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Abstract

In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equa-
tion in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the
conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical
experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that
MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum,
and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified
numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum
and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial
conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac
equation is the precise preservation of charge conservation law.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

As well known, the Dirac equation is the most important mathematical model in relativistic quantum
physics. Some authors have considered numerical methods for solving the equation, such as spectral
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methods (see [5]) and finite difference methods including conservative type methods (see [1-3]). Recently,
the multi-symplectic methods have been proposed and investigated for some important Hamiltonian partial
differential equations (HPDEs), such as Schrédinger equations [15], KdV equations [15], etc. Some basic
results on the methods have been presented. The theoretical framework on generalizing symplectic integra-
tors of Hamiltonian systems to multi-symplectic integrators of HPDE:s is established in [4,13,14] and ref-
erences therein. In [16,17,19], the multi-symplecticity of Gauss-Legendre methods is proven, and the
backward error analysis is considered. The classical conservative properties of multi-symplectic methods
are investigated in [8,9,11,12]. In particular, it is shown in [18] that a standard second-order finite difference
uniform space discretization of the semilinear wave equation with periodic boundary conditions, analytic
nonlinearity, and analytic initial data conserves momentum up to an error which is exponentially small in
the stepsize. In [9], it is shown that the MSRK methods applied to the nonlinear Dirac equations are stable
and convergent with respect to the conservation laws of energy, momentum and charge. Based on the the-
oretical results presented in [9], in this paper we introduce and numerically investigate some properties of
MSRK methods applied to the Dirac equations. In particular, we pay our attention to the preservation of
classical conservative properties which is crucial in the numerical study of quantum physics. This paper is
organized as follows, in the rest of this section, we introduce (1 + 1)-dimensional nonlinear Dirac equation
and the charge conservation law; we propose the multi-symplecticity and energy, and momentum conser-
vation laws of the equation in Section 2; in Section 3, we recall the definition of multi-symplectic discret-
ization for the general HPDEs, and present the condition of multi-symplecticity of Runge-Kutta
discretization for HPDEs which has been proven in [6], and state some basic properties of MSRK methods
for HPDEs; in Section 4, we restate some results (in [9]) on the discrete charge conservation law, error esti-
mates of energy conservation and momentum conservation for nonlinear Dirac equations under MSRK
discretization; numerical experiments and numerical comparisons between a MSRK method and a non-
MSRK method are presented in Section 5. The conclusion of this paper is given in Section 6.
We consider (1 + 1)-dimensional nonlinear Dirac equation:

{ Vo = A+ 1f (W1 = aP)B,

i (x,0) = ¢ (x),  ¥i(x,0) = Py(x),
where i = (y1,0»)" is a spinorial wave function, which describes a particle with the spin-1; y; and v, are
complex functions, which describe the up and down states of the spin-1 particle, respectively, each of them
has two components, denoted by the real and imaginary parts of the complex function, respectively (for

more details, see [1-3,5]); 1 = v/ —1 is the imaginary unit, f{s) is a real function of a real variable s, 4
and B are matrices

0 -1 -1 0
A= 5 B = ’
(-1 0) (0 1)

the initial function ¢ = (¢1,¢»)" is sufficiently smooth.

(1.1)

Since a spin-1 particle has not only the information of energy and momentum, but also the probability
information. The concept of probability is derived from the quantum theory. In this context, the charge (the
probability information) 2, the linear momentum £ and the energy E are given by:

A0)0) = W (O + W) .
y(‘ﬁ)(t) = fR S(Wl %lpl + ‘/’2%‘/’2) dx, (1-2)
EW)(1) = Je(S0h &, + ¥, 24) + 1 (W, P = [al?)) dx,

respectively, where 3(u) and u denote the imaginary part and the conjugate of the complex u, respectively,
f is a primitive function of f, namely
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7= [ f)an

In this paper, we will focus on an important particular case of (1.1):

{%+%+imwl + 20U — W)y =0, .
W W — iy + 20 [P — ) = 0, '
that is,

fls)=m—2Js

in (1.1), where m and A are real constants. The results obtained can be easily extended to the general case
(1.1).
Proposition 1.1. If the solution \y of the Dirac equation (1.3) satisfies

| ‘lim [W(x,8)| =0, uniformly for t€R, (1.4)
X|——+00
then

20)(t) = 2(¢), (1.5)
where

290 = [ (61 + 10aP) d. (16)
Proof. Differentiating the first equation of (1.2) with respect to ¢, we have

d ~ 0 o- -0 0 -

) — e - — — . 1.

G200 = [ (B v gl + 0 g v ) (1)
From the first equation of (1.3), it follows that

-0 o~ -0y o,

lpl atlpl + lpl atlpl - l//1 ax ax . (18)

Similarly, by using the second equation of Eq. (1.3), we have

-0 o - -0y oY,
lpzat% +Wzat¢2 =¥, o 28 o (1.9)
Substituting (1.8) and (1.9) into (1.7) leads to (1.5). The proof is finished. O

The Dirac equation can be deduced from the time-dependent Schrodinger equation, ||* and |y,
represent the probability density of the particle being in the two states, respectively, the charge conservation
law represents the probability conservation, it is an important conservative quantity in quantum physics.

2. Multi-symplecticity of the Dirac equation

In this section, we describe the multi-symplectic structure, the energy conservation law and the momen-
tum conservation law of the nonlinear Dirac equation (1.3). We rewrite the complex two-component
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spinorial wave function as real four-component form, that is, let ¥, = p + iq;, ¥» = p> + ig». Here, p; and
qr are real functions (k = 1, 2) as required above. Now replacing ; in (1.3) by px and ¢y, leads to:

90 9 N
DB —mg, —2(p3 + 43 —p? - fﬁ)ql =0,

aql + @qz +mp, +2.(p3 + g5 — a)p, =0, 21)
aaptz + aal;] +mg, +22(p3 + 5 — pi — Q%)% 0, .
G+ mpy =243+ 43— Py — ) = 0.
We find that (1.3) can be written as
Mz, + Kz, = V.S(z) (2.2)

with the state variable z = (pl,ql,pz,qz)T, here we use the real vector function z to substitute the complex
wave function  for latter discussions. M and K are skew-symmetric matrices,

0O 1 0 0 0 0 0 1

-1 0 0 0 0 0 -1 0
M= 5 K= )

0 0 0 1 0O 1 0 0

0 0 -1 0 -1 0 0 O

and S: R* — R is a smooth function,
1
S() =5 (pi + 41 =P = 43) = m)(pi + 41 = P> — 43)-
In terms of (1.1), we can get the initial condition
zs(x) = 2(x,0) = (¢ (x), ¢12(x),¢21(x),¢22(x))T, (2.3)
where ¢1(x) = ¢11(x) T 1P 12(X), Pa(x) = Pa21(X) + iaa(x).

According to [4,19] and references therein, the above system (2.2) is called multi-symplectic Hamiltonian
system, because it has a multi-symplectic conservation law

Oow Ok

=0 24

o (24)
where @ and x are pre-symplectic forms,

1 1

wzidz/\Mdz and Kzidz/\Kdz. (2.5)
The system has an energy conservation law (ECL)

OE OF

i 2.

3 T ox 0 (2:6)

with energy density
1
E=S(z)— EZTKZX

and energy flux
1
F=3 TKz,.

From the energy formula in (1.2) and comparing with the energy density given here, it follows that
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_ 0 _ 90 -
5@15% + wzawl) + (W = ol = 26,

that is,
BW)(0) = -2 [ Bt d. 2.7)
R
The system has also a momentum conservation law (MCL)
ol oG
—+—=0 2.8
ot (28)

with momentum density

1
I=3 "Mz,

and momentum flux
1 T
G=S5(z) — 3 Mz,.

Similarly, corresponding to the linear formula given in (1.2), we obtain
(-0 -0
S( g+ g ) =21

namely

P2)(0) =2 / 1(z(x, 1)) d. (2.9)

R

Three conservation laws (2.4), (2.6) and (2.8) are the local properties which hold for any multi-symplectic
system (see [4]), in general, they could not provide more information on the global properties of the system.
Under appropriate assumptions, it is possible to gain the global conservation laws corresponding to the
local conservative properties.

Proposition 2.1. Under the assumptions of Proposition 1.1, and if

lim [0 (x,#)| =0 wuniformly for teR, (2.10)

|x]—+00

then the system (1.3) has two conservation laws:

W)(1) = 2(¢), (2.11)
(¥)(1) = E(¢) (2.12)

on the linear momentum and the energy as mentioned in Section 1, respectively, where:

S

W 2
200 = [[3( 61+ g 02) a 1)

EO0 = [ (3(0 20+ 0 50) +708,7 - 10:8)) a. .14)
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Proof. We integrate (2.6) over R, then

0E OF
—+ = =0. 2.1
/R(@t+6x)dx 0 (2.15)
(2.2) implies that
z =M (V.S(z) — Kz,) = —MV.S(z) + MKz,, (2.16)

since V_S(z) is a vector function, each of whose entries is a multivariable polynomial with the degree 3, un-
der the assumptions of this proposition, it is concluded that

lim V.S(z) =0 and Ilim z =0. (2.17)

[x| =400 [x| =400

Therefore, (2.16) and (2.17) imply
lim z, = 0. (2.18)

[x|—=+00

The left term of (2.15) can be written as

OE oF d 1
—+—|dx== [ Edx+ (zZ'K
/R<6t+6x) dt/R +<2Z Z’)

Combining (2.7), we find that %E (¥)(¢) = 0, which shows that (2.12) holds, namely, we have obtained the
energy conservation law. Similarly, combining (2.9) and the local momentum conservation law (2.8), the
momentum conservation law can be obtained. This completes the proof. [

“+00 d
= — E dx. 2.19
-3 / (2.19)

o0

Because numerical methods should preserve characteristic properties and inner structures (symmetries)
of original system as much as possible, it would be very important to find more numerical methods which
preserve multi-symplectic conservation law (2.4) for Hamiltonian systems (2.2).

3. Multi-symplectic Runge—Kutta methods

In this section, we introduce multi-symplecticity of numerical methods and recall the condition of multi-
symplecticity of Runge-Kutta discretization for general HPDEs and some known results. In order to
process the numerical discretization, we introduce a uniform grid [10] (x;,#x) € R* with mesh-length Af in
the z-direction and mesh-length Ax in the x-direction, and denote the value of the function y/(x,#) at the
mesh point (x;,t;) by lpf. Eq. (2.2) and the multi-symplectic conservation law (2.4) can be, respectively,
schemed numerically as:

M@[’ka +K6£’kz§ = (VZS(Z))f, o
Oy + 0"k} =0, (3.2)

where (VZS(Z))f = (V.8(2))),

1
(dz)] AM(dz); and x = 3 (dz)} AK(dz)],

w =

N —

where a;*" and 6)’;‘]‘ are discretizations of the partial derivatives 0, and 0,, respectively.
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Definition 3.1. The numerical scheme (3.1) of (2.2) is said to be multi-symplectic if (3.2) is a discrete
conservation law of (3.1).

In [19], Reich shows that the Gauss—Legendre discretization applied to the scalar wave equation (and
Schrodinger equation) both in time and space direction, leads to a multi-symplectic integrator (also see
[11]). Hong et al. [6] presents the condition of multi-symplecticity of Runge-Kutta methods and parti-
tioned Runge-Kutta methods for the general Hamiltonian partial differential equations in the form
(2.2).

Now we recall the characterization of multi-symplectic Runge-Kutta methods for the general Hamilto-
nian partial differential equations in the form (2.2). To simplify notations, let the starting point
(x0,t0) = (0,0). Applying r-stage and s-stage RK methods to the multi-symplectic system (2.2) in the z-
direction and x-direction, respectively, we have the following:

-
Zﬁz = 221 + At Zl akJ»@,an,
=

2l =20 + Aty b0 ZE

k=1

ZE =zZ5 + Ax ; A0, 2%,

A =2+ A Y bdZh,
m=1

Mo, ZE + Ko,.Z¥ = V.S(ZF),

here, we made use of the following notations: Z* ~ z(c,At,d;Ax), 2° = z(c,Ax,0), 8,2% =~ d,z(c,Ax, d;At),
@fol ~ O0:z(Cnlx, diAt), z) ~ z(c,Ax, At), zb = 2(0,diAt), 25 =~ z(Ax, d,At), and

Cn = iamny dy = zr:ak/"
n=1 Jj=1
The variational equation corresponding to (3.3) is:
dzf =d2° + At Zr:l ay; d(,2)),,
=
dz}, = dz, + Ar ; b d(2,2).,

47 = dzt + Ax Y a4, d(0,2)",
n=1

dZ = dZ + Ax S bad(0.2),

=1

Md@.2), +Kd(@,2);, = D.S(ZE) dZ,

where we use the abbreviations, dZ* denotes (dZ)*, d(9,2)f denotes (d(8,2))% and so on.

Based on the discrete formula (3.2) of the multi-symplectic conservation law, we consider the multi-
symplecticity of Runge-Kutta methods. Making use of the variational equation (3.4), after a tedious
calculation, we have
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Ax> " b, (dz), AMdz), — dzb, AMdz),) + At bi(dzf A Kdzf — dzf A Kdzf)

m=1 k=1

= AAPY by > Y (biby — buay — bjay) d(d,2),, A Md(8,2)),
j=1

+APALY B> > (buby — by — budn,) d(0:2);, AK d(8,2),,

hence we derive the following theorem (for more details of the proof, see [6,19]).
Theorem 3.2. [6] If the method (3.3) satisfies the following coefficient conditions:

bibj — byay; — bjay = 0, (3.5)
men - Bmamn - Z)nanm =0 .

forall kj=12,....r and myn=1,....s, then (3.3) is multi-symplectic with the discrete multi-symplectic con-
servation law

Axiiym( o +Athk F k) =0, (3.6)
m=1

where o), = 1dz}, A Mdz!

| k= LdZ A Kd, of, = 1d20 A Md2), k6 = LdzE A Kdzk,

Theorem 3.2 tells us that the symplectic Runge—Kutta discretization applied to the Hamiltonian par-
tial differential equation (2.2) in both time and space direction, leads to a multi-symplectic integrator.
For any HPDE, there are three local conservation laws, (2.4), (2.6) and (2.8). Eq. (3.6) in Theorem 3.2
is the discrete analogue of (2.4).

Now there is a natural question: Do MSRK methods preserve (2.6) and (2.8) in the sense of the
corresponding discretization? Reich [19] shows that Gauss—Legendre schemes preserve exactly both of
the energy conservation law and the momentum conservation law for the linear wave equation, and
numerical experiments therein show that Gauss-Legendre methods, for nonlinear wave equations,
preserve the conservation laws of energy and momentum in a good approximation. Bridges and Reich
[4] show that if S(z) is quadratic in z, then the multi-symplectic box scheme conserves exactly the con-
servation laws of local energy and local momentum. Islas et al. [11] show that the multi-symplectic box
schemes can give good approximations of the discrete energy and discrete momentum, respectively, for
the nonlinear Schrodinger equation. Hong et al. [6] give the following result.

Theorem 3.3. [6] For any general multi-symplectic system, if S(z) = %ZTHZ, where H is any symmetric matrix,
and the coefficient matrices of RK methods A = (ay)), <, and A = (mn)y, in (3.3) satisfying (3.5) are invertible,
then the method (3.3) has a discrete energy conservation law

AxY bu(E(z,) — E(z,)) +ArY_ bi(F(Z) — F(z5) =0
m=1 k=1
and a discrete momentum conservation law

Abe ) — 1) +Athk 2}) = Gz)) =
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4. The statement of discrete conservative properties

In [9,12,16,17], discrete conservative properties of some multi-symplectic integrators have been investi-
gated. When a MSRK method is applied to the nonlinear Dirac equations, an important problem is, does it
preserve the physical conservative properties, such as conservation laws of charge, energy and momentum in the
global sense ((2.12), (2.11) and (1.5), respectively), of the equation? In this section, we recall some results pre-
sented in [9] which solve the above problem. In what follows, we assume that the Runge—Kutta methods
considered are solvable, and satisfy the condition (3.5) of multi-symplecticity.

Now we replace the whole real spatial region R by a finite interval [—L/2,L/2]. An initial condition is
taken as

2(6,0) = z/(x),

where z/(x) is the same as (2.3). The investigation of the global conservation properties requires that z/x)
satisfies periodic boundary condition on the interval [—L/2,L/2], namely z(—L/2) = z{L/2). The consistent
periodic boundary condition is given by

2(=L)2,6) = 2(L)2,1) or z(—L/2,t) =z(L/2,t) = z,(t),

where z,(f) is a known real-valued and sufficiently smooth vector function. Set the spatial points
x;=—L/2+IL/N, I=0,1,...,N. Let the starting time point 7o =0, and let t=A¢ and h=Ax=L/N
be the time step and spatial step, respectively, we rewrite the Runge—Kutta method (3.3) over all spatial
points as follows:

Zk

-

_ 0 J

Lm = Zim +1 Zl akjalzl,m’
J=

le,m = Z(I),m + Tl;l bkatZI;m,
(4.1)

In?

s
k k ~ k
Zy =20t h ) amdZ
n=1

Zi0 =Zjg T h 21 b, Zf

lm?

Md.Z§,, + Ko, Z},, = V.S(Z,),

Im

where k=1,....r, m=1,....5, 1=01,....N—1, Zj, ~z((I +cn)h,di1), 2}, ~z((I+ cn)h,0), 2, ~
z(lh,dyt) and so on.
4.1. The discrete charge conservation law of MSRK methods

It follows from Proposition 1.1 that the charge conservation law of the Hamiltonian PDE (2.2) is the
following:

2(2)(1) = 2(z), (4.2)
where 2(z)(t) = [*)7, 2(x,0)"z(x,1) dx and 2(z;) = [*}}, z/(x)"z,(x) dx.

The conservation of quadratic invariants under the numerical discretization is very important. As
well known, in the case of Hamiltonian ODEs symplectic integrators, in general, may not preserve qua-
dratic invariants [20]. The invariance of (4.2) under MSRK discretization is stated in the following
result.
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Theorem 4.1. [9] The RK method (3.3) satisfying (3.5) has the following discrete charge conservation law

s

P S (0.6 - 0.6) =0 @3)

=0 m=1
where Q,(z) =z'z.

This result reveals the stability of MSRK methods applied to the nonlinear Dirac equation in the sense
of the charge conservation law (4.2), and ensures that, in the numerical implementation, the normalization
of quantum physics is preserved exactly by the MSRK methods.

4.2. The errors of discrete energy and discrete momentum of MSRK methods

Neglecting the integral coefficients —2 and 2 in (2.7) and (2.8), respectively, the corresponding total en-
ergy to (2.7) is denoted by

L2
6= [ EGlxn) ds (44)
—L)2
and the corresponding total momentum to (2.9) by
L/2
Su(0) = / I(=(x, 1)) d. (4.5)
—L/2
Now we integrate the energy conservation law (2.6) over the local domain, namely
h T
[ et o) — G, 0)) dx+ [ (Feh0) - FE0,0)] dr =0, (4.6)
0 0
Corresponding to the RK method (3.3), we use a discrete form
E2hy bu(E(z,) —E@) +1Y_ bi(F(z) — F()) (4.7)
m=1 k=1

to approximate the left side of (4.6). The following result reveals the preservation of (4.6) when the MSRK
methods are applied to the nonlinear Dirac equations.

Theorem 4.2. [9] If the matrices of RK methods in (3.3) satisfying (3.5) are invertible and the solution z, 0,z
and 0.z are bounded, then for the method (3.3), the error of the local discrete energy conservation law satisfies

|Ei| < CT°h (4.8)
for sufficiently small © and h, where the constant C is independent of © and h.
According to (2.12) in Proposition 2.1 and (2.7), we have the total energy conservation law
d
—&1(1) = 0.
a4t

Corresponding to the RK discretization (4.1), we define the discrete total energy at time #; as
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Theorem 4.3. [9] Under the assumptions of Theorem 4.2, the local error of the discrete total energy
conservation law satisfies

e £1(67)" - (60)"| < €@ (49)

for sufficiently small T and h, where the constant C is independent of T and h.

Theorem 4.4. [9] Under the assumptions of Theorem 4.2, for T > 0, there exists a 19> 0 and an hy > 0, such
that for © < 1o and h < hy, the global error of the discrete total energy law satisfies

&N — (&7 0| < Ct*  uniformly for nt < T, (4.10)
3 L

where the constant C is independent of T, h and T.

It is shown in [18] that on uniform grid of the spatial discretization, the interpolate momentum satisfies
an exponential estimate. The result restated here is on the error estimate of total momentum for MSRK
methods of the Dirac equation. As discussed in the above energy analysis, we start with the local momen-
tum conservation law first. It follows from (2.8) that

/0 [{(z(x, 7)) — I(z(x,0))] dx + /OT[G(z(h,t)) — G(z(0,1))] dt = 0. (4.9)
We define
M= BaIEh) — 1) + 73 bu(GE) — GE)) (4.11)

as the discrete form of the left side of (4.9). Similar to Theorem 4.2, we have
Theorem 4.5. [9] Under the assumptions of Theorem 4.2, the following estimation

|M,.| < Cth’ (4.12)
holds for sufficiently small © and h, where the positive constant C is independent of z, 0,z, 0.z, and S.

Similarly to the above discussion on total energy conservation law, combining (2.7) and (2.11) in Prop-
osition 2.1, we have the total momentum conservation law

d

—J.(t) =0.

a0

We define the discrete total energy at time ¢; as

-1 s
) =03 S b,
=0 m=1

As mentioned in the above, Oliver et al. [18] gives an exponential estimate for the total momentum of the
semilinear wave equations. From Theorem 4.5, it follows that the local and global errors of the discrete
total momentum for nonlinear Dirac equations is of order ((th*) and ((h*), respectively, under the
Runge—Kutta discretization.

4.3. The error estimates of the discrete conservation laws for a non-multi-symplectic method

In this section, we give some theoretical results on the numerical characters of a second-order non-multi-
symplectic method TT2 (see Section 5 for more details), and we only focus on the error estimates of discrete
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conservation laws. The TT2 has no discrete charge conservation law. Analogous to the discussion in The-
orem 4.1, we deduce the following error estimates.

Theorem 4.6. [9] Under the same boundedness assumptions as in Theorem 4.2, for the method TT2, we have
the following local error estimate on the discrete charge conservation law

N-1
hY_(0z) = Q.(2))
=0
- e i AN G AN o -
for szijClently small T and h, where Q,(z}) = (T) (T) fori= 0,1, and the constant C is independent of
T and h.

< Ct(? + K (4.13)

Theorem 4.7. [9] Under the assumptions of Theorem 4.6, for T > 0, there exists a 1o > 0 and an hy > 0, such
that for © <ty and h < hy, the global error of the discrete charge conservation law for the TT2 method satisfies
N-1

hY (0.(2) - 0.(2))

=0

< C(e* +h*)  uniformly for nt<T, (4.14)

where the constant C is independent of t, h and T.

Theorem 4.8. [9] Under the assumptions of Theorem 4.6, for the method TT2, the error of the local discrete
energy conservation law satisfies

|E| < Cth(?® + h?) (4.15)
for sufficiently small © and h, where the constant C is independent of © and h.

Theorem 4.9. [9] Under the assumptions of Theorem 4.6, for the method TT2, the error of total discrete
energy conservation law satisfies

|Eee| < Ct(7 + 1) (4.16)
for sufficiently small © and h, where the constant C is independent of © and h.
Theorem 4.10. [9] Under the assumptions of Theorem 4.6, for T > 0, there exists a 1o > 0 and an ho > 0, such

that for 1 <1 and h < hy, the global error of the discrete total energy conservation law for the TT2 method
satisfies

|(<§’Z)n — (6Z)O| < C(> +h*)  uniformly for nt<T, (4.17)

where the constant C is independent of t, h and T.

Theorem 4.11. [9] Under the assumptions of Theorem 4.6, for the method TT2, the error of local discrete
momentum conservation law satisfies

M| < Cth(* + k) (4.18)

for sufficiently small © and h, where the constant C is independent of © and h.

5. Numerical investigation

Based on the theoretical results in the previous section, numerical experiments presented in this section
reveal numerical characters of MSRK methods applied to the nonlinear Dirac equations. Without loss of
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generality, we take the constants m =1 and 1 = % in (1.3). In this case, the nonlinear Dirac equation (1.3)
has the following theoretical solitary wave solution

lps(xv 1) = (M(x)’iN(x))Te_iAtv (51>
where:
COS| —A? 1/2X
M(x) = (2(1 =A%) (1 + )P St

in — 4212
Nx) = (21— A) (1 = )
with the frequency A4 = 0.75.
We discretize the nonlinear Dirac equation (1.3) by the MSRK method with » =1 and s = 1, this is an
implicit second-order MSRK method (in short, denoted by MM2), which is equivalent to the central box
scheme in [4,7,8,11,12]

i+1 i i i
(2111/2 - Zl+l/2) K (21:11/2 - Zz+l/2)

T h
where i and / are indices of the time step and the space step, respectively, and:

M

= V.SE ), (5.2)

Zap=E+2)/2 20, =G0 +4N/2, 2= +2)/2,

i+1/2 i i i+1/2 i
24 :(Z+1 +211)/2, 21:1//2:(2]+1

1+1

i i+1 i
I+l itz s ) /4
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Fig. 1. The four numerical solitary wave functions obtained by using MM2, the left-top one is the first component p,(x,?), the right-top
is the second component ¢;(x,?) and the bottom list the third and fourth component p,(x,#) and ¢»(x,?), respectively.
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Since ¥ (x,t) is exponentially small away from x =0, in numerical implementation we take periodic
boundary conditions y(—L,t) = y(L,t) with L = 24, and make use of the exact initial conditions:

{ ¢1(x) = M(x),
¢, (x) = iN(x).
First, we take the spatial step # = 0.3, the time step T = 0.05, and the time interval is [0,100]. Next, We
change the steps or the time interval to check our theoretical results. The fixed point iteration method is
utilized to solve the nonlinear algebraic systems generated by the numerical scheme, each iteration will
terminate when the maximum absolute error of the adjacent two iterative values is less than 10~°.

For the purpose of numerical comparisons, we apply an implicit second-order non-multi-symplectic
method, the trapezoidal scheme in time and space, respectively (in short, denoted by TT2), to the nonlinear
Dirac equations. The TT2 is obtained by means of substituting

(5.3)

x 1076

1.6

0o 10 20 30 40 50 60 70 80 90 100
time

1x10‘5'

0.9}

0.8
0.7
0.6
0.5
0.4
0.3
0.2}

0.1}

0 . A . . . . . . h
0 10 20 30 40 50 60 70 80 90 100
time

Fig. 2. The maximum errors of the discrete local energy: MM2 (top); TT2 (bottom).
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V.S(zih) + VS + ViS(zl,,) + VaS(z)
4

for the right side of (5.2). All numerical comparisons between MM2 and TT2 are processed in the same
numerical conditions.

Fig. 1 shows the numerical result of the spinorial wave function obtained by using MM?2. The spatial
interval given in the figure is [—30,30] that makes the lower half parts of waves observable. (5.1) tells us
that the spinorial wave function is periodic in time, and its period is 2n/A. Consequently, the time inter-
val [0,100] adopted in the numerical computation contains almost 12 periods, the plots in Fig. 1 show the
periodic behavior almost perfectly, the asymptotic behavior of the waves as x — +oo comports with
(5.1). The results of numerical simulation with TT2 are as good as ones with MM2. Especially, MM?2
and TT2 have no differences in the cost and the accuracy of numerical computation of solitary waves.
We do not plot four figures of numerical results obtained by using the TT2 scheme any more
accordingly.

x 107

1.090—<5 20 30 40 50 60 70 80 90 100
time

27x1041

265}

261

255}

251

245}

24 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
time

Fig. 3. The maximum errors of the discrete local momentum: MM2 (top); TT2 (bottom).
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Because the MSRK methods applied to the nonlinear Dirac equation cannot preserve the energy con-
servation law exactly, it is important to investigate the error of the energy conservation law. Now we make
use of

; Zt+1 _ _F ik
) = Zb lm + Zbk Zz+1 ("))

to denote the error of the ECL, which is the general form of (4.7) in the rectangle

((eryt2), (vrns 12), (orns tir)s (o7, tir)).

(E}‘e)j does not mean the local error at the mesh point (x;,¢;), since Ej, is derived from the local integration
E,,, and the local integration domain is the rectangle. For the MM2 scheme, (E;,); is the local error in (x;4 1/,
ti+1/2), the explicit formula (see [4,11,12]) is

x10°5

0 10 20 30 40 50 60 70 80 90 100
time

0.8}

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80 90 100
time

Fig. 4. The global errors of the discrete total energy: MM2 (top); TT2 (bottom).
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1 i+1 i+1

el 1 ; , Tz —z ; 1, oz =z
(Ele)l-tl/ﬂ:; S(Zlill/z)_z(zllill/z) K% - S(Z,+1/2)—§(Z,+1/2)K th l

L[ a2 — 2 T 2 — 2
g TR ey )
where notations are the same as ones in (5.2). Similarly, the error (M }‘2)'1 of MCL can be defined.

For TT2, in both ECL and MCL, we make use of (S(z},) + S(z}))/2 and (S(z}"") + S(z}))/2 to substitute
S(z},,/,) and S(z’lﬂ/. %), respectively. For the above each scheme, it is easy to verify that (E;,); = (Ew);/(zh)
and (M;,); = (M,.),/(th). According to Theorems 4.2 and 4.5, we have

(Bl < €7 and |(M,)] < CR, (5.4)
respectively, for applying MM2. Similarly, from Theorems 4.8 and 4.11, it follows that
(i) < C(F + 1) and |(M}))] < C(* + 1), (5.5)

respectively, for applying TT2.

7x10’1f3

0 10 20 30 40 50 60 70 80 90 100
time

7x10“:"

0 1.0 éO 3.0 4‘0 éO éO 7‘0 éO 9.0 100
time

Fig. 5. The global errors of the discrete total momentum: MM2 (top); TT2 (bottom).
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For each i, let maxo<;oy|(ES))| and maxec,y|(M3,)}| denote the maximum errors of the energy con-
servation law and the momentum conservation law, respectively. Fig. 2 exhibits the variation of
maxo<;-y|(E,))| in the time interval [0,100], and shows that MM2 and TT2 have about the same
numerical behaviors in the numerical preservation of the local energy conservation law, in fact, the
energy error of MM2 is in the scale of 107, one of TT2 in the scale of 107°. The stability of
MM2 and TT2 with respect to the local energy conservation law is verified numerically.

Fig. 3 shows the variation of maxo,<y|(M;,);| in the time interval [0,100], and reveals that the
difference between MM?2 and TT2 in the error variation of the local momentum is not remarkable
large, the error value with MM2 is about 1/2 of one with TT2. The oscillation curves in Fig. 3 shows
numerically that MM2 and TT2 are stable in the sense of the local momentum conservation law. The
numerical results in Figs. 2 and 3 are consistent with Theorems 4.2 and 4.3, respectively.

time

251

1.5

0.5F

0 10 20 30 40 50 60 70 80 90 100
time

Fig. 6. The global errors of the discrete charge: MM2 (top); TT2 (bottom).
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Fig. 4 exhibits the global error of the total energy (4.4), here (&7)' — (¢9)° denotes the global error of
the total energy. (#¢)' — (#9)" denotes the global error of the total momentum (4.5), which is pictured
in Fig. 5. Fig. 4 shows that the global error (£¢)" — (é"‘Z)O of the total energy obtained by using MM2 is
not different from one obtained by using TT2, the numerical efficiency of the two methods is much the
same, they produce the global error of total energy in the same magnitude. In the numerical simulation
of total energy by using MM2, in the interval [0,25] the global error is in the scale of ¢(107). This
means that the MM2 scheme preserves the total energy so well. It is out of our expectation that, in
the interval [25,40], the global error has a sharp change, it reaches in the magnitude of ¢(107°), and
in the interval [40,100], the error changes more and more slowly. This numerical result motivates us
to study theoretically the accumulation of (£9) — (5?)0 in the application of MSRK methods to the
Dirac equation.

Fig. 5 shows that the total momentum are conserved within roundoff errors of the computer not
only by MM2, but also by TT2. (#9)' — (#%)° is controlled in the scale of 107!° by both of the
two methods. The total momentum is a quadratic invariant which is different from that considered
for ODEs, and it is in an integration form and the integrated function contains the terms of derivatives.
The discrete invariance of the total momentum, under the discretizations of MM?2 and TT2, is charac-
terized numerically. The numerical results imply that both of two methods preserves the total momen-
tum of the equation exactly. The corresponding theoretical discussion to this numerical phenomenon is
proposed in [9].

Let 2' — 2° denote the global error of the charge conservation law (CCL). Fig. 6 shows the global
errors of CCL produced by both of the two schemes in the time interval [0,100]. The top graph in the
figure shows that the discrete charge is conserved within roundoff errors of the computer by means of
MM2, however, the global errors 2° — 2° produced by using TT2 are in the scale of @(10™*). From the
error estimates of the energy and momentum, we find that the remarkable advantage of MSRK methods
is the precise preservation of charge conservation law. In Fig. 7, we exhibit the evolution of the global
error of charge conservation law in a longer time interval [0,5000] by means of the numerical imple-
mentation of MM2. In the time interval, the discrete charge conservation law is preserved in the scale
of ¢(107"), almost the roundoff of the computer; comparing with the top graph in Fig. 6, there is a
very small error accumulation in such long calculation. The numerical results of the discrete charge

x 10713

4.5

351

-0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

Fig. 7. The global error of the discrete charge in time interval [0,5000] obtained by using MM2.
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conservation law in Figs. 6 and 7 reveal that, in the preservation of charge, MM2 is superior to TT2.
The above numerical phenomena reveal that the superiority of MSRK methods is not only on the con-
servation of multi-symplectic geometric structure, but also on the preservation of some crucial conser-
vative properties in quantum physics.

Now let us look at the rest of figures. Fig. 8 displays the maximum global errors of the wave function,
here we make use of

max (max(|(p,); — i (v, )], 1(q1); = 41 (oo, 1)1, () = pax, 1)), (42)) = (v, 1))

0<ISN

to denote the maximum global error of the wave function, where (p,); is the numerical solution of the first
component pi(x,?) at (xt;), and pi(x,1,) is the value of the function p; at (x,z;). The two graphs in Fig. 8
shows that the maximum global errors obtained by using MM2 and TT2, respectively, are in reasonable
oscillation and in normal linear growth.

0.4 T T T T T T T T T
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0.25¢
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0.4 T T T T T T T T T

0.35f
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0.2f
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0.1f

0.05¢

0 10 20 30 40 50 60 70 80 90 100
time

Fig. 8. The maximum global errors of the wave function: MM2 (top); TT2 (bottom).
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Fig. 9. The maximum errors of ECL and MCL obtained by using MM2 with different spatial and temporal stepsizes: (a) ECL, # = 0.3
and 1 =0.1; (b) ECL, #=0.3 and 1 =0.2; (c) ECL, 2#=0.3 and 7 = 0.025; (d) MCL, #=0.15 and 7 = 0.05; (¢) MCL, 7 =0.3 and
1=0.1; (f) MCL, /1 =0.6 and t =0.1.
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Fig. 10. The global errors of the discrete total energy obtained by using MM?2 with different spatial and temporal stepsizes: (a) & = 0.3
and t =0.025; (b) #=0.3 and 1 =0.1; (¢) h=0.3 and 1 =0.2.

Figs. 1-8 are obtained by taking # = 0.3 and t = 0.05. In Figs. 9-12, we take different stepsizes to numer-
ically verify theoretical results on the error estimates, presented in Section 4.

Fig. 9 shows the maximum errors of ECL ((a), (b) and (c)) and MCL ((d), (e) and (f)) obtained by taking
different stepsizes. It is observed that numerical results are consistent with theoretical ones in Section 4.2.

Fig. 10 shows the global errors of the discrete total energy by making use of MM2 with fixed spatial
stepsize 1 = 0.3 and different temporal sizes. The numerical result coincides with the corresponding one
on the error estimate in Section 4.2. Fig. 11 shows the evolution of the maximum errors of ECL and
MCL by TT2 with different stepsizes. Fig. 12 exhibits the global errors of the charge and the total energy
obtained by TT2. Numerical experiments show the match between numerical results and theoretical ones in
Section 4.
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Fig. 11. The maximum errors of ECL and MCL obtained by using TT2: 2= 0.6 and 7 = 0.1 (top); # = 0.15 and © = 0.025 (bottom);
ECL (left); MCL (right).

6. Conclusions

For the Runge-Kutta discretization of the nonlinear Dirac equation, the symplecticity both in time and
space directions implies the multi-symplecticity of the integrator. This result is true for the general multi-
symplectic Hamiltonian PDEs in the form (2.2). Investigating the preservation of charge, energy and
momentum of the nonlinear Dirac equation under the structure-preserving discretization is very important.
Our conclusions are listed as follows:

e Theorems 4.2 and 4.3 imply that for a MSRK method applied to the nonlinear Dirac equations under
appropriate conditions, there exists a constant C > 0 such that for sufficient small t and %, we have

|Eje + M| < Cth(?* + 1), (6.1)

which reflects the local symmetry of energy and momentum under the discretization of MSRK
method (3.3). The superposition of error curves in Figs. 2 and 3 verifies numerically the local sym-
metry (6.1).
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Fig. 12. The global errors of the discrete charge and the total energy obtained by using TT2: &/ = 0.6 and t = 0.1 (top); # =0.15 and
7 =0.025 (bottom); the discrete charge (left); the discrete total energy (right).

Numerical experiments exhibit that the MSRK methods applied to the nonlinear Dirac equations are
stable in the sense of energy, momentum and charge, in particular, they preserve exactly the conservation
laws of momentum and charge in the sense of corresponding discretization. Numerical results motivate
us to study theoretically the accumulation of (£¢)" — (6¢)° in the application of MSRK methods to the
numerical computation of relativistic quantum physics.

In the numerical comparisons, it is shown that MM2 has the same efficiency as TT2 on the numerical
simulation of solitary waves and the preservation of the conservation laws of energy and momentum,
and it is superior to TT2 on the preservation of the charge conservation law which is a crucial conser-
vative property in quantum physics. This implies that MSRK methods preserve not only the inner symme-
try, the multi-symplectic geometric structure, but also some crucial conservative properties in the relativistic
quantum physics.

Numerical results in Section 5 comport with theoretical ones in Section 4, and infer that MSRK methods

applied to the nonlinear Dirac equations should preserve exactly the conservation law of global momen-
tum. Numerical experiments elicit a further theoretical investigation in numerical mathematics, thus our
work is just at the beginning.
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