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Cortical circuitry must facilitate information transfer in accordance with 

a neural code. In this article we examine two candidate neural codes: 

information is represented in the spike rate of neurons, or information is 

represented in the precise timing of individual spikes. These codes can be 

distinguished by examining the physiological basis of the highly irregular 

interspike intervals typically observed in cerebral cortex. Recent advances in 

our understanding of cortical microcircuitry suggest that the timing of neuronal 

spikes conveys little, if any, information. The cortex is likely to propagate a 
noisy rate code through redundant, patchy interconnections. 

Current Opinion in Neurobiology 1994, 4:569-579 

Introduction 

Although it is generally agreed that neurons signal in- 
formation through sequences of action potentials, the 
neural code by which information is transfered through 
the cortex remains elusive. In the cortex, the timing of 
successive action potentials is highly irregular [l”], and 
the interpretation of this irregularity has led to two di- 
vergent views of cortical organization. On the one hand, 
the irregularity might arise from stochastic forces. If so, 
the irregular interspike interval (ISI) reflects a random 
process and implies that an instantaneous estimate of 
spike rate can only emerge from the pooled responses 
of many individual neurons [2]. In keeping with this 
theory, one would expect that the temporal pattern of 
spikes conveys little information. Alternatively, the irreg- 
ular IS1 may result from precise coincidences of presy- 
naptic events. In this scenario, it is postulated that the 
timing of spikes, their intervals and patterns can convey 
information [3-131. According to this view, the irregu- 
larity of the IS1 reflects a rich bandwidth for information 
transfer. 

Our understanding of cortical organization and interpre- 
tation of neurophysiological data depend critically on 
whether neurons convey a noisy rate code or a pre- 
cise temporal code. Is it reasonable to expect the average 
discharge rate of a neuron in the visual cortex to convey 
information about a visual stimulus [14-l 71, or should 
we attend to particular patterns of spikes? Is cortical cir- 
cuitry organized to average out noise among redundant 
neurons, or to provide an expansion of temporal signal- 
ing capacity by eliminating redundancy in the pattern 
of inputs to different neurons? At the heart of this con- 
troversy, the critical question is why neurons spike with 

such irregularity. In this article, we will attempt to iden- 
tify the physiological factors that may lead to irregularity 
in the spike train. In essence, our task is to determine 
whether neurons within cortical circuits behave as coin- 
cidence detectors or as integrate-and-fire devices [3]. 

Coincidence detectors or integrate-and-fire 

devices? 

Given our current understanding of cortical physiology 
and biophysics, why do cortical neurons discharge so ir- 
regularly? This is the question recently posed by Sofiky 
and Koch [l”]. They examined spike trains from neu- 
rons in the visual cortex of the monkey, applying a clever 
normalization scheme that permitted them to estimate 
the variability of the IS1 at nominally constant firing 
rates. They found that spiking patterns approximate a 
random (Poisson) process. Using a sophisticated model 
of a cortical pyramidal neuron and its connections [18], 
they argued that such irregularity is unattainable through 
an integrate-and-fire mechanism [lo*]. Any neuron that 
integrates synaptic inputs with a membrane time con- 
stant of 7-20ms should spike more regularly. The in- 
tuitive appeal of this argument is based on the follow- 
ing physical analogy. Imagine a Geiger counter that is 
wired to click only upon integration of 40 radioac- 
tive decays. Although individual decays are random in 
time, the modified counter clicks with great regularity 
because the sum of random intervals becomes reliable 
as the number of counted intervals increases. By anal- 
ogy, a neuron that integrates random presynaptic events 
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- counting to some number to reach spike threshold - 
cannot preserve such irregularity in its own spike output. 

Fig. la depicts the expected output from an integrate- 
and-fire device; the output is nearly periodic, even 
though input spikes arrive at random intervals. Softky 
and Koch [lo*] conclude that cortical neurons must 
perform some sort of coincidence detection, such that 
a particular combination of presynaptic events leads to a 
postsynaptic spike. This combination would occur with 
sufficient irregularity to account for the variable ISI. 
This idea is illustrated in Fig. 1 b. Such a neuron would be 
capable of transmitting information in the precise timing 
of individual spikes or their temporal pattern. 

On the other hand, it has long been known that a bal- 
ance of excitation and inhibition will yield an irregu- 
lar ISI from the standard integrate-and-fire neuron. The 
idea was first proposed by Gerstein and Mandelbrot [19] 
and subsequently developed by Calvin and Stevens [20] 
in their seminal work on synaptic noise in spinal mo- 
toneurons. These models are often referred to as ran- 
dom walk, or diffusion processes, and they have a rich 
theoretical base [21-291. The idea behind this model is 
that the membrane potential undergoes a random walk 
between resting potential and spike threshold (Fig. lc). 
EPSPs (excitatory postsynaptic potentials) drive the po- 
tential toward spike threshold and IPSPs (inhibitory 
postsynaptic potentials) drive the potential toward Eel 
(chloride reversal potential), beyond which there can be 
no further hyperpolarization. With an appropriate bal- 
ance of excitation and inhibition, the IS1 can be highly 
irregular. 

Although the Geiger counter model (Fig. la) is clearly 
wrong, either the coincidence detector or random walk 
model can account for the irregular ISIS seen in cortical 
neurons. However, these two schemes sanction very dif- 
ferent strategies for cortical organization. If cortical neu- 
rons behave as coincidence detectors, then the timing of 
spikes can propagate through the cortex with great fi- 
delity to convey information and to synchronize other 
neurons [6,10,30,31]. If an irregular IS1 results from in- 
tegration of excitatory and inhibitory PSPs (postsynap- 
tic potentials), then the timing of postsynaptic spikes is 
random and no longer reflects the timing of presynaptic 
events. Precise patterns of spikes - their intervals and 
coincidences - would fail to propagate. 

The validity of these two views rest ultimately on the be- 
havior of neurons within cortical circuits. Which synap- 
tic events cause a neuron to fire? The coincidence detec- 
tor requires the effective set of synaptic events to occur 
at roughly the same frequency as the neuron spike rate. 
Noncoincident EPSPs must either arrive infrequently or 
be prevented from summating to spike threshold by a 
very short membrane time constant (i.e. less than a 
few milliseconds) [1”,32*]. The random walk model in- 
corporates a more reasonable time constant (-10 ms or 
more), but the opposition of excitatory and inhibitory 
PSPs demands a very large number of presynaptic events 
to drive the neuron to threshold. Moreover, the ran- 

dom walk model requires roughly equal depolarizing and 
hyperpolarizing influences on membrane voltage to gen- 
erate highly variable ISIS (MN Shadlen, WT Newsome, 
unpublished data). To choose between the coincidence 
detection and random walk models, we need answers to 
several critical questions. How many EPSPs arrive at the 
neuron during an epoch of activity, and what is their 
impact on the postsynaptic membrane voltage? How 
many IPSPs arrive during the same epoch, and what is 
their impact on the postsynaptic membrane? What is the 
balance between excitatory and inhibitory influences on 
membrane potential? 

Evidence from synaptic physiology 

How many synaptic inputs are active? 
The number of synaptic contacts for cortical neurons has 
been estimated to be between 3000 and 10 000, depend- 
ing on cortical area and species [33]. The most recent 
estimate for monkey visual cortex is 3900 synapses per 
neuron ]34]. Approximately 85% of these contacts are 
asymmetric and, therefore, are presumed to be exci- 
tatory. The majority of these synapses are from other 
cortical neurons, either within the cortical column or 
connected to the column via horizontal axon collaterals 
[l&35]. 

It is more difficult to estimate the fraction of these 
excitatory synapses that are active during an epoch of 
excitation. Consider a pyramidal cell in Vl (primary vi- 
sual cortex) that responds to an optimally oriented bar 
of light passing through its receptive field. How many of 
the neuron’s inputs are active over any 30-50ms epoch 
(2-3 time constants)? Many of the excitatory inputs from 
within a cortical column will respond under the same 
stimulus conditions as our pyramidal cell [36], as would 
most of the direct excitatory inputs fi-om the thalamus. 
Inputs from horizontal connections within the cortex 
tend to arise horn neurons with similar receptive fields 
[37], and cross-correlation analyses reveal that many of 
these neurons are active simultaneously [38,39]. Never- 
theless, not all of the horizontal connections would be 
expected to be active at the same moment, as many arise 
from portions of the visual map outside the classical re- 
ceptive field of the neuron they innervate [34,40] (but 
see [41-45]). The extent to which the map of activity 
overlaps the map of connectivity remains to be clarified, 
although optical imaging data suggest that the degree of 
overlap is substantial ([46]; DY Ts’o, personal commu- 
nication). We are left with the impression that a large 
fraction of excitatory inputs ought to be active. Ex- 
actly how large a fraction remains to be determined. 
(We chose 10% for the simulations in Fig. 1, but the 
following analyses apply to any fraction over 2-3X) 

How large is an EPSP? 
More important than the number of synapses is their 
effectiveness. How large is an EPSP in relation to the 
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Fig. 1. Three models of synaptic integration. The response of a postsynaptic neuron over a 100 ms epoch is shown for three models. The 
postsynaptic neuron integrates the excitation provided by its inputs to generate a spike train. In this simulation, 300 inputs provide excitation 
to the neuron during a 100 msec epoch; the postsynaptic neuron is required to respond at roughly the rate of any single one of its inputs - 
100 impulses per second (ips) in this simulation (in cortex, input and output neurons respond over a common dynamic range). In all models 
we assume a resting potential of -70 mV and spike threshold of -55 mV. For simplicity, we pretend that all EPSPs have identical amplitude, 
regardless of membrane potential. On the left side of the figure, the spike discharge from 300 presynaptic excitatory inputs are illustrated 
by rows of points. Each input neuron has a nominal spike rate of 100 ips, or 10 spikes during the 100ms epoch shown. Spikes arrive with 
random ISIS. (a) An integrate-and-fire neuron that counts EPSPs produces a regular ISI. Each EPSP depolarizes the membrane toward spike 
threshold, where it remains until the next EPSP arrives. To achieve an output spike rate of 100 ips, each input must depolarize the membrane 
by only l/300 of the necessary excursion to spike threshold, or roughly 0.05 mV. (b) A coincidence detector neuron that responds only to 
rare combinations of input spikes produces an irregular ISI. The membrane potential is determined by the sum of EPSPs arriving in single 
millisecond epochs. EPSPs from the preceding millisecond do not affect the membrane potential. To achieve an output of 100 ips the model 
requires 35 inputs to arrive simultaneously. Although membrane potential is reset to -7OmV after a spike, the observed potential generally 
lies considerably higher, due to the barrage of subthreshold presynaptic events. (c) An integrate-and-fire neuron that balances excitation and 
inhibition produces an irregular ISI. In addition to the 300 excitatory inputs, 150 additional inputs (not shown) provide inhibition. These 
also arrive at roughly 100 ips. As in (a), each EPSP depolari:es the neuron toward spike threshold, but each IPSP hyperpolarizes the neuron 
towards -7OmV. The membrane potential undergoes a random walk between an elastic barrier at -7OmV and absorption barrier at spike 
threshold. We have crudely implemented a balance between excitation and inhibition by setting IPSP amplitude to twice EPSP amplitude. In 
order to achieve a spike rate of 100 ips, EPSP amplitude is l/25 of the excursion to spike threshold (0.6 mV). The random walk model achieves 
a proper dynamic range at the cost of a noisy ISI. These simulations are caricatures of more realistic biophysical models, but are intended 
to illustrate key points. Randomizing EPSP (and IPSP) amplitude and implementing more realistic membrane time constants (1 O-20 ms) has 
little impact on the integrate-and-fire models: (a) and (c). For the coincidence detector (b), randomizing EPSP amplitude changes the exact 
timing of output spikes, and the membrane time constant must be substantially less than 1 ms. Notice that although the coincidence detector 
and random walk models yield irregular ISIS, only the coincidence detector conveys information through the timing of spikes. The time of 
pre- and postsynaptic spikes is determined with millisecond precision in (b), whereas in (c) pre- and postsynaptic events are only related by 
rate. 
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excursion in membrane potential necessary to produce 
an action potential ? The resting potential of corti- 
cal neurons lies between -60mV and -75 mV in slice 
[47-49,50**,51*], but may be closer to -60mV in viva 
[52-541. Recently it has become possible to measure 
the postsynaptic depolarization caused by single EP- 
SPs [49,51*,55-57,58*,59*]. Simultaneous intracellular 
recordings I?om pairs of pyramidal cells in cortical slice 
revealed a range of single-axon EPSPs from 0.05 mV to 
greater than 2mV (e.g. mean 0.55 mV in [49]). In all 
cases, the size of a single-axon EPSP was highly vari- 
able. Single spikes from the same neuron may cause a 
large depolarization or may affect the postsynaptic neu- 
ron negligibly 

Interestingly, the size of an EPSP may be unrelated 
to its position on the dendritic tree. Synapses near 
to or far from the soma, as judged by EPSP shape, 
share largely overlapping distributions of PSP amplitudes 
[49,56]. Moreover, even electrotonically distant synapses 
can influence the somatic membrane potential, presum- 
ably by active dendritic conductances [50**,60”, 61**]. 
Cauller and Connors [62*] have recently demonstrated 
that synapses of layer 1 neurons to layer 5 pyramidal 
neurons yield measurable somatic EPSPs. Presumably, 
a balance between active dendritic conductances and 
cable properties yields a fairly stereotyped EPSP at the 
soma [62*]. Thus, the available data suggest that the en- 
tire dendritic tree may be capable of influencing somatic 
membrane potential in steps of approximately 0.5mV 
If so, just 10-40 excitatory inputs can depolarize the 
membrane from resting potential to a spike threshold of 
about -55 mV [47,49], yet hundreds of excitatory inputs 
probably bombard the postsynaptic cell during very brief 
epochs (see preceding section). 

These insights raise substantive problems for both the 
coincidence detection and integrate-and-fire models. 
The bombardment of EPSPs would contaminate with 
extraneous inputs the set of coincident events carry- 
ing information. Coincidence detection can be saved 
if the membrane time constant were exceedingly short 
(< 1 ms) and the coincident events carrying information 
occur within a single millisecond of each other. Ex- 
traneous events would not sum to threshold and post- 
synaptic spikes would reflect specific combinations of 
presynaptic events, maintaining precise temporal fidelity 
(as in Fig. lb). Unfortunately, this solution is unrealis- 
tic as membrane time constants are typically 8-20 ms 
[49,500*,58*,59*]. To our minds, this problem appears 
fatal for the coincidence detection model. By this we 
do not deny that coincidences of EPSPs exert greater 
influence over membrane potential than the same num- 
ber of EPSPs arriving sequentially. Any neuron with a 
finite membrane time constant possesses this property, 
but this would not confer any of the enticing properties 
of a coincident code. The hypothesis that information 
may propagate via specific patterns of spikes (in time 
- like Morse code - or across neurons) demands that 
postsynaptic spikes and the presynaptic events that cause 
them coincide on a time scale well short of the aver- 

age ISI. Coincidence detection on the time scale of the 
membrane time constant would confer little advantage 
as it would necessitate intolerably low spike rates. 

An integrate-and-fire device is prone to firing rate satu- 
ration in the face of a massive excitatatory bombardment, 
but this problem is easily solved if roughly equal amounts 
of excitation and inhibition influence the postsynap- 
tic neuron. Note that this is the same stratagem that 
produced variable ISIS in the integrate-and-fire model 
(Fig. lc). To evaluate the integrate-and-fire model rig- 
orously, it is vital to learn the relative influence of exci- 
tatory and inhibitory inputs on cortical neurons. 

What is the balance between excitation and inhibition? 
Inhibitory synapses constitute approximately 15% of the 
synapses on cortical neurons [34,35,63]. Most of these 
synapses arise from smooth stellate neurons within 400 
microns of the target cell [64-66,67*], but some are from 
basket cells as far as l-l .5 mm away [67*,68*]. For many 
years, intracortical inhibition was thought to shape the 
receptive field properties of sensory neurons, such as 
orientation and direction tuning [69-741. Theoretici- 
ans contemplated interesting computational properties 
for inhibition, such as veto power (gating) and den- 
dritic multiplication [75,76]. Surprisingly, intracellular 
recordings in Vl, in vioo, have shown that IPSPs tend to 
occur when EPSPs occur [52,53,77,78]. For orientation- 
selective neurons, therefore, EPSPs and IPSPs both occur 
most frequently in response to optimally orientated stim- 
uli [53,77]. This puzzling observation becomes sensible 
in light of the current conjecture that a primary role of 
inhibition is to control the gain, or amplification, of neu- 
ral signals [18,78]; inhibition must balance the excitatory 
bombardment to prevent the neuron’s firing rate from 
saturating. 

The requirement of equal excitatory and inhibitory in- 
puts appears at first blush damning for the integrate- 
and-tire model, as excitatory synapses on cortical neu- 
rons outnumber inhibitory synapses by roughly 6 : 1 
[34,35,63,66]. Despite this morphological inequity, we 
suggest that physiological balance could be achieved in 
at least four ways: firstly, IPSPs may have a larger impact 
on membrane polarization; secondly, a larger fraction 
of inhibitory synapses may be active during any tem- 
poral epoch; thirdly, inhibitory interneurons may fire 
more rapidly than excitatory neurons; and, fourthly, 
inhibitory synapses may be more secure than excita- 
tory synapses. Physiological evidence exists in favor of 
three of these mechanisms. Inhibitory synapses are con- 
centrated near the soma [35,66,79], and are known to 
have relatively large conductances and long durations, 
suggesting that IPSPs have a greater impact on the post- 
synaptic membrane potential ([18,55,80]; A Thomson, 
D West, J Deuchars, J Physiol (Lund) 1993, 473:173P). 
In addition, it seems likely that inhibitory interneu- 
rons fire at higher rates than do excitatory neurons in the 
same cortical column [81-831. Finally, many excitatory 
impulses may simply fail to depolarize the postsynaptic 
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1 For example, the estimated spike rate from 100 neurons over any 10 ms epoch, each spiking at 100 impulses per second tips) with 
random ISI, is 100 ips +6?. By contrast, one of the chief disadvantages of neural codes that rely on temporal patterns of spikes is 
that such patterns may take a long time to propagate. To take advantage of the information capacity rendered by an irregular ISI, the 
nervous system may have to wait a long time for critical spikes and intervals. 

neuron. Such synaptic failures have been demonstrated in 
hippocampal cell culture and slice [84*,85,86*], and are 
thought to reflect a presynaptic failure to release neuro- 
transmitter. Although this phenomenon is just beginning 
to receive attention in the neocortex ([57,58.,59*,87*]; 
D Smetters, S Nelson, Sot Netrrosci Abstr 1993, 19:628), 
preliminary evidence suggests that inhibitory inputs are 
more secure than excitatory synapses (A Thomson, D 
West, J Deuchars,I Physiol (Z..&) 1993, 473:173P). In- 
hibitory neurons tend to make multiple contacts with 
their targets [64,68*], whereas (excitatory) pyramidal 
neurons tend to make single synapses [40,86*]. Although 
the available data are inconclusive, it seems entirely plau- 
sible, if not probable, that excitation and inhibition on 
cortical neurons are much more closely balanced than 
the anatomy would suggest. 

With these data in mind, let us return to Fig. 1. To pro- 
duce this figure, we assumed 300 presynaptic neurons 
are active (- 10% of the excitatory input to a pyrami- 
dal neuron) during a 1OOms period. Each input neuron 
provides about 10 spikes, which arrive at irregular in- 
tervals during this epoch. The postsynaptic neuron is 
not allowed to saturate, so a good rule of thumb is to 
find conditions that allow it to fire about 10 spikes. To 
do this with the simple counting device (Fig. la), we 
had to assume an EPSP amplitude of 0.05mV (l/300 
of the excursion from reset to spike threshold), which is 
clearly incorrect. In any case, we can exclude this model 
because it produces a regular ISI. To model the coin- 
cidence detector (Fig. lb), we had to assume an EPSP 
amplitude of about 0.4mV. Unfortunately, we also had 
to mimic a membrane time constant of under 0.5 ms. 
Basically, there can be no summation of EPSPs beyond 
an interval of 1 ms or less. There is no plausible basis 
for this conjecture (but see [32*]). Finally, we consid- 
ered a simple random walk mechanism (Fig. lc). Here 
the average EPSP was 0.6mV and we mimicked a long 
time constant (greater than 10ms). However the model 
assumes a strong source of inhibition. In this rendition 
we added 150 inhibitory presynaptic neurons, each pro- 
viding roughly 10 spikes, arriving randomly. Each IPSP 
hyperpolarizes the membrane toward -70mV in steps 
twice as large as an EPSP This is a crude approxi- 
mation to a balance between hyperpolarizing and de- 
polarizing forces on the membrane. This idea seems to 
be most consistent with synaptic physiology. In essence, 
the random walk model with balanced excitatory and 
inhibitory inputs allows the neuron to behave as an 
integrate-and-fire device and maintain a reasonable re- 
sponse rate. The cost, however, is an irregular ISI. If 
this conjecture is correct, then the timing of output 
spikes is stochastic and can convey little, if any, infor- 
mation. 

Implications for cortical organization 

Our understanding of the sources of ISI irregularity has 
fundamental implications for our views of cortical or- 
ganization. If the variable ISI reflects a precise tempo- 
ral code that must be propagated through the cortex, 
the pattern of cortical connectivity should emphasize 
divergence, and redundancy should be avoided. Mov- 
ing downstream in a cortical pathway, therefore, we 
would expect fewer neurons to covary their responses 
under similar stimulus conditions, a view that proba- 
bly demands reduction, if not outright elimination, of 
redundancy in the form of columnar organization. In 
fact, we would expect to see progressively less spike 
rate modulation at all, as rate modulation can only mud- 
dle a temporal code with spurious coincidences [88*,89]. 
Alternatively, if synaptic integration produces a truly ran- 
dom ISI, the neural code consists simply of modulations 
in spike rate. As any one neuron provides a poor esti- 
mate of the instantaneous spike rate, the cortex must 
use ensembles of neurons to represent the same infor- 
mation. This view demands a reiterated organization of 
redundant, column-like modules, even in higher cortical 
areas. 

Clustering of neurons with similar response properties 
(redundancy) is a well-established principle in primary 
sensory and motor areas of the cortex, and is beginning 
to receive attention fi-om investigators working on higher 
cortical areas as well. By analyzing patterns of connectiv- 
ity revealed by local biocytin injections, Amir et al. [90-l 
found a patchy organization of horizontal connections 
reiterated in striate, extrastriate, and parietal cortex of the 
macaque monkey. Similar observations have been made 
in inferotemporal (IT) [91-l, frontal and limbic cortex 
[92], suggesting common organizational principles that 
are consistent with a redundant coding strategy [93-J. 
Recent physiological data born IT cortex also support 
this point of view; nearby neurons, probably organized 
in the form of columns, appear to share preferences for 
similar features of visual objects [94,95] and faces [96] 
(but see [97-l). 

Size of fundamental signaling units in cerebral 

cortex 

If clusters of functionally similar neurons carry informa- 
tion in the form of noisy, redundant rates, how many 
neurons are needed to estimate firing rate precisely? 
Simple statistical considerations reveal that the instanta- 
neous rate horn an ensemble of 100 or so neurons can be 
estimated reliably within a single 1%‘. We suggest that 
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neuronal pools of this size may comprise the fundamental 
signaling units of cerebral cortex. 

Interestingly, the existence of common noise within cor- 
tical columns suggests that pool sizes exceeding 100 
neurons confer little or no signaling advantage. The 
noisy spike rates of adjacent cortical neurons elicited 
by repeated presentations of a particular stimulus are 
not independent, but covary weakly with an average 
correlation coefficient of roughly 0.12 [97*,98]. Cor- 
related noise (presumably arising f_?om common input) 
shared by all members of a neuronal pool places funda- 
mental limits on signaling power because the common 
noise cannot be eliminated by averaging among neurons 
within the pool. Monte Carlo simulations indicate that 
the signaling advantage gained by averaging asymptotes 
at roughly 100 neurons [17,98,99], further supporting 
the notion that ensembles of this size may comprise the 
fundamental signaling units of cortex. 

Objections to the random walk model and 
rate-coding hypothesis 

The biophysical support is weak 
This objection to our point of view is fair enough. The 
random walk model for generating variable ISIS depends 
critically on an approximate equality of excitatory and 
inhibitory influences on membrane voltage, but the ac- 
tual state of affiirs is simply unknown. We have cited 
fragmentary physiological evidence indicating that in- 
hibition has a more substantial impact than suggested 
by morphology, but little direct evidence is available 
on the critical issues of single IPSP size, relative firing 
frequencies of excitatory and inhibitory neurons, and 
relative failure rates for EPSPs and IPSPs. We note, how- 
ever, that this caveat does not argue against the random 
walk model (and, by extension, the rate-coding hypo- 
thesis), but rather clarifies the type of biophysical data 
that will ultimately permit a truly informed choice of 
models. 

Reliable temporal spike patterns exist in cortex 
Abeles and colleagues [88*,89] have demonstrated re- 
peating temporal patterns of spike discharge among en- 
sembles of neurons in fi-ontal cortex. In visual cortex, 
synchronous patterns of discharge have been observed in 
anesthetized and awake animals under a variety of con- 
ditions (see [lo] for review). If the IS1 is truly random, 
then these observations must be attributed to co-mod- 
ulation of spike rate, imposed by some common input 
such as the thalamus. They do not necessitate coinci- 
dence detection; nor do they imply a precise temporal 
code. 

In a somewhat different vein, Optican, Richmond and 
colleagues [8,9,100] have shown that temporal patterns 
of spikes convey more information about visual stim- 
uli than the spike rate does in single neurons of areas 
Vl and IT. It is unclear whether the type of tem- 

poral encoding proposed by these investigators would 
necessitate a deterministic ISI. Modulation of the aver- 
age response rate might suffice. Interestingly, Tovee et al. 
[lOl**] have shown that brief (20-50 ms) estimates of rate 
from IT neurons convey nearly as much information as 
the 300-400 ms components of a putative temporal code. 

The acid test for any theory of the neural code is to es- 
tablish a connection to behavior. In cortical areas MT 
and MST, fluctuations in spike rate have been shown 
to correlate with an animal’s decisions in a motion 
discrimination task [99,102,103”]. Examples abound in 
the motor cortex for a connection between neural dis- 
charge rate and behavior (see [104]). To our knowledge, 
however, there is no evidence that a temporal pattern 
of activity (beyond rate modulating) in cortex has any 
consequence for behavior. 

Spike timing is critical in some neural systems 
Clearly, some neural structures convey information in 
the timing of successive spikes. The best examples 
are probably from brainstem auditory pathways, where 
spikes may be time-locked to peripheral events (e.g. 
primary-like neurons of the cochlear nucleus [105]). 
So long as synaptic contacts are multiple and, hence, 
secure, spikes can propagate reliably fi-om one neuron to 
the next, preserving a temporal code. In cortex, how- 
ever, we argue that many inputs affect the neuron, and 
a single presynaptic spike has little bearing on the exact 
timing of a postsynaptic spike. This is not true, however, 
if certain inputs have privileged contacts. For example, 
a single spike f?om thalamus may induce a time-locked 
spike in visual cortex consistent with monosynaptic ex- 
citation ([106]; J Alonso, R Reid, T Wiesel, Sot Neuro- 
sci Abstr 1993, 18:425). Within cortex, such time-locked 
spikes are exceptional [38,39,107,108’]. 

Spike rates may be time-locked to stimulus change 
The inability to preserve information about the time of 
a spike would seem to imply that the discharge rate 
cannot modulate in a time-locked fashion to external 
inputs. This is not true. In a random walk mecha- 
nism, the discharge rate follows the activity of inputs; 
but given a base rate, the time to the next spike is 
(nearly) random. Consider the spike train recorded from 
an MT neuron responding to successive presentations of 
an identical pattern of moving dots (Fig. 2). The average 
discharge rate fluctuates in a time-locked fashion to the 
moving dot display. Yet the exact time of any one spike 
within any lO-20ms epoch is nearly random from trial 
to trial. The neuron approximates a random (Poisson) 
point process with non-stationary rate. The variance of 
the spike count tallied for each trial actually exceeds the 
mean. Nevertheless, the average instantaneous discharge 
rate is consistent from trial to trial, as is apparent in the 
raster’s vertical structure (Fig. 2a). Presumably, this rate 
maintains temporal fidelity with changes in the stimu- 
lus. If instead of successive trials, we imagine that the 
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Fig. 2. Responses of a neuron from area MT of monkey extrastriate visual cortex to 210 presentations of an identical pattern of dynamic 
random dots. (a) Response rasters show time of individual spikes on each trial (row). The response varies systematically during each two 
second trial, producing an appearance of vertical contours throughout the raster. (b) Peristimulus time histogram. The instantaneous spike 
rate is computed in 2 ms bins. The response rate undergoes fluctuations over coarse and fine time scales. Power spectral density analysis 
of this waveform reveals reliable changes in instantaneous rate at up to 60-l 00 Hz. Although the instantaneous rate reflects changes in the 
visual stimulus, the exact timing of spikes is random. Each row in (a) provides a very noisy estimate of the waveform in fb). The spike trains 
have the characteristic of a non-homogeneous random (Poisson) point process, consistent with Fig. lc. 

raster rows represent the response from individual neu- 
rons, then the ensemble would be capable of transmitting 
changes in spike rate with an effective sampling rate of 
!%lOms. A more sophisticated analysis of this sort has 
been performed by Bialek and colleagues [11,109] on 
motion-sensing neurons in the fly. 

Conclusions 

This survey leads us to a tentative view of cortical infor- 
mation processing that unifies diverse experimental ob- 
servations concerning synaptic physiology, neural coding 
and cortical organization. We argue that the biophysics 
of synaptic integration provides a critical key to under- 
standing the nature of neural codes and how cortical 
circuitry is organized to propagate those codes. Indi- 
vidual cortical neurons receive a plethora of synaptic in- 
put, presumably to provide computational power. The 

neumn avoids saturation by balancing excitation and 
inhibition in a random walk along membrane poten- 
tial, thus preserving a rate code that reflects its inputs. 
The neuron pays a price for this stratagem, however, 
adopting a (nearly) random ISI and thereby sacrificing 
a precise temporal code. The instantaneous spike rate is 
variable, analogous to a Poisson process, but can be rep- 
resented more precisely by pooling the spike discharge 
from many neurons. This cries for redundancy in the 
neural code: multiple neurons must provide estimates 
of the same information. To achieve redundancy, how- 
ever, neurons must receive some common input which, 
in turn, limits the accuracy of the rate code: pooling 
cannot average out correlated noise [17,99]. Signal-to- 
noise reaches asymptotic levels by the time 100 neurons 
are included in the pool; adding more neurons is futile. 
Thus, the fundamental signaling units of cortex may be 
pools on the order of 100 neurons in size - approxi- 
mately the number of neurons in a cylindrical column 
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aligned with the dendritic field of one layer 5 pyramidal 
cell [llO,lll*]. On this view, pieces of cortex must exert 
influence over other pieces of cortex as small signaling 
units of redundant and weakly correlated neurons. As the 
fundamental motivation for this point of view rests ulti- 
mately in synaptic physiology, we see no reason that the 
same principle should not apply at any location in neo- 
cortex, where thousands of inputs influence a neuron’s 
output. 

A central implication of this point of view is that the or- 
ganization of cortical connectivity should remain coarse. 
Downstream neurons are unlikely to draw input from a 
special neuron here and another one there, but instead 
probably receive redundant input from a pool (50-100) 
here and another pool there. If we are correct, then the 
search for information in temporal patterns, synchrony, 
and specially labeled spikes is unlikely to succeed. On 
the other hand, there is reason for optimism because the 
secrets of the brain’s messages may be revealed by the 
analysis of single neurons acting in concert with others 
of similar ilk. Thus, the activity of single neurons may be 
connected to behavior by virtue of redundancy, raising 
hopes that probing the brain with tungsten will continue 
to yield important knowledge. 
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