures and sensitivities has
remained an issue to be revealed.

A number of synthetic approaches aiming at understanding
the acquisition process of body and visuo–spatial representa-
tion in humans have been attempted in cognitive developmental
robotics [10], where the self-body, or body parts, are found or
identified based on invariance in the sensor data [11], synchro-
nization and contingency of motion and perception [12]–[14],
Jacobian estimation [15], and reference frame transformation
[16]. In these studies, the representation of invisible body parts,
such as a face or a back, cannot be acquired because the robot
cannot detect the visual information of the surface directly with
their own cameras. Fuke et al. [17] proposed a model that ac-
quired the body representation of a robot’s invisible face by esti-
mating its hand position from the change of the proprioception
while touching its own face. However, these studies assumed
that camera positions are fixed or that the coordinate system in
visual space is given by the designer.
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Fig. 2. In these two situations, we humans can recognize that the red objects
locate at the same position, though ocular angles and retina image are different
when we detect it in the peripheral visual field. Actually, when we see some-
thing, there are many different sets of perceived information (i.e., ocular angles
and retina image).

As a learning model of visuo–spatial representation, Pouget
et al. [18] proposed an approach based on a neural network with
statistically distributed input data so that multi-modal sensations
can be integrated. However, they have not discussed what kind
of information can be used to select the signals pertaining to the
same location of the target. In fact, as shown in Fig. 2, adult
humans can recognize that a stationary object is located in the
same position though ocular angles and retina image are dif-
ferent when we detect it in the peripheral visual field.

Aiming at revealing the above issue, through the process of
mutual feedback between hypothesis generation and its veri-
fication, here we propose a learning model in which a robot
acquires not only the head-centered reference frame, but also
the multimodal representation of the face based on the knowl-
edge in neurophysiological and cognitive science by focusing
on a “hand regard” behavior that infants around 4-months-old
often show. Eventually, we hope that the properties of acquired
cross-modal representation are similar to the one of VIP neu-
rons found in neuroscience. The proprioception of arm pos-
ture is utilized as reference data through the “hand regard” be-
havior, that is, the robot moves its hand in front of its face, while
the self-organizing map (SOM) and Hebbian learning methods
are applied. The SOM algorithm was proposed by Kohonen
[19] who suggested that cortical maps may self-organize in a
nearest-neighbor relationship. Based on this assumption, Aflalo
et al. [20] actually modeled motor cortex topography using a
Kohonen SOM and argued that their maps resembled the actual
maps obtained from the lateral motor cortex of monkeys. Here,
we used SOM for data compression. The simulation results are
shown and discussions on the limitation of the current model
and future issues are given.

II. FINDINGS IN DEVELOPMENTAL SCIENCE CONCERNING THE

VISUO–SPATIAL REPRESENTATION

Observation study suggests that the visual abilities of human
infants develop dramatically from the age from 3- to 7-months-
old. The 3-month-old infants tend to plan saccades based on the
retinocentric reference frame, ignoring the target shift due to
eye movements. On the other hand, the 7-month-old infants do
not ignore it [21]. This implies that human infants do not seem
to have the visuo–spatial representation within certain reference
frame systems from the beginning, but acquire it through their
experiences while their strength of muscles, and sensitivity and
placement of sensory organs continue to change. While these
visual abilities develop, a typical infant behavior called “hand

Fig. 3. An overview of the proposed model.

regard” [22] is observed. “Hand regard” is the phenomenon in
which 3- or 4-month-old infants often gaze at their own hands
in front of their faces. Among many interpretations of this phe-
nomenon, Rizzolatti et al. [23] suggest that it is probably to be
ascribed to the necessity of calibrating “peri-personal space”
(defined as the space within reach of the arm [24]) around a
body by combining the motor and visual information. The VIP
area in the parietal cortex is known as the region that contains
this peri-personal visuo–spatial representation.

Considering these observations of infants, we propose a
learning model that starts from the retinocentric representa-
tion, to head-centered representation, through “hand regard”
behavior as shown Table I. Then, we approach the issue of iden-
tifying what actual mechanism leads to the development of the
visuo–spatial representation development in the infant’s brain.
In our simulation, a robot learns the association between the
tactile representation of the face and the learned visuo–spatial
representation, which enables the robot to show the reflexive
behavior like the VIP neurons.

III. VIP NEURON MODEL

An overview of the proposed model is shown in Fig. 3, where
two modules are involved. First, the robot acquires the head-cen-
tered reference frame module. It has many sets of ocular angles
and the retinotopic images (camera images) that are represented
in the eye information space in Fig. 3. In order to construct a
head-centered reference frame, the robot associates the ocular
angles and camera images by regarding the proprioception of its
own body (joint angles of the arm) as the reference information.

Next, in the VIP module, the robot integrates the tactile sen-
sation with the patterns of visual stimuli computed in the head-
centered reference frame in the former trained module when it
touches its own face with its hand. Finally, the robot can acquire
the cross-modal representation of its own face. The details of the
robot simulator used and the details of each module are given in
the following Sections III-A, III-B, and III-C, respectively.

A. Robot Simulator

In order to validate the model, computer simulations were con-
ducted with a dynamic simulator based on the method of Feath-
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TABLE I
THE FINDINGS THAT SUPPORT THE CONDITIONS OF SIMULATION

Fig. 4. Robot model and its specifications used in the experiments.

Fig. 5. A simulation model: 108 green points in (a) are given by the designer
as reaching targets during random hand movements and placed at 0.02 [m] in-
tervals in the x, y, and z directions. The blue ball represents the gaze point of
the two eyes. (b) Image space is the actual camera image divided into 10 � 10
units. The winner unit is the one in which the center of the hand is included. (a)
The robot and (b) image space.

erstone [25]. The robot model used in this experiment and its
specifications are shown in Fig. 4. It has arms with five degrees
of freedom. Furthermore, it has a binocular vision system and
each eye has two degrees of freedom (pan and tilt). The left hand
is colored red so that the robot can easily detect its position in
the camera image. Color range is tuned by trial and error so that
it cannot be influenced by illumination changes caused by arm
movements. There are tactile sensor units on its face. A total of
108 green points in Fig. 5(a) are given by the designer
as reaching targets during random hand movements and placed
at 0.02 m intervals in the x, y, and z directions. The blue ball in
Fig. 5(a) and (b) represent the gaze point of the two eyes.

B. Head-Centered Reference Frame Module

1) Arm Posture Space: Five joint angles of the left arm,
which are colored red in Fig. 4, constitute the arm posture space.
First, the robot selects one of the green points in front of the face
randomly. The points are selected randomly, but they approxi-
mately cover the space in front of the face. The position of the
selected point in the global reference frame (3-D Cartesian ref-
erence frame) is denoted as and the hand position in
the global reference frame is denoted as . The following
force is applied to the center of the hand

(1)

where, is a positive constant and set to 75 N/m here. Since the
initial position of the hand is near the waist, as shown in Fig. 4,
and all joints between hand and shoulder are free (no force is ap-
plied), an arm posture for each reaching target is uniquely deter-
mined. Therefore, correlations between 5 DOF postures and the
corresponding target points might be caused as a result. 5 DOF
arm postures are similar to each other if the corresponding target
points are near to each other. When the hand reaches , the
robot selects another point again.

Here, we focus on an SOM [19] algorithm that is a kind of
unsupervised neural network used in order to reduce the dimen-
sions and classify the multidimensional input data. The joint
angle data are recorded and used as training data to construct
the SOM as an arm posture space.

Each unit in the map contains a representative vector whose
dimension is the same with the one of input. The representative
vector for the th unit is

(2)

where is the number of joint angles (here, ). When the
current arm posture is given

(3)

the mapping for the th unit on the space is updated depending
on the distance from the winner th unit

(4)

(5)

and are a learning rate that decays as the learning pro-
ceeds and a scaling factor, respectively. For example, in this
case, is computed as following:

(6)

and the is set to 0.01. The size of the SOM is 10 10 and
the learned map is shown in Fig. 6(a). The number of learning
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Fig. 6. Acquired maps of arm posture space and ocular angle space. (a) Arm
posture space and (b) ocular angle space.

Fig. 7. Variables for the calculation of ocular angles.

steps is 500. The map holds the similar representative vectors in
neighboring units.

After learning, in each step, the Euclidean distance between
the representative vector of the th unit and the actual arm pos-
ture is calculated. Then, using the winner unit (here the th

unit) with the smallest Euclidean distance, activity of the
th unit is given by

(7)

is a constant parameter which decides the range of activation.
2) Ocular Angle Space: To collect the sets of the ocular an-

gles and the location of the visual stimuli in the camera image,
the robot records the ocular angles (pan-tilt angles of each eye)
while simultaneously recording the arm joint angles. First, the
position in the global reference frame is defined as

(8)

(9)

(10)

and are selected among the values from 1 to 1 ran-
domly. equals to 0 and is 0.05. We adopt this random
noise in order to duplicate a behavior of infants who cannot
move eyeballs toward an object correctly. We denote the vector
of the actual ocular angles and the position of eyes on the face

are given by

(11)

(12)

and

(13)

Then, ocular angles are given by

(14)

(15)

(16)

and (17)

On the other hand, the robot cannot move its eyeballs to an ob-
ject voluntarily based on the positions in the camera reference
frame, which is the same situation as infants.

Recorded ocular data are used as training data to construct an
SOM and the size is 15 15 as shown in Fig. 6(b). The number
of learning steps is 1000. After training, the winner unit, whose
ID is , is computed in the same manner as for the arm posture
space

(18)

where the representative vector is given by

(19)

3) Image Space: While recording the ocular data, the robot
simultaneously detects its hand position in the camera refer-
ence frame. The right(left)-eye image space is the actual camera
image divided into 10 10 units as shown in Fig. 5(b). The
winner unit whose ID is is the one in
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which the center of the hand area is included. We adopt the de-
marcated parts instead of coordinates in the camera image in
order to decrease the amount of information to deal with.

4) Eye Information Space: In the next step, the eye infor-
mation space is prepared to combine the activating patterns in
the three spaces of the ocular angle space, the right-eye space,
and the left-eye image space. An SOM [19] is constructed by
utilizing the IDs of the winner units in these three spaces,

, as the representative vector in the
same way shown in Section III-B1). The size is 20 20 and the
number of learning steps is 1000. The winner unit whose ID of
this space is denoted as , and the activity of the
eye information space are defined in the same manner as (7).

5) Head-Centered Visual Space: Finally, in the head-cen-
tered visual space, the robot learns the association of these com-
binations of ocular angles and image information to code the
same location in the head-centered reference frame by using
the proprioception (arm joint angles) as a reference information.
The units of the head-centered visual space connect to the units
of the arm posture space in a one-to-one correspondence. Then,
activity of the head-centered visual space is

(20)

The robot hand is moved toward the green points and its gaze
point is around the hand in the same way as learning the ocular
angle space and arm posture space in Sections III-B1 and III-B2.
Meanwhile, the robot learns the association between head-cen-
tered space and the eye information space based on Hebbian
learning [26], which is modeled after the synaptic connections
in the brain. It is basically an unsupervised training algorithm in
which the strength of a connection (weight between units) is in-
creased if both neurons (units) are active at the same time. The
original hebbian rule itself has no mechanism for connection
weights to get weaker and no upper bound for how strong they
can get, and is therefore unstable. Therefore, some modified ap-
proaches were suggested. In this model, we use Von Der Mals-
burg’s method [27] that maintains a constant integration of all
connection strengths to the same neuron through normalization.

All units of two spaces are connected to each other and the
connection weight between the th unit in the eye information
space and the th unit in the head-centered visual space, ,
is updated based on (21)–(23)

(21)

where

(22)

and

(23)

and are the number of units of the head-centered vi-
sual space (here, 100) and a constant learning rate (here, 0.2),
respectively. It is given by the designer and is smaller to reduce
the oscillations while learning.

After learning this association, the robot records the
th unit that is most strongly connected to the

th unit.

C. VIP Module

In the VIP module, the robot integrates the tactile stimuli of
the face and the visual stimuli that are specified in the head-
centered reference frame through tactile experience.

1) Visual Trajectory Space: This space is prepared for classi-
fying the historical data of approaching visual stimuli whose po-
sitions can be computed in the head-centered reference module.
First, the robot repeatedly moves its hand toward a random po-
sition on the surface of its face from the front. In this case,
the gaze point is moved in the same way as before. At that
time, the robot computes that has the strongest con-
nection to by using the input data of the ocular an-
gles and the positions in the camera reference frame in every
step. Then, the trajectory of the last three steps

is achieved and used as the
representative vector to construct another SOM (visual trajec-
tory space). is the time when the hand gets within 0.02[m] of
the face. The size of the map is 10 10.

After acquiring SOM, activity of the visual trajectory
space is calculated when the hand touches the face.

2) Tactile Space: The sensor units on the surface of the face
correspond to units in tactile space. If the robot perceives tactile
stimuli within period after , the ID of the actual activated

th unit in the tactile space is recorded as a winner unit. The
position of the th unit on the tactile space is expressed as

(24)

where and correspond to its coordinates at x-direction
and y-direction respectively

(25)

is a constant parameter which decides the range of activation.
3) Integration (VIP) Space: In this case, the tactile space

units are connected to those in the integration (VIP) space as
a one-to-one correspondence. Activity in the latter space is
given by

(26)

The robot learns the association between the visual trajec-
tory space and the integration (VIP) space based on Hebbian
learning. The connection weight between the th unit in the
visual trajectory space and the th unit in the integration (VIP)
space, , is updated based on (27)–(29)

(27)

where

(28)

and

(29)
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is the number of units of visual trajectory space and set to
100. is the learning rate and set to 0.5. It is given by the
designer.

Finally, by calculating the th unit that is most strongly
connected to th unit, the robot can estimate the tactile sensor
units that are going to be hit by the hand.

IV. EXPERIMENTAL RESULTS

A. Head-Centered Reference Frame Module

The proposed neural learning architecture described above is
applied to the simulation model. First, to evaluate the learning
maturation of Hebbian learning in the head-centered visual
space, the averaged variance of weights of the connec-
tion between one unit of the eye information space and all units
of the head-centered visual space is calculated. In this case,
the robot learns the association between two spaces when the
hand touches a green point. Initially, one unit of the former
space is associated with all units of the latter space equally,
therefore the variance is still large. However, during learning,
the stronger the connection becomes between one unit of the
former space and the appropriate unit of the latter space, the
smaller the averaged variance becomes.

The averaged position on the head-centered visual space, ,
which is connected from the th unit of the eye information
space is calculated as

(30)

where denotes the position vector of the th unit on the head-
centered visual space. Furthermore, the variance of connection
weights, , is calculated as

(31)

Then, the connection-weight evaluation is performed with

(32)

where is the number of units of eye information space and
set to 400. The result of 6000 steps during learning is shown
in Fig. 8. As learning proceeds, the variance converges and the
connections between the units seem potentiated.

We also investigated how the robot adapts itself to situations
in which its hand position in the head-centered reference
frame is the same although the sets of ocular angles and
positions in the camera image are different as shown in
Fig. 2. As indicated in Fig. 9(a), the robot places its hand at
the fixed point and moves its gazing point for 300 steps as
plotted with blue lines. Concretely speaking, in each step,
the robot calculates using the perceived sensation of

that are obtained from the actual gaze
angles and camera images. Then, in the head-centered visual
space, is determined. Moreover, by assigning the
representative vector

Fig. 8. Variances of the weights during the Hebbian learning of the association
between the eye information and the head-centered visual spaces.

Fig. 9. Estimated hand positions while the robot randomly moves its gaze
point around the hand by using the weight values acquired in 1000th, 2000th,
3000th, and 6000th step: blue lines show trajectory of 200 gaze points (blue
ball) and light blue points show estimated hand positions. (a) Trajectory of
gazing points; (b) the estimated position (1000th step); (c) the estimated posi-
tion (2000th step); (d) the estimated position (3000th step); (e) the estimated
position (6000th steps).

of the th unit in the arm posture space that is in-
terlinked to to (33), the position of the hand

in the global
reference frame (3-D Cartesian reference frame) is calculated
as following:

(33)

where is a function that transforms joint angles and link
lengths into the hand position in the global reference frame. It
is given just to examine the learning results by the designer. In
this case, the , , and directions are shown in Fig. 5(a). In
order to investigate how the learning proceeds over the time,
the robot records the connection weight values at learning

, 2000, 3000, and 6000. Then, after learning,
we make the robot compute and the hand positions

subsequently based on these four recorded con-
nection weight values. In each step, the moving average of
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Fig. 10. Histogram of differences between actual and estimated hand positions
for Fig. 8(e).

Fig. 11. Difference between the actual and estimated hand positions (while the
robot is moving its hand).

in the last four steps is computed and indicated as
the light blue point in Fig. 9(b)–(e) and in Fig. 10. The robot can
approximately recall the arm posture that resembles the actual
one from the ocular angles and the positions in the camera
image that are different from one observation to another. As
the learning proceeds, these estimated positions seem to slowly
converge to the hand position.

In addition, the histogram of differences (errors) between
and the positions of the actual hand in Fig. 9(e)

is shown in Fig. 10. The average values of 300 errors for the
three directions are 0.01034 m (x-axis), 0.01057 m (y-axis),
and 0.01289 m (z-axis), and the mean error of the direction
is bigger than the others. One reason could be that the number
of units in the eye information space is insufficient to cover a
large amount of training data.

Finally, and the actual hand positions while the
hand is moved toward the green points in order are shown in
Fig. 11, where the errors in direction are bigger than the others
also in this case.

B. VIP Module

To check the Hebbian learning maturation in the integration
(VIP) space, the averaged variance of the weights of the con-

Fig. 12. Variances of the weights during the Hebbian learning of the association
between the VIP and the visual trajectory spaces.

Fig. 13. (a) The robot moves its hand toward the face randomly and estimates
the position that is going to be activated by the contact by calculating the unit that
has a big weight value between the winner � th unit in the visual trajectory
space. The screen is placed in front of the face and the results are compared with
the finding of VIP neurons. (b) Tactile sensor units on the face.

nection between the one unit of the integration (VIP) space and
all units of the visual trajectory is computed in the same manner
as shown in the last section. The variances of 2000 steps during
learning are shown in Fig. 12. As learning proceeds, the con-
nection between the units is evaluated to be potentiated.

Next, we investigated whether the integration space of the
VIP module has the same function as VIP neurons themselves,
and whether the robot can estimate the tactile units that are going
to be activated regardless of the positions of the gaze point. In
Fig. 13(a), we placed the screen in front of the robot as seen
in the observation of monkeys in Fig. 2 and its center is the
midpoint of the two eyes. The tactile sensor units are located
as indicated in Fig. 13(b) on the surface of the face. During the
hand movement to the face as explained before, we visualize
the level of each weight using the green color connected to the

th unit in the visual trajectory space as shown in Figs. 13(a),
14(III). They are compared with visual and somatosensory re-
ceptive fields of VIP neurons. The red arrow indicates the tra-
jectory of the hand. In Fig. 14(I) and (II), some examples of
two kinds of receptive fields that VIP neurons have are shown.
Moreover, Figs. 14(III) are the activated tactile units at the time
when the visual stimuli (the own hand in this case) are shown
in each visual receptive field in (I). In Fig. 14(III-f), when the
hand is moved toward the bottom of the right eye, an error is
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Fig. 14. (I) This square can be thought of as a screen placed in front of the face
as seen in Fig. 12. On the square, the patch of orange color corresponds to the
visual receptive fields of VIP neurons. (II) The patch of blue color corresponds to
the somatosensory receptive field of the same neuron. (III) The activated tactile
units at that time when the visual stimuli (the own hand in this case) are indicated
in each visual receptive field in (I).

observed. However, the robot can roughly estimate the tactile
units that are going to be activated regardless of the position of
the gaze point as a result. It seems that the area including the
units that connects strongly with the th unit resembles the
corresponding tactile receptive field of the neuron. It could be
mentioned that the function of our VIP module is qualitatively
similar to actual VIP neurons.

Furthermore, we investigate how the errors in estimating the
activating units are being reduced over learning time. The sev-
eral weight values, and
are recorded in learning phase and used to compute
while the robot is moving its hand toward the face randomly
for 200 steps. Fig. 15 shows the histogram of the Euclidean
distances of the IDs ( and ) based on each weight
value. It appears the accuracy of estimation is enhanced gradu-
ally as learning proceeds. Fig. 16(a) shows the final result when
utilizing the weight . There are a few errors and
they probably happened because the training data of the vi-
sual trajectory space, , and

, were influenced by the errors of the head-centered
visual space. Another reason is suggested that the robot some-

Fig. 15. The activated tactile units are estimated based on the weight values
� �����, � �����, � �����, � ������, � ������, � ������.
These are histograms of differences between the actual activated and estimated
units of tactile space.

Fig. 16. Histogram of differences between the actual activated and estimated
units of tactile space. (a) Indicates the differences which are calculated when
the visual information is used. (b) Indicates the differences which are calculated
when the proprioceptive information is used.

times loses sight of its hand by moving it outside of the field
of view while recording the trajectory. Then, we did an exper-
iment using only the proprioceptive input for VIP module. For
the robot, it might be able to ascertain whether it is also possible
to predict where the hand will hit without visual information. As
stated in the Section III-B5), the units of the head-centered vi-
sual space connect to the units of the arm posture space in an
one-to-one correspondence as

(34)

Therefore, the visual trajectory space is retrained by calculating
the historical pattern of the winner units here. In this way,
the association between the visual trajectory space and the in-
tegration (VIP) space and the active tactile units are also esti-
mated based on the activity determined by actual joint angles
originally. In this case, the histogram of distances of IDs of the
activated and estimated tactile units is shown in Fig. 16(b). The
accuracy of prediction is improved.
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V. CONCLUSION AND DISCUSSION

In this paper, we proposed a learning model in which the
visuo–spatial and body representations are acquired through
“hand regard” behavior that can be observed in the human
developmental process. Consequently, the robot acquired a
form of perception in which the surrounding space is roughly
encoded in a head-centered reference frame. It can also in-
tegrate the visual stimuli coded in this reference frame with
tactile stimuli on the face, and can acquire the representation
whose function is similar to that of VIP neurons by using SOM
and Hebbian learning hierarchically.

As a model of acquisition of facial multimodal representation
in cognitive developmental robotics, there is a method that Fuke
et al. [17] proposed so far. In that study, the robot can learn the
relative arrangement of tactile sensors on the face. However, be-
cause the relationship between these tactile sensors and stimuli
in the surrounding space is not considered, it is difficult to utilize
the representation for motion generation such as guiding head
movements. On the other hand, the representation in this study
can be useful to estimate an approaching object. In the future,
avoidance behavior might be able to be constructed based on
it. In addition, by implementing this method in existing studies,
robots can acquire more practical body representations. For ex-
ample, Hikita et al. [28] proposed a method which enables a
robot to associate a position of an end effector (hand or tip of
tools) in the camera image with the proprioception of its arm.
If this “position” can be represented in the head-centered ref-
erence frame (or body-centered reference frame in the future)
based on our method, it is expected that the robot becomes able
to detect the end effectors in a wider area by using the eyeball
and neck angles effectively.

There are three issues that we should tackle in the future.
First, there are still some errors that can be seen in Figs. 9 and
16. We are going to try to use other algorithm to improve it.
There is a possibility that normalizing rules of Hebbian learning
negatively affect the maturation. Therefore, for example, we
will try to apply the trace rule [29] that is a modified Hebbian
rule and changes synaptic weights according to both the current
firing rate and the firing rates to recently observed stimuli. This
enables neurons to learn to respond similarly to the gradually
transforming inputs it receives.

Second, we construct SOMs hierarchically and their sizes are
determined by trial and error. If the size is small, the represen-
tative vectors become too generalized. Especially in the case of
the eye information space, it is not always true that the hand
positions in the space are next to each other when the relative
vectors of the units of the eye information space are similar.
If the size is too big, it is difficult for one unit to encode the
visuo–spatial representation as a cluster-like visual and tactile
receptive fields of neurons. However, it can be resolved by ad-
justing the parameter of the activity of units in the spaces such as

. Then, sizes of SOMs have to be examined carefully because
there is a possibility that it causes some errors. So far, we have
not implemented an algorithm to explore the most appropriate
size to cluster the data satisfactorily. However, when we try to
scale up this model to larger tactile spaces and other represen-
tations in other kinds of reference frames in the future, it might

still be an issue how the sizes are optimized and vast amounts
of data should be compressed. We are working on a method in
which the robot can determine the size that is adequate enough
to cover all input data autonomously and, at the same time, con-
sider other algorithms for compression such as deep belief nets
[30].

Finally, in the present study, a robot hand is moved in the
small space in front of the face by giving a force only to the hand.
Then, the arm postures that provide a hand position are speci-
fied. On the other hand, if joint angles are randomly selected, it
is difficult to utilize them in order to represent the same posi-
tion. In case of human infants, before the hand regard behavior
starts to be observed, they tend to acquire some kinds of motor
primitives based on the physical interaction between body and
environment, and the effect of gravity. Thus, it is highly prob-
able that the actual infant hand position correlates with the arm
posture during hand regard behavior too. We are going to dis-
cuss a relationship between the acquisition of motor represen-
tation and visuo–spatial representation in the next stage.

Next, not only to improve the model, but also to understand
the human mechanism in more detail, it is also important to ap-
proach the problem of how a robot can find the object that it
should pay attention to as reference information for the acqui-
sition of the head-centered or other reference frames. For ex-
ample, in our study, the proprioception of the arm was set to
be adopted as reference information by the designer, but if the
robot is able to select an object in the surrounding space as ref-
erence information autonomously based on an internal attention
mechanism, we can also discuss the acquisition of visuo–spatial
representation of extrapersonal space. It might be required that
the robot can predict the change of the visual information (op-
tical flow) in the image from the ocular motor information and
have the memory system at that time.

As the main topic in this paper was first inspired by some
findings of humans, finally we try to compare functions of each
space in this model to those of some regions that are found in
the neurophysiological studies here. First, we pay attention to
some findings about lateral intraparietal (LIP) area [31]. An-
dersen [32] found neurons in the monkey parietal cortex area
(LIP area) that combine three kinds of signals: the position of
the stimulus on the retina, the positions of the eyes in the orbit,
and the neck angles. The LIP area connects to the VIP area [33]
and is reported to have both eye-centered and head-centered vi-
sual receptive fields [34]. The head movement is not dealt with
in our study, but it can be assumed that the eye information space
corresponds to the LIP area as shown in Fig. 14. As mentioned
in the introduction, VIP area is known as the region that has
the “peri-personal” visuo–spatial representation. The “peri-per-
sonal space” is defined as the space within reach of the arm in
the neurophysiological studies. Actually, it was revealed that
the visuospace is represented in different regions in the brain,
peri-personal space [24], and extrapersonal space that is out of
reach of the arm [35] based on the findings of spatial neglect
syndromes. This peri-personal space is extended when the sub-
ject uses a tool [36]. Rizolatti et al. [37] also reported that con-
nection of this VIP area and the F4 area (the area of arm repre-
sentation) in the brain is important for that representation. Thus,
we also suppose that arm posture space corresponds to the F4
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area (the area of arm representation) and their claim might sup-
port our hypothesis in which the arm proprioceptive information
contribute to the construction of visuo–spatial representation.
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