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Abstract

To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neu-
ral activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to
determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of
complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction
were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus
kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to
their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Informa-
tion analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus
localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding
strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combin-
ing mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms
related to complex stimuli discrimination.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A major challenge in Neuroscience is to decipher how
neural activity represents the physical features of objects
with which animals interact. For instance, each degree of
roughness scanned by whiskers corresponds both to a
unique kinetic signature defined by a temporal profile of
whisker velocity and to a distinct firing pattern, based on
spike counts (Arabzadeh et al., 2005, 2006). Although most
of the studies to date have used rate coding, several authors
have emphasized the key role of spike timing in neural pop-
ulation coding (Borst and Theunissen, 1999). Using precise
spike timing, the first spikes have been shown to transmit
larger quantities of information about stimuli than the
same spikes in rate coding, either in the barrel cortex (Pan-
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doi:10.1016/j.jphysparis.2007.10.004

* Corresponding author.
E-mail address: jlblanc@up.univ-mrs.fr (J.-L. Blanc).
zeri et al., 2001) or in the cortical forepaw representation
(Foffani et al., 2004).

Instead of whiskers, rats can use their forepaws to per-
ceive object features, such as location, size, shape and tex-
ture (Bourgeon et al., 2004; Iwaniuk and Whishaw, 2000).
We know that the forepaw representation in the S1 cortex
is topographically organized (Coq and Xerri, 1998). This
topographic organization provides a spatial frame of refer-
ence for location detection of stimuli applied on different
forepaw locations. However, the large range of spatiotem-
poral responses in the S1 forepaw cortex (Tutunculer et al.,
2006), such as found in the barrel cortex, may allow the
extraction of the multidimensional kinetic features of
objects or complex tactile stimuli.

Neural coding refers to how the central nervous system
represents sensory information as patterns of action poten-
tials emitted by neuronal populations. The neural coding
problem is often formulated in terms of quantitizing a joint
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space (R;S) (Mumey et al., 2004; Slonim et al., 2006;
Nadal, 2002) where S represents the input sensory stimuli
and R the set of possible neural activity patterns. Both of
these spaces are high-dimensional and complex. We con-
sider the sensory system robust and adaptive, in that it
must represent similar stimuli in similar ways. Thus, indi-
vidual input stimuli are not important for understanding
neural function, but rather classes of input stimuli and their
correspondence are the key to decipher the neural represen-
tation of complex stimuli. Following this idea, this study
refers to a model in which neurons are selective for a small
number of stimulus dimensions out of a high-dimensional
stimulus space, and within this subspace similar sensory
signals are clustered. The idea that Shannon’s Information
Theory (Shannon, 1948) is relevant for studying neural
coding goes back to Attaneve (1954) and has received con-
siderable attention these last few years (Bialek et al., 1991;
Atick, 1992; Borst and Theunissen, 1999). In this paper
first of all, we report generality on information theory in
the neural coding context. Secondly, we present another
information quantity: the ‘‘multi-information’’, useful to
study neural representations of complex stimuli.

In this paper the simultaneous activity of S1 neuronal
populations was recorded to explore the neural coding of
location detection and kinetic feature extraction of com-
plex stimuli, based on either spike count or spike timing.
Location detection is related to the different sites of fore-
paw stimulation, while feature extraction refers to a com-
pression process of the high-dimensional kinetic values
(i.e. random, time-varying patterns of force) of complex
tactile stimuli, as encountered in the natural environment.
Are stimulus localization and feature extraction indepen-
dent processes? What is the time course of these processes
after stimulus onset, depending on rate or temporal cod-
ing? We used mutual information (MI) to measure the
stimulus-response relationship, and different stimuli clus-
tering strategies to separate each neural process. To our
knowledge, this study is the first attempt to compare these
two neural processes of stimulus identification and to use
‘‘multi-information’’ in the neural context.

2. Methods

2.1. Information theoretic framework

2.1.1. Information carried by neuronal population response

Mutual information is a rigorous criterion to quantify how much
information the neural responses convey about a sensory stimuli set (Bia-
lek et al., 1991). We consider a time window T, associated with a sensory
stimulus s chosen with a probability p(s) from a stimulus set S = {s1,s2,
. . .,sm}, during which the activity of C neurons is recorded. The neuronal
population response is denoted by the random variable R = {r1,r2,. . .,rn},
where each component of the vector rn ¼ ½r1

n; r
2
n; . . . ; rC

n � is the response of
one neuron of the population within the time window T. Each neuronal
response can be differently described depending on the coding framework.
In a spike count code, the response is the number of spikes within the time
window T. In a spike timing code, the response is a sequence of spike firing
times. The MI between R and S is defined as the difference between the
Shannon response entropy and the noise entropy (Shannon, 1948).
IðR; SÞ ¼ HðRÞ � HðRjSÞ ð1Þ

where the entropy is

HðRÞ ¼ �
X

r2R

pðrÞ log pðrÞ

and the noise entropy

HðRjSÞ ¼ �
X

s2S

pðsÞ
X

r2R

pðrjsÞ log pðrjsÞ

The mutual information can be written as

IðR; SÞ ¼
X

s2S

pðsÞ
X

r2R

pðrjsÞ log
pðrjsÞ
pðrÞ ð2Þ

p(rjs) is the probability of simultaneously observing a particular response r

conditional to the stimulus s, and pðrÞ ¼
P

s2SpðsÞpðrjsÞ is its average
across all stimuli.

2.1.2. Mutual information for three random variables

In this section we address inequalities involved in Shannon’s informa-
tion measures, for three discrete random variables. A region in R2n�1,
denoted by C*, is identified to be the origin of all information inequalities
involving n random variables in the sense that all such inequalities are par-
tial characterizations of C*. Further theoretical precisions can be found
elsewhere (Yeung, 1997).

In this study we address the issue of dependence between two pro-
cesses: stimulus feature extraction and stimulus localization. Within this
framework, we introduce two other variables K,L describing the stimulus
set S (i.e. K = f(S) and L = g(S)). K is the random variable which describes
the stimulus kinetic features extraction K = {k1,k2,. . .,kK} and L is the ran-
dom variable which describes the different stimuli locations
L = {l1,l2,. . .,lL}. Using the chain-rule of information (Cover and Thomas,
1991) we can develop the MI

IðR; K;LÞ ¼ IðR; KÞ þ IðR; LjKÞ;
IðR; K;LÞ ¼ IðR; LÞ þ IðR; KjLÞ

ð3Þ

where I(R;K,L) is the MI between the neural response R and the intersec-
tion of both stimuli sets K and L (Fig. 1). This quantity can be rewritten
using the mutual information definition equation (1)

IðR; K; LÞ ¼
X

k2K

X

l2L

pðk; lÞ
X

r2R

pðrjk; lÞ log
pðrjk; lÞ

pðrÞ ð4Þ
where pðrÞ ¼
P

k2K pðkÞ
P

l2LpðlÞpðrjk; lÞ
I(R;K) is the MI between the neural response and the stimulus, consid-
ering only the kinetic features, so that the stimuli are clustered according
to their time-varying intensity. I(R;L) is the MI between the neural
response and the stimulus, considering only its location. I(R;LjK) is
the MI between the neural response and the stimulus location knowing
its kinetic features. I(R;KjL) is the MI between the response and the
stimulus kinetic features knowing its location.
The non-negativity property of the MI (Cover and Thomas, 1991),
gives the following expressions

IðR; K;LÞP IðR; KÞ;
IðR; K;LÞP IðR; LÞ

ð5Þ

From these inequalities we can write a lower bound of the MI between the
neural response and both the stimulus kinetic feature extraction and stim-
ulus localization

IðR; K; LÞP 1

2
IðR; KÞ þ IðR; LÞ½ � ð6Þ

Suppose the random variables R! K! L form a Markov chain, then the
data-processing inequality (Cover and Thomas, 1991) gives

IðR; KjLÞ 6 IðR; KÞ
IðR; LjKÞ 6 IðR; LÞ

ð7Þ
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Fig. 1. Venn diagrams that explain the introduction of variables k and l describing each stimulus s. Left panel. The random variables K and L are
independent. Right panel. The variables K and L are dependent or synergistic. I(R;K,L) is the mutual information between the neural responses (variable
R) and the intersection of sets K and L with the set R.The ‘‘multi-information’’ I(R;K;L) corresponds to the intersection between the sets R, K and L.
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Note that these information inequalities are symmetric. We can now write
an upper bound of the MI using the definition (3) and (7)

IðR; K;LÞ 6 IðR; KÞ þ IðR; LÞ ð8Þ

With equality only if the random variables K and L are independent. Thus,
under this regime the mutual information is framed by

1

2
IðR; KÞ þ IðR; LÞ½ � 6 IðR; K; LÞ 6 IðR; KÞ þ IðR; LÞ ð9Þ

Note that if R,K,L do not form a Markov chain, then it is also possible
that

IðR; KjLÞP IðR; KÞ;
IðR; LjKÞP IðR; LÞ

ð10Þ

Based on this assumption, for this special case we can write a lower bound
of the mutual information

IðR; K;LÞP IðR; KÞ þ IðR; LÞ ð11Þ

Using the Venn diagrams in Fig. 1 we defined the information quantity for
three random variables as

IðR; K; LÞ ¼ IðR; KÞ � IðR; KjLÞ;
IðR; K; LÞ ¼ IðR; LÞ � IðR; LjKÞ

ð12Þ

We preferred to call this measure ‘‘multi-information’’ rather than mutual
information because in contrast to mutual information, which is always
positive, multi-information can be either positive or negative. This is pos-
sible since the effect of holding one of the variables may increase or de-
crease the dependency between the others. As a trivial case, consider the
situation in the trivariate product where variables K and L are indepen-
dent when R is not known, but become dependent given R, in this case,
I(R;K;L) is clearly negative. Han (1980) has shown that multi-information
need not be always positive, by expanding it in terms of parameters of
probability up to the second order.

In this study we define a ‘‘synergy threshold’’ as

IðR; K; LÞ 6 0 ð13Þ
With I(R;K;L) = 0, if R, K and L are mutually independent.
The larger the negativity of the quantity I(R;K;L) the stronger the syn-
ergy between the localization and kinetic feature extraction processes.
We then explore this hypothesis estimating the different information
quantities from neuronal responses to complex tactile stimuli.
2.2. Experimental data acquisition

Multi-unit neuronal activity was recorded in the S1 cortex and com-
plex tactile stimuli were applied to the forepaw in four anesthetized rats.
All experiments were carried out in accordance with National Institutes
of Health Guidelines for the Care and Use of Laboratory Animals. The
details of the surgical preparation and multi-unit recordings are described
elsewhere (Coq and Xerri, 1998). Briefly, adult Long-Evans rats were anes-
thetized with pentobarbital sodium with an initial dose of 50 mg kg�1

(i.p.). Supplementary doses (5 mg kg�1 i.p.) were given as needed to keep
the rats at an areflexive level of anesthesia throughout the experiments by
monitoring the heart rate, spontaneous whisker movements, eye-blinking
and paw-withdrawal reflexes. The core temperature was continuously
monitored by a rectal thermistor probe and was maintained at around
38 �C by a heating pad. A craniotomy (about 16 mm2) was done with
bregma as the initial point of reference (ant. 3.0 mm; post. 1.0 mm; lat.
3–6 mm) to expose the somatosensory cortex. The dura was incised and
resected. The exposed somatosensory cortex surface was covered with
warm silicone fluid (30,000 cs) to prevent drying and oedema. At the
end of the experiment, the animal received a lethal injection of pentobar-
bital sodium (150 mg kg�1 i.p.).

Multi-unit activity was recorded with parylene-coated tungsten elec-
trodes (1 MX at 100 Hz) in layer III-IV of the S1 cortex at a depth of
600–700 lm. A single electrode was moved perpendicular to the cortical
surface at different locations to map the S1 forepaw representation of
interest: from palmar pad 1–digit 5 (about 1.6 mm in length) in the rostro-
caudal direction. A digitized image of the cortex was used to place the
microelectrode penetrations which were identified relative to the cortical
vasculature. The multi-unit signal was preamplified, filtered (bandwidth
0.5–5 kHz) and displayed on an oscilloscope. Under our recording condi-
tions, the amplitude of the background noise usually ranged from 10 to
20 lV, with a signal-to-noise ratio of 5–10.

After the S1 area of interest was located and roughly mapped using
single electrodes, the activity of neuronal populations was then simulta-
neously recorded in layers III–IV using one row-arrays of eight electrodes
(MicroProbe, MD) and a multichannel acquisition system at a frequency
of 20 kHz (Plexon, TX). The array was made of eight platinium/irridium
electrodes (2 MX at 100 Hz) spaced by 200 lm from each other. The elec-
trode array was inserted along the rostrocaudal axis of the S1 forepaw rep-
resentation to sample neurons whose receptive fields were located from
digits 2–5 and from palmar pads 1–3 (Fig. 2), according to the single elec-
trode mapping described above. The activity signal recorded with the elec-
trode array was processed and monitored as well as the single electrode
activity and its quality was equivalent to what was described above. We
generally recorded 2–5 units simultaneously for each electrode of the
array. Two neurons per electrode with well-separated spikes were sorted
using Offline Sorter (Plexon), so that we obtained 16 neurons per animal.
In this paper, MI estimations were based on eight sets of eight neurons:
one neuron out of the two recorded with each electrode of the array,
and two sets of eight neurons pseudo-randomly chosen from the 16 neu-
rons for each rat. To calculate MI, the spike trains of each neuron in a
150 ms time window for each trial, were represented in 4 ms bins, with
ones for each spike and zeros elsewhere.
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Fig. 2. The activity of S1 neuronal populations was recorded simulta-
neously in response to single complex tactile stimuli applied to the rat
forepaw. Left panel. Schematic drawing of the topographic organization
of the S1 cortical representation of the glabrous forepaw skin surfaces on
which has been superimposed the implantation location of the 8-electrode
array. Right panel. Schematic drawing of the rat forepaw with the
locations (black symbols) of single stimuli applied on digit tips 2–5 (d2–d5)
and palmar pads 1–3 (P1–P3). The recorded neurons had their receptive
field distributed along the 7-forepaw locations of stimulation.
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Simultaneous neuronal responses were recorded while single complex
stimuli (or trials) were successively applied on each of seven different loca-
tions (from digit tip 2–5 and from palmar pad 1–3) of the rat forepaw
(Fig. 2). These stimulus locations corresponded to the recorded neurons’
receptive fields. The complex stimuli were applied using a hand-held elec-
tronic Von-Frey device, designed in our laboratory to apply single, punc-
tuate stimuli through a probe (0.8 mm in diameter) onto the forepaw skin
surfaces. Usually, Von-Frey hairs are used to determine stimulus detection
thresholds on the skin. The force envelope randomly applied (mN) by
hand on the skin was converted by the electronic Von-Frey into a potential
variation (1 mN corresponded to 10 mV) which was recorded at 1 kHz
with the Plexon multichannel acquisition system. Stimuli and neuronal
responses were synchronized using a TTL signal emitted by the Von-Frey
at the onset of the skin contact. The force pattern, shape and duration
(ranging from 130 to 250 ms) of the complex stimuli varied for each trial
(Fig. 3, left panels). The pseudo-random variability of our stimuli was
assumed to reproduce the ethological variability of stimulation in the nat-
ural environment. Neuronal activity was recorded in a 150 ms time win-
dow which started from the trial onset. Stimuli shorter than 150 ms
were discarded from analyses. We elicited about 1300 trials on each of
the seven forepaw locations and we finally obtained a stimuli set S of
n = 9100 trials in each animal.
2.3. Clustering of complex tactile stimuli

To address the issue of the relative independence between the processes
of location detection and kinetic feature extraction of complex stimuli, two
sets of variables L and K were introduced to describe the set S of stimuli.
The sets L and K were respectively attributed to the processes of stimulus
localization and feature extraction. The seven clusters of stimuli from the
variable L corresponded to the seven locations of the forepaw stimulation
(Fig. 4, right upper panel). These stimulations were applied from the digit
tip 2–5 and from the palmar pad 1–3 (Fig. 2, right panel).

We assume that the natural environment produces at each instant of
time a new stimulus with some probability. This complex stimulus results
from the combination of multidimensional features. In our case, the
kinetic features of complex tactile stimuli correspond to random, time-
varying patterns of force applied onto the rat forepaw skin. As a robust
system the central nervous system is able to extract the kinetic features
of sensory inputs and then to make clusters of stimuli with similar
features.

The stimulus kinetic feature extraction process was modelled by first
projecting each stimulus from the whole stimuli set S (i.e. matrix of dimen-
sion n * m) onto a lower dimensional d subspace (d < m) (Fig. 3). Each
complex stimulus was initially described by the acquisition system as a vec-
tor with m samples s = [s1,. . .,sm]. We decomposed each stimulus on an
orthogonal basis, finding the eigenvalues and eigenvectors of the sample
covariance matrix Cov = StS. Using a principal component analysis-like
method (Lebart et al., 2002), we obtained a shorter stimulus description
Y = As where A was the basis formed with the d most significant eigenvec-
tors of Cov. To achieve the stimulus compression (i.e. the kinetic feature
extraction), we then performed a general clustering step using a K-Means
algorithm (Fig. 3). The K-Means algorithm is an iterative method, used to
solve the vector quantization (VQ) problem (Gersho and Gray, 1991). In
VQ, a codebook C that includes k code words is used to represent a wide
family of stimuli-signals Y ¼ yn

ii¼1
ðn� KÞ by a nearest neighbor assign-

ment. This leads to an efficient compression or description of those signals,
as clusters in Rn surrounding the chosen code words. The VQ problem is
often formulated as an optimization problem

min
C;X
kY � CXk2

2 subject to 8i; xi ¼ ek for some k ð14Þ

The K-Means algorithm is used for designing the optimal codebook for
VQ. In each iteration there are two stages, one for sparse coding that
essentially evaluates X by mapping each stimulus/signal to its closest code
word (under l2-norm distance) in C, where ek is a vector from the trivial
basis, with all zero entries except a one in kth position. The second stage
is for updating the codebook, changing sequentially each column ck in or-
der to better represent the signals mapped to it. At the end of this proce-
dure we obtained k stable clusters of trials.

As the set K summarizes the time-varying components of the complex
stimuli, the set L corresponds to the stimuli or trials according to their
location when applied on the forepaw skin (Fig. 4). Information theory
allows us to consider not only the response variance, but also the condi-
tional probability distributions. To describe the conditional stimuli set
(KjL), we used the same procedure as for the set K and then we partitioned
each cluster into the seven forepaw locations to obtain 7*k new clusters.
The other conditional stimuli set (LjK) was obtained by an inverse proce-
dure, in which we performed the clustering for each forepaw location, ini-
tializing the K-Means using the same k centers describing the variable K

(Fig. 4).
The number of centers k was chosen optimally to obtain homogenous

clusters containing similar amounts of stimuli. The clustering procedure
was replicated with a new value of k at each time and we retained the solu-
tion with the lowest within-cluster sums of points to centroid distances.

2.4. Mutual information estimation methods

In this section we present the different methods we used to estimate
the MI with both coding strategies. Each neuronal response was
recorded from C = 8 neurons within a time window of T = 150 ms
long. To estimate the information from neural responses, we used a
varying time window 0–T ms after the onset of tactile stimuli. We
divided the spike train of each cell into bins of size Dt = 4 ms (Foffani
et al., 2004), with each time bin containing 0 or 1 spike. Each possible
spike train of each cell hence became a ‘binary word’ of length N =
T/Dt (i.e. N is varying 0–38 bins).

2.4.1. Rate coding

We used the amount of information conveyed by spike count responses
of neurons. Each response was the sum of spikes in the 0–N bins time win-
dow for each neuron. The response vector r was 8-dimensional, in which
each component was the firing rate of the neuron. In this case, the number
of possible neuronal responses varied from 1 to NC = 304. We computed
the different mutual information probability distributions using a large
number of trials (n = 9100, see Section 2.2) so the MI with rate coding
was weakly biased. However, we used a jacknife procedure (Shao and
Dongsheng, 1995) to correct the small biased error due to the different trial
numbers used to compute the probability associated with the different
clustering strategies (see Section 2.3).

2.4.2. Temporal coding

We also used the amount of information conveyed by the spike timing
response of neurons. With this coding strategy the neuronal response vec-
tor rc for each neuron c, was decomposed as rc = [rc(1),rc(2),. . .,rc(N)],
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Fig. 3. Schematic view of the stimulus clustering corresponding to the kinetic feature extraction process. The left panels show the force envelope of several
complex tactile stimuli, along with their location on the forepaw. The middle panels correspond to the orthogonal projections of the complex stimuli after
a principal component analysis (PCA) to reduce the high-dimensionality of these stimuli. The right panels illustrate the centroid plots of some low-
dimension stimulus average after the clustering procedure with a K-Means algorithm (see text).
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where rc(t) was the response (i.e. 0 or 1 spike) in the time bin t. To compute
the MI from the full responses was considered too complex because of the
high-dimensionality of the space and of all the possible patterns of
responses. Such a high-dimensionality leads to large undersampled prob-
ability distributions and to large biases (Panzeri and Treves, 1996; Panin-
ski, 2003).

Numerous approaches have been suggested for the MI estimation. One
of them consists of expanding the MI in terms of moments of the proba-
bility distribution, until the second order (Panzeri and Schultz, 2001). This
approximation has the advantage of clearly separating the different infor-
mation sources as a sum of components.

IðR; SÞ ¼ I lin þ I sig-sim þ Icor-ind þ Icor-dep ð15Þ

The components of this approximation have different magnitudes and
sampling properties, and are discussed elsewhere (Pola et al., 2003). Here
we briefly resume the definition of each components.
Ilin the ‘‘linear’’ component, is the information conveyed by spikes
emitted in different time bins and cells independently. Isig-sim the ‘‘signal
similarity’’ component quantifies the redundancy arising from similarity
across stimuli of the mean response in each time bin. Icor-ind the ‘‘stimulus
independent correlation’’ component is the information associated with
correlations in neural responses not modulated by the stimulus. Icor-dep

the ‘‘stimulus-dependent correlation’’ component is associated with stim-
ulus modulation of correlation.

In our paper, a lower bound approximation of the spike timing infor-
mation was used. This lower bound (Pola et al., 2005) removes the contri-
bution related to the stimulus-dependent correlations in neural responses
from the previous information expansion (15).

IB ¼ I lin þ I sig-sim þ Icor-ind

IB ¼ �
X

r2R

pðrÞlog2pindðrÞ �
X

s2S

pðsÞ
X

r2R

pindðrjsÞlog2pindðrjsÞ ð16Þ
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Fig. 4. Schematic view of the clustering of complex tactile stimuli. The set
K corresponds to the kinetic feature extraction process while the set L

corresponds to the stimulus localization process. To model stimulus
feature extraction the stimuli set was clustered using K-Means to obtain 12
stable and homogeneous clusters of stimuli (K). Illustrated is the centroid
plot of one stimuli cluster, which corresponds to the low-dimension
stimulus average. The set L corresponds to the seven forepaw locations of
stimulation. To describe the conditional stimuli set (K/L) we used the same
procedure described before and then we partitioned each cluster according
to the seven forepaw locations to obtain 84 new clusters. The other
conditional stimuli set (L/K) was obtained by an inverse procedure in
which we performed the clustering for each forepaw location, initializing
the K-Means using the same 12 centers describing the variable K.
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where pindðrÞ ¼
QC

c¼1

QN
t¼1pðrcðtÞÞ follows an independent probability mod-

el as the product of p(rc(t)), the marginal probability of responses of indi-
vidual neuron in each time bin. While estimating p(r) requires an
evaluation of 2NC � 1 parameters, estimating p(r) needs only NC param-
eters. This approximation has the advantage of being weakly biased
according to the amount of trials we used in our paper (see Section 2.2).

3. Results

3.1. Clustering of complex tactile stimuli

Using the clustering procedure described in Section 2.3
we obtained k = 12 stable and homogenous clusters of tac-
tile stimuli (set K). We partitioned the n = 9100 trials in
each set K and L of stimuli. We chose the same number
of trials (1300 trials in each of the seven clusters of L and
758 trials in each K cluster of stimuli) to obtain equiprob-
able clusters of stimuli, and thus P(K = k) = 1/12 and
P(L = l) = 1/7. We computed the mutual information
between the two stimuli variables I(K;L) = 0.00480 bits
and test the ‘‘quasi-independence’’ of the variables K and
L (Ibootstrap = 0.00497 bits; P < 0.05) using a bootstrap pro-
cedure (Shao and Dongsheng, 1995). In fact, the true inde-
pendence corresponds to I(K;L) = 0.

3.2. Neuronal and information analyses

Estimation of the mutual information (MI) was based
on eight sets of eight neurons recorded simultaneously.
Typical responses of a representative set of eight neurons
to stimulation on pad one are illustrated in the post-stimu-
lus time histograms (PSTHs) shown in Fig. 5. The three
most responsive neurons (neurons #1, #2 and #3) to pad
one stimulation showed a sharp initial increase in firing
rate 4–8 ms after stimulus onset, rising to a peak a few mil-
liseconds later. There was a small increase in firing rate
around the stimulus end. Neuron #3 was the most respon-
sive to pad 1 stimulation, while neurons #4–#8 were almost
unresponsive. In each set of recorded cells, the neuron #1
was located in the most rostral part of the S1 forepaw rep-
resentation and generally its receptive field was located on
either digit 2 or pad 1, while the neuron #8 was located
toward the caudal part of the S1 map and responded
mainly to the cutaneous stimulation of either digit 5 or
pad 3 (see Section 2.2 and Fig. 2). The lower panel of
Fig. 5 illustrates the ‘‘tuning curve’’ of each neuron that
comprise the representative set, i.e. the average firing rate
of each neuron according to its topographic location within
the S1 forepaw map in response to each stimulation
location.

Fig. 6 illustrates the different MI contributions between
neuronal responses and both sets of stimuli processes (K
and L), based on either spike timing or spike count. These
MI estimations are shown for a representative set of eight
neurons (Fig. 6, upper panels) and averaged on eight sets
of eight neurons (Fig. 6, lower panels). It is worth noting
that the MI curves correspond to the information quantity
in bits divided by the average number of spikes in the grow-
ing post-stimulus time window (from 0 to T ms) (Arab-
zadeh et al., 2004). In addition, we cannot rule out that
the MI estimates based on spike timing were slightly under-
estimated relative to the true MI quantities since we com-
puted a lower bound approximation of the MI (see
Section 2.4).

Using temporal coding, the MI between the neural
response and the stimulus kinetic feature extraction, i.e.
I(R;K), first peaked at 4–8 ms post-stimulus and then grad-
ually increased over time (Fig. 6, left panels). In contrast,
the MI between the neural response and the stimulus loca-
tion detection, i.e. I(R;L), peaked at 4–8 ms after the stim-
ulus onset and then gradually decreased. Both curves tend
asymptotically toward the same value (0.25 bits/spike in
spike timing). The behavior of both information curves
was found to be similar with rate coding (Fig. 6, right pan-
els); however, the deviation between I(R;L) and I(R;K) was
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greater in spike timing than in spike count. In fact, the dif-
ference between both MIs was 0.74 ± 0.09 bits/spike at 4–
8 ms and 0.64 ± 0.03 bits/spike on average during the 20
first ms post-stimulus in spike timing. This difference was
smaller at 4–8 ms (0.47 ± 0.08 bits/spike; t-test = 2.15;
P < 0.02) and on average during the 20 first ms
(0.38 ± 0.02 bits/spike; t-test = 4.85; P < 0.003) when using
spike count rather than spike timing (see above). There-
fore, more information about the stimulus localization
rather than about the feature extraction was available to
the neuronal population in the beginning of the stimulus
presentation.

In addition, the amount of information I(R;L) at 4–8 ms
post-stimulus (0.84 ± 0.25 bits/spike) was not significantly
larger (t-test = 1.63; P < 0.1) for the temporal coding than
for the rate coding (0.64 ± 0.20 bits/spike) strategies.
However, I(R;L) in average during the 20 first ms post-
stimulus was significantly larger (t-test = 3.4; P < 0.01)
for the temporal coding than for the rate coding strategy
(Fig. 6). In addition, the I(R;K) peak at 4–8 ms was signif-
icantly larger (t-test = 3.4; P < 0.01) for the rate coding
(0.16 ± 0.02 bits/spike) than for the temporal coding
(0.09 ± 0.05 bits/spike) strategy (Fig. 6). Again, I(R;K)
on average during the 20 first ms post-stimulus was larger
(t-test = 5.5; P < 0.003) with rate coding (0.14 ± 0.03 bits/
spike) than with temporal coding (0.06 ± 0.03 bits/spike).
Thus, the stimulus localization seems to be a spike tim-
ing-dependent process, while I(R;K), the information rela-
tive to the stimulus feature extraction does not depend on
spike timing in the beginning of the stimulus. The condi-
tional MI curves I(R;LjK) and I(R;KjL) are indicated in
the Fig. 6 and correspond to the prediction of the Eq.
(3). I(R;K,L) corresponds to the global stimulus identifica-
tion process (i.e. both localization and feature extraction at
the same time). The peak of I(R;K,L) at 4–8 ms post-stim-
ulus was larger (t-test = 2.92; P < 0.03) for the temporal
coding (1.41 ± 0.22 bits/spike) than for the rate coding
(1.06 ± 0.05 bits/spike) strategies.

From a theoretical point of view, the negativity of the
multi-information (defined in Section 2.1.2, Eq. (13))
indicates that the variables R,K,L do not form a Markov
chain, because the variables K and L are considered as
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independent (see Section 3.1). More importantly, these
variables (K and L) become dependent when we take the
third variable R into account. From a neuronal point of
view, we defined this ‘‘change of dependency’’ as the
synergy between the identification processes. Fig. 7 shows
the values of the multi-information for a representative
set of eight neurons (left panel) and for the eight sets of
eight neurons (right panel) when considering temporal
and rate coding strategies. The dashed line (y = 0) repre-
sents the ‘‘synergy threshold’’. The larger the negativity
of the multi-information values the stronger the synergy
between the two processes. The multi-information quantity
was negative during the stimulus presentation whatever the
coding strategy used and peaked at 4–8 ms post-stimulus.
The quantity of multi-information was lower (i.e. the syn-
ergy was greater) for the temporal coding (�0.48 ± 0.15
bits/spike at 4–8 ms and �0.29 ± 0.13 bits/spike on aver-
age during the 20 first ms post-stimulus) than for the rate
coding (�0.26 ± 0.05 bits/spike at 4–8 ms; t-test = 7.88;
P < 0.0005 and �0.13 ± 0.06 bits/spike on average during
the 20 first ms post-stimulus; t-test = 4.71; P < 0.003).
Interestingly, the multi-information curve displayed a pla-
teau after 40 ms post-stimulus for the rate coding, whereas
it kept decreasing (i.e. increasing the synergy) over time
when using the temporal coding strategy.

4. Discussion

Our results show that the two stimulus identification
processes are not performed in parallel by neuronal popu-
lations, so the stimulus localization and kinetic feature
extraction are synergistic processes. From an information
theory point of view, this synergy is described as a special
case where two sets apparently independent (namely the
stimulus location and the stimulus feature extraction)
become anti-correlated given another set (the neural
response). The multi-information quantity is more negative
when using temporal coding rather than rate coding strat-
egy. Thus, both identification processes can be considered
as more synergistic if stimulus decoding by neural popula-
tions is based on spike timing. This synergy between neural
processes allows us to consider the joint encoding of two
different degrees of freedom of the complex stimulus (local-
ization and kinetic features). Localization process has been
found to be optimal in barrel cortex with spike timing
(Panzeri et al., 2001). Our results show that the joint
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encoding of stimulus localization and feature extraction is
optimal with spike timing in the rat forepaw cortex.

From a neural population point of view, we have stud-
ied how a neuronal population topographically distributed
in the S1 forepaw cortex represents the combination of
multidimensional stimulus features, and processes tactile
information. One possible explanation is that a small
number of neurons represents each combination of specific
feature values. This is called a sparse code (Barlow, 1972)
and it requires neurons that are highly selective in their
responses. The sparse representation problem can be
viewed as a generalization of the vector quantization objec-
tive described in Section 2.3 (Tropp, 2004). The advantage
of this sparse code is that at any given point in time, only a
small number of neurons is active. However, there is a seri-
ous disadvantage. In fact, to represent all possible combi-
nations of many stimulus features, a very large number
of neurons is necessary, growing exponentially with the
number of dimensions, this is the ‘‘curse of dimensionality’’
(Bellman, 1961).

In our study, S1 neuronal populations perform two dif-
ferent processes to perceive objects and tactile stimuli. The
kinetic feature extraction process consists in projecting
each stimulus into a new subspace specific to the feature
of interest, and then to classify the stimulus within this sub-
space. The second process, the stimulus localization, is
related to the topographic organization of the neurons
recorded in the rat S1 forepaw cortex. The interest of the
present paper is that it demonstrates the synergy between
two fundamental sensory identification processes. Informa-
tion analyses show that the stimulus localization depends
on spike timing and is faster than the feature extraction,
which depends on spike count. In addition, all the MI
quantities, except the MI related to the feature extraction,
are greater in spike timing than in spike count. We can
speculate that the localization process, which is faster,
depends on feedforward connections from the periphery
to the S1 cortex (Diamond et al., 2003), whereas the feature
extraction, which requires a much longer time to reach the
maximum information value, could depend on cortico-cor-
tical connections, such as suggested in the visual cortex
(Roelfsema, 2006). Both neural processes become more
and more synergistic during the stimulus presentation in
spike timing, but not in spike count. With spike timing,
the joint encoding of these processes provides more infor-
mation to the central nervous system for discriminability
of complex stimuli.
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