
Acts Mechanics 47, 167--183 (1983) A C T A  M E C H A N I C A  
@ by Springer-Verlag 1983 

Review Article 

Symmetric-Hyperbolic System of Conservative Equations 

for a Viscous Heat Conducting Fluid 

By 

T. gugge r i ,  Bologna,  I t a l y  

(Received January 7, 1982," revised March 18, 1982) 

Summary 

Some critical considerations on the models of "extended irreversible thermodynamics" 
are given. By developing a methodology ("invariance of the generators") based both on 
the ideas of the "extended irreversible thermodynamics" and the "entropy principle" 
in its general formulation of "rational thermodynamics", a theory for a newtonian thermo- 

viscous fluid is proposed. The theory has the following properties, new when compared 
with previous ones: a) the system of equations is hyperbolic for any value of the field 
variables, provided that  the usual thermodynamic stability condition (maximum entropy 
at equilibrium) holds; all wave-propagation speeds are then real and finite; b) the system 
is conservative and it is possible to seek for weak solutions and, in particular, for shock- 
waves; moreover, the system is symmetric-hyperbolic in the sense of Friedrichs; special 
properties hold therefore for weak solutions and shocks; c) the only thermodynamic 
variables at non-equilibrium, modified with respect to the corresponding ones at equi- 
librium, are the entropy density and chemical potential; consequentely, there exists 
only a single absolute temperature, playing an important role in relaxations; d) the entropy 
principle is automatically satisfied. 

3[. Classical Approach :  Fourier-5[avier-Stokes Equations 

The equat ions  for the  mot ion  of a thermoviscous  fluid, in conserva t ive  form, 
are  : 

a ~ A  - a 

1 =0, / 
= 0 ;  ~ 

a (~uk) + a 

ae a (eu~ + qi + tijuj) ~-7 + ~  

(1.1) 

tik : -  P~ik --  ai~ being the pressure  tensor ;  p the  pressure ,  (r ~ (aik) the  viscous 

tensor ;  s = ~  ( 2  ue ~ - e ) t h e  to ta l  energy,  e the  in te rna l  energy  and  0, u, q 
/ 

respec t ive ly  the  mass  dens i ty ,  the  ve loc i ty  of the  f luid par t ic le  and  the hea t  f lux.  
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To the Eq. (1.1), the constitutive equations must be added; in particular 
one has to determine the constitutive dependence of the heat flux and of the 
viscous tensor. A classical way to determine the constitutive equations of Fourier 
and Navier-Stokes (FLUS) is the following: 

The Gibbs relation is supposed to hold: 

0 dS ~ de + p dV  (1.2) 

(0 ~ absolute temperature,  S = entropy per unit mass, V ----- 1/~ ~- specific vol- 
ume). From (1.1-2) the following entropy balance is obtained: 

where the "ent ropy source" 8 is: 

s = - - - ~ q  �9 VO + 60: (Vu + VTU) -- --~ - ~ t r 6 .  d i v u  (1.4) 

with the notation: 6 D ~ 6 - -  1 1  tr 6, denoting the deviator stress correspond- 
3 

ing to 6; ! ---- 3 • 3 identi ty matrix and A : B ~- tr  tAB) .  
Since the entropy inequality requires s to be positive for any thermodynamic 

process, requiring linear constitutive relations between (i) heat flux and tem- 
perature gradient and (if) stress and velocity gradient, one obtains the F N S  

constitutive equations: 

VO ~- - - k q ,  

(Vu + VTu) --  l l d i v u  = ~6 D, (1.5) 
2 3 

d i v u  = fi tr  6, 

satisfying the entropy inequality 

6~176 +  (tr6)  > 0, (16) 

provided that  the scalar functions k, ~,/~ are positive (1/k = Z is the thermM 
conductivity, 1/(2~) = ~7, 1/(3fi) = ~ the usual viscous coefficients). The system 
(1.1), (1.5) (denoted in the following as F N S  system), with the associated con- 
stitutive relations for all thermodynamic variables is a first order system of 14 
partial  differential equations for 14 unknowns (for example two thermodynamic 
variables, the three components of u, the 3-components of q, the five components 
of 6 D and tr 6). 

As is known, the system is not hyperbolic because of the form of constitutive 
relations (1.5); the consequence is an infinite wave propagation speed. Several 
authors proposed alternative equations to replace the FNS system in order 
to eliminate the paradox and hyperbolize the system. Starting from Maxwell's 
idea and from the well known paper by C. Cattaneo [i] (in the case of a rigid 
heat conductor), a large body of literature exists to which one can hardly ob- 
jectively refer to. In  any case, the most interesting contribution, for its simplicity 
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both physically and mathematically, is the paper by I. Miiller [2], which has 
provided also the basis for further developments (in the non relativistic context 
see e.g., the papers by Carrassi-Morro [3], Lebon and eoworkers [4]--[6]; for 
relativistic theories see e.g. Miiller [7], Krany~ [8], Israel [9], Israel-Stewart [10] 
and, in a different context, Boil]at [11], Massa-Morro [12] and Dixon [13]). 
Since in the present paper we are concerned with non relativistic fluids, we 
shall relate to the work by Miiller [2] who gave the foundation to the "extended 
irreversible thermodynamics". 

Different approaches to similar problems, known as "rational thermody- 
namics" are by Noll [14], Coleman-Nol] [15], Coleman ['16], Gurtin [17], Trues- 
dell [18], Mfiller [19], Green-Lindsay [20] and, recently, by Grioli [21]. 

Other formulations, which are similar to "extended irreversible thermo- 
dynamics", employ "internal variables" (see e.g. K]uitenberg [22], Morro [23]). 

A review of modern thermodynamics is given in the exhaustive article by 
Hurter  [24]. 

Now we shall examine briefly the methodology developed in [2], useful in 
the following. 

2. Miiller's Theory [2] 

The basic idea of the theory is as follows: If one tries to introduce into (1.5) 
the time derivatives of q, a D and t r a  by preserving the entropy principle, one 
must necessarily consider the non-equilibrium entropy density (different from 
equilibrimn one) not only to depend upon the two thermodynamic variables 
but  also on q and a. Miiller supposes that the non-equilibrium quantities are 
not far from those at equilibrimn. To introduce the least possible modification 
of the classical theory he supposes that the new entropy density: 

SN ~ S~v(~, e, q, a D, tr  a) (2.1) 

is equal to S plus the quadratic terms of a development in the now variables 
("linearity" equil ibr ium--non equilibrium). I t  follows that the Gibbs relation 
is modified into 

dS~ -= de + p d V  --  ~lq " dq --  ~2aD : d6 D --  a~(tr a) d(tr a), (2.2) 

where ai are functions of e and V only. 
Forming the time derivative of S~v and taking into account (1.!) , one reaches 

an entropy balance of the type (1.3) with S replaced by SN on the  1.h.s. and 
with a r.h.s. Which involves s and the time derivatives of q, a D and tr 6. In a 
similar way as in the classical case, Mfiller obtains equations which replace to 
F N S  systems and read 

c~O 7 + hOa ax] § LO~ ~x  i -4:- Oxi [ 

dt ~ ~ / \ axj / 

d t ra  I c o - - - - 3 L O d i v q - - d i v u = - - f l t r a ,  
dt J 

12" 
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where : 

1 1 tr A ~ 

and d/dt  = O/~t ~- u~ ~/~x~ denotes the substantial derivative. Eqs. (2.3) go over 
into (1.5) when the phenomenological coefficients a, b, c, h and L vanish 
(a, b, and c are relaxation terms). 

In  particular for an inviscid fluid the equation that  replaces the Fourier 
equation becomes a Cattaneo-like equation: 

r dq /d t  ~- ~ grad 0 = - - q ,  (~ = ar (2.4) 

3. Some Critical Observations Regarding the Theories 
of "Extended Irreversible Thermodynamics" 

Miiller's theory has several good physical behavioural properties: I t  satisfies 
the entropy principle, is in agreement with statistical mechanics (in the frame 
of the thirteen momenta  of Grad's theory) and provides linear high frequency 
waves propagating with finite speed through a constant state [3]. Moreover, 
because of the supposed linear relationship between the thermodynamic variable 
at  equilibrium, it differs least from the classical theory. 

This non-linear theory, and many  other similar ones, however, are subject 
to criticisms both, f rom a physical, and, even more so, from a mathematical  
point of view. We show these objections and formulate a theory which concep- 
tually does not differ from that  of Miiller, but, in our opinion, is free of the 
following shortcomings inherent to "irreversible thermodynamics".  

i) The hydrodynamic system (1.1), (2.3) is generally non-hyperbolic. In  fact, 
as shown in [25], even in the pure viscous case (no heat flux), the characteristic 
speeds are real if, and only if, some of the field variables are suitably bounded. 
This circumstance is not acceptable since, even if the limitations are satisfied 
by the initial data, they may be found not to be fulfilled by the solutions at a 
generic time. 

In  well behaving theories hyperbolicity conditions involve only the consti- 
tutive functions: for instance, for an inviseid non-heat conducting fluid, it is 
known that  hyperbolieity implies (ap/O~)s > 0. Therefore, in such theories, 
even in ease new bounded real velocities appear,  other speeds, when calculated 
for suitable values of the fields may  become complex. As a consequence instability 
effects arise, and the Cauehy problem is ill-posed [26], [27]. The theory may  
thus fail in problems of discontinuity (acceleration) waves and high frequency 
linear waves propagating across non-constant states because hyperbolieity 
is not guaranteed for all times [28]--[30]. 

ii) While the Eq. (1.1) exhibit a "conservative form", Eq. (2.3) generally 
are not conservation taws 1. This lack prevents us from establishing a weak 

1 In view of the mass balance law the conservation law for any function g(x i, t) has 
the form : 

dg/dt = ~(~g)/~t + O(eu/g)/Ox~; 

it is easily showh that Miiller's system is conservative ff a, b, c are constants and h = L ------ 0. 
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formulation to the solutions [28], [31]. I t  is also known that  for such nonlinear 
systems the regularity of solutions is not preserved, in general, even if the initial 
data  are highly regular, not even in a neighbourhood of the initial time (see 
e.g. [32]). In  particular, the lack of conservative form prevents us from studying 
shock waves which are a special class of C 1 piece-wise weak solutions. 

We recall that  even if there is no shock initially, it will be created after some 
time, for instance, by  degenerating acceleration [28]--[30], [34] or asymptotic  
waves [33], [35]. I t  is true that  it is possible (at least in principle) to s tudy "shock 
structure" solutions also for non-conservative systems, but  recent results, ob- 
tained by  Anile and Majorana [36], have shown (in the case of plane wave) that  
for Mach numbers greater than some limit value, Mtiller's theory does not allow 
continuous "shock structure" solutions. The FNS theory always possesses 
such solutions, even though they are in poor agreement with the experimental 
data  (see [37]). This, fact in our opinion, is not surprising, since, although Mfiller's 
theory is a refinement of F.NS, it cannot be put  in a conservative form which 
is possible for the non-hyperbolic FNS-theory.  On the other hand, "shock 
s tructure" solutions approach true shock waves when some parameter  vanishes 
(usually viscosity and thermal conductivity coefficients) or when the jumps 
are very large (strong shocks) [38], [39] ; but  this limit is not possible if the system 
is non-conservative. 

Finally, we note that  all thermodynamic theories should agree with statistical 
mechanics which is based on conservation laws (conservation of momenta).  
We think that  in Miiller's theory the conservative form of the equations has 
been lost because of the assumption of equilibrium non-equilibrium linearity. 

iii) In  the extended thermodynamic theories, the Gibbs relation is modified 
into (2.2), with the consequence that,  for reasons of integrability, a new absolute 
temperature  must be introduced at  non-equilibrium, different from that  at  
equilibrium, even if it does not appear  in the field equations. However, while 
one accomplishes the idea of an entropy density at non-equilibrium different 
from that  at  equilibrium (especially when q and a are considered as true field 
variables), it is difficult to understand the physical consequences of the two 
distinct absolute temperatures.  

The aim of the present paper  is to remove the shortcomings listed in i)--iii). 
In  particular we t ry  to set up a model tha t ,  preserving the conceptual bases 
of Miiller's ideas, provides a systems of the type (1.1), (2.3): conservative, hyper- 
bolic (without limitations on the field) and with a unique absolute thermo- 
dynamic temperature  (regardless of equilibrium and non-equilibrium). 

The problem is now to establish a methodology which differs from that  devel- 
oped in [2]. We shall abandon the a priori hypothesis of the development in 
power series, truncated at  the quadratic terms but  wish to preserve the physical 
condition required by  the entropy principle. I t  is straightforward to see that  
the entropy principle and the idea that  some thermodynamic variables must 
be modified a t  non-equilibrium are assumptions too general obtain a simple 
and meaningful result. The key  will be to make use of the "symmetry" properties 
of the physical theories (see e.g. hydrodynamics) possessing a supplementary 
conservation law (e.g. : entropy balance). In  the next  section we recall some 
recent results on these subjects, which will be useful in ensuing developments.  
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4. Entropy Principle and Systems Possessing 

a Supplementary Conservation Law: "Generators" 

One of the main results of modern the~momeehanics is to regard the en t ropy  
inequali ty as a eonsLraint to the consti tut ive equations and no t  as an identifi- 
cation of a privileged time orientation. First  supporters  of this point  of view 
were Coleman and Noll [15]; later, a more general principle was proposed by  
Miiiler in [19]. I-Ie suggests to regard en t ropy  densi ty and en t ropy  flux which 
need not  necessarily equal q/O as consti tut ive functions. The resulting system 
possesses one equat ion more than there are unknowns :  therefore, a s t ructure 
compatibi l i ty  arises with consequences on the consti tut ive relations. 

Another  constraint  on the lat ter  arises f rom the en t ropy  inequality. 
The approach  can be generalized to any  partial  differential first-order system 

as follows: One looks for the functional  dependence F ~ ~ f~(u) ,  in order tha t  
the quasi-linear first order conservative system s 

e~F~(u) = / ( u ) ,  

a = O, i; i = 1, 2, 3; 9o = O/Ot; ~i = ~/&e,: 

becomes compatible with the supplementary  conservation law 

(4.1) 

ed~(u) = g(u), (4.2) 

where F ~ and if are column vectors  belonging to 1R ~ and u(~ ~) is the unknown 
N~V-vector of the system. 

I f  (4.2) were not  a consequence of (4.1) we would have N + 1 equations 
for N unknowns,  and the problem would generally be unsolvable. Recen t  in- 
vestigations [40]--[45] have shown, tha t  compatibi l i ty  is ensured by  the existence 
of ~ vector  u '  E IR ~v, the components  of which are functions of u, such tha t  

u ' .  d F  ~' --- d/~ ~', ( 4 . 3 )  

u '  �9 [ ~ g .  ( 4 . 4 )  

Then, by  supposing local invertibil i ty of the mapping relating u and u ' ,  
it is easy to see that  there exist four scalar functions h '~ (~ = 0, 1, 2, 3) (in the 
sense of the metric of tR iv vectors) defined as 

h'~  = u '  �9 F ~' - -  h~ ( 4 . 5 )  

with the proper ty  tha t  

F ~ = ~ F ~.  du' --= dh '~. (4.6) 3w" 

~ (4.1) is the usual definition of conservative from to which we refer in the text. 
Sometimes in the literature it is called "generalized conservative form", because of the 
source term on the r.h.s, which is responsible for dissipation (see Appendix). 
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In  other  words, the sys tem (4.1), when compatible with a supplementary  
law has the s t ructure  such tha t  F ~ is the gradient  of h '~ with respect to the field 
u ' .  I t  follows f rom (4.6) and (4.1) tha t  in terms of the field u '  the sys tem assumes 
the form 

~u" ~u - - - - - ~  ~ u '  : 1 ,  (4.7) 

in which the coefficient matrices as Hessian matrices, are symmetric.  The field 
u '  is unique (except for constant  factors) and has the proper ty  tha t  it t ransforms 
the original  sys tem (4.1) to a new form (4.7) in which t h e  essential p roper ty  
of a conservation law is preserved. This is why  we call the field u'  the "main  
field" of the system, [42]. I t s  components  are the multipliers through which 
Eq. (4.2) is obtained as a linear combinat ion of the field equations (see (4.3), 
(4.4)) ; in the context  of thermomechanics  the components  of u '  can be identified 
with the Lagrange  multipliers int roduced by  I. Shih Liu in [46]. The differential 
operator  in (4.7) is known as soon as the h '~ are assigned as functions of u' .  These 
quanti t ies (which behave mucll like potentials) are sufficiently impor tan t  tha t  
we call then "generat ing funct ions"  of the system. 

We emphasize that the systems (4.1), together with their supplementary con- 
servation law (4.2) are completely identi/ied when u' ,  h '~ and the source [ are ]cnown. 
I n / a c t ,  i /  these quantities are assigned, one can reach the system through (4.6), and 
/rom (4.5) and (4.4) the /unc t ions  h ~ and g, i.e. the supplementary conservation law 
(4.2) can be determined. There/ore, we shall call "generators" the set o/ 2 N  -~ 4 
quantities3 : 

{u', h'~, /1. 

The previous s ta tements  hold for a ny  sys tem (4.1) tha t  is compatible with a 
supplementary  conservation law. Moreover, if the matr ix  (~F~ is no t  singular 
(so tha t  it is possible to choose F ~ as field u) and h ~ is a convex/unct ion of F ~ then 
it is possible to show tha t  the matr ix  ~2h'~ ~uf (coefficient matr ix  of the time 
derivative of u '  in (4.7) is positive definite a, and consequentely the system (4.7) is 
hyperbolic. ]n  particular,  this is a special case of a symmetric  system in  the sense o/ 
Friedrichs, (see Appendix).  

Such systems exhibit  peculiar properties concerning weak solutions and shock 
waves. I t  is remarkable  tha t  the physically significant systems examined so far  
possess the convexi ty  p roper ty  ment ioned above and are therefore symmetr ic  in 
the field u' .  The sys tem of fluid dynamics  is analysed in [47], [48], relativistic 
hydrodynamics  and magne tohydrodynamics  are t reated in [42], [43] ; Born-Infeld  
non-linear electr0dynamics in [49] and hyperelastic cont inuum mechanics in [50]. 

Manifestly, FNS fluids possess the properties mentioned for a generic system 
(condition (4.6)), bu t  they have a non-convex function h~176 since the :FNS 
sys tem is not  hyperbolic (in this case F ~ does not  identify a basis in Rla). 

I t  is easy to see tha t  the FNS systems (1.1), (1.5) (N z 14) assumes the form 

a ~Ve point out ~hat a generic conservative system is identified with the 6N quantities: 
u, F", [ are known. 

a In fact, in this ease from (4.3) u" ~ ~hO'aF ~ and from (4.5) h '~ ~ u'  �9 F ~ -- h ~ ~ (~hO/ 
~F ~ �9 F ~ -- h ~ and therefore h '~ is the Legendre conjugate function of h ~ and then a convex 
function of u ' ;  therefore the matrix ~h'~ au" is positive definite. 
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(4.1) and the entropy law the form (4.2) when we choose: 

F o -~ (~o, ~uk, e, 0a, 05, 0~) ~ (4.8) 

f ~ ~ (~ui, o~uiuk + hk, eu~ + q~ 

(4.9) 
1 T 

+ tiiui, O(Sik,~(U,Oki + Uk(}ji)---~'(}ikUi,%i) 
if =-- (0~, 03, 0~, --lcqk, o~a~, fl tr 6) T (4.10) 

h ~ = --~oS; h ~ = - - (~Su i  + qi/O) (4.11) 

q.Z 61) : aD (tr(~)2 ~ (4.12) 
~ - g r + ~  + ~ - % - -  3o ] g 

where 01, 03, 0s denote respectively the scalar, vector and traceless symmetric 
matrix null elements. 

In [45] the main field and the generating functions for the FNS system has 
been evaluated as: 

h '~ = p/O; 

qk ~ ~ ) T  
uk, -- 1, --~-, -- (~i~' - -  

1 
h '~ = --g (t~kuk + qd; 

G = e  + p V - -  OS 

in which G is the chemical potential (free enthalpy). 

(4.13) 

(4.14) 

(4.15) 

5. The New Model,  Exploited Via  "Generators" 

As we pointed out in the previous section the mathematical quantities that 
determine the FNS system are the main field u '  supplied by (4.13), the generating 
functions h '~ given by  (4.14) and the source if given by (4.10). Following Miiller's 
approach, we may introduce relaxation terms by modifying some thermodynamic 
variables, e.g. SN(p, e, 01, (is, tr  6) different from the corresponding equilibrium 
quantities. The simplest idea is then to modify h'% u '  and if' of the classical theory 
by substituting into them the new non-equilibrium variables. Since in this formu- 
lation only the absolute temperature and the chemical potential appear as ther- 
modynamic variables and since it does not seem to be reasonable to redefine the 
former, the chemical potential alone (and with it the entropy density) will be 
changed. 

In other words, we are looking for a system of type (4.1), if it exists, such that 
the new generating functions and the new main field are: 

h ~ ' ~ = h  '~ (5.1) 

ux~ =--T ~ - - -~ - ,uk ,  --1,-~-,  - -%,  - -  . (5.2) 
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GN(~, e, q, 6 I), tr 6) is a function yet  to be determined, which we shall interpret  
as the non-equilibrium chemical potential. 

Essentially, we assume that the non-equilibrium generating/unctions, the main  

/ield and the source, have the same/orm as the corresponding F N S  quantities, with the 
only di//erence that the equilibrium chemical potential be replaced by G ~. : criterion of 
invariance o/ the "generators". 

As a consequence of the considerations on symmetric systems, the advantages  
of this simple criterion are the following: i) the new system is conservative; 
ii) a supplementary conservation equation (for the entropy) is garanted; iii) the 
entropy inequality is also satisfied; in fact the "entropy  source" s ~-- - -g  does not 
change from the FNS theory since the last 9 components of u f f  and the source f 
are also unchanged (see (4.4), (4.10), (5.2)); iv) the new Gibbs relation emerges 
automatically,  without new assumptions. 

By  differentiating h '~ with respect to u f f  we obtain F~ ~, i.e. the new con- 
servative system, then through (4.5) we reach h~ ~ and from (4.4) g~,, i.e. the new 
supplementary law and the new entropy density. 

Even though the method is conceptually simple, calculations are unwieldy. 
We shall follow the most synthetical way. The index _N will denote quantities in 
the new model, to be determined (e.g. u~' ,  h~v '~, etc . . . .  ), while quantities without  
an index are those of the FNS theory. 

Besides, Au'  --- UN' --  U' and so on. 
From (4.6) and (5.1) it follows: 

o r  

tf~ ~ �9 du~' -~ F ~ �9 du' ,  

F ~. d(Au') § AF  ~ � 9  = 0 

F ~ �9 d(du') + AF  ~ �9 du~/ = O, 

F i .  d(Au') + AF  i .  d u f f  = O. 

+ -  

(5.3} 

(5.4) 

(5.5) 

(5.6) 

By contracting (5.5) with the components u~ of the velocity and subtracting 
the result from (5.6) we obtain 

(F i - -  u~F ~ �9 d(Au') + (AF ~ - -  u~ AF ~ dun.' = 0. (5.7) 

In  our case the only non-vanishing component of Au'  is the first (see (4.13), 
(5.2)), while the first component of F i --  uiF ~ is zero (see (4.8), (4.9)); therefore, 
the first term in (5.7) vanishes. We point out that  the components of u~ '  are a 
basis of ~la (i.e. the components of du~v' are linearly independent) and thus (5.7) 
gives 

F S  = F ~ + u i ( F ~  ~ - -  F ~  (5 .8}  

Condition (5.8) together with (5.5) resolves the problem of determining the 
differential system. In  fact, through integration (5.5) supplies F~ ~ and (5.8) 
provides F~ ~. 

Before entering the details of calculations let us investigate the supplementary 
law 3~,h~ ~ = gx. From (4.5) and (5.1) we have 

u '  �9 F ~ - -  h ~ ---- u ~ '  �9 F ~  ~ - -  h ~  ~ ,  ( 5 . 9 )  
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which may also be written as 

A h  ~ = u '  �9 A F  ~ -t- A u '  �9 F~T ~  (5.10) 

A h  ~ - -  u '  �9 A F  ~ 4 -  A u '  �9 F A A  (5.11) 

As before we may deduce 

A h  ~ - -  ui  A h  ~ = u '  �9 ( A F  i - -  u i  A F  ~ 4:- A u '  �9 ( F z  i - -  uiF~T~ (5.12) 

By taking into account (5.8) the r.h.s, of (5.12) is seen to be zero, and it follows 
that  

h~v i = h i 4-  ui(h~v ~ - -  h~  (5.13) 

which together with (5.10) determines the supplementary: law. 
Summarizing our results we have the following scheme: 

F ~ d ( A u ' )  4 -  A F  ~  d u ~ /  = O, I 

F ~  ~ = f ~ + u~(f~,? - -  F~  ] 
(5.14) 

h~- ~  ~  ~  ~ / 
l 

h ~  = h %  u~(h~. ~ - h~ J 

which is solved as follows: the first differential equation gives f ~  ~ the second 
Fa~ i, the third h~ ~ and the fourth h~vq Since/' is not modified, the source term of the 
supplementary law, from (4.4), is 

g:v = u / � 9  (5.15) 

We start  the detailed calculations by  observing that  F~- ~ will be of the form 

Fx ~ --= (~, r e, ~wk, --~Tj D, --3~#) T, (5.16) 

where w is a vector, T D a symmetric traceless tensor and/z a scalar ; they are the 
unknowns that  must be determined. 

By developing the first of (5.14), we find at once 

d 5  e = w �9 d (q lO  ~) 4- T D :  d(oD/O) 4- #d(tr a/0), (5.17) 

where we have introduced 

~9 ~ = ( G -  G~v)/O. (5.18) 

Eq. (5.17) informs us that  6 e can depend only on the variables 

and 

q ,  = q/O~; 6 ,  D := ~D/0;  a ,  = (tr ~) /0  

0.9 ~ T D _  c25 a 02 f  
W = ~ q ,  ' ~ 6 ,  z) ; # = --'Oc;, 

Therefore~ knowledge of the unique constitutive function 

6 a ~- S~ (q, ,  6 ,  ~, %) 

(5.19) 

(5.20) 
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determines F~ ~ and, through (5.18) the new chemical potential G~ 

( q  6D tO" ) (5.21) G,~,(q, e, q ,  6" ,  t r  (~) = G (~, e) - -  0 5 :  02 ' 19 ' - " 

The second of (5.14) yields immediately 

A F  ~ ~- Fjv  ~ - -  F ~ ~ (0~, 06, 0~, ~u~wk, - - e u i T ~ ,  --3~#u~) T (5.22) 

while from the third (5.14) we have 

hN 0 ~-- - - ~ S  ~- Q(q . w ) / O  2 -~- Q(6D:TD)/O + Q(~ tr 0)/0 -- ~Sf, (5.23) 

and since h~ ~ has to be interpreted as --~oS~, the new entropy density becomes 

S ~  = S § 6 :  - -  q ,  �9 ( ~ / ~ q , )  - -  6,D:(~6:/a~, D) -- a , ( ~ S f l ~ , ) .  (5.24) 

Finally the last equation in (5.14) provides h~vi: 

hN i =  - - ~ S  ~vUi - -  qJO.  (5.25) 

Summarizing the final results, the new system is formed by the s~me Eqs. (1.1) 
and the following new equations replacing the F1NS constitutive re]ationsS: 

0 ~ -  ~ + g r a d 0  = - - k q ,  

~o -~- ~ -- (iTu + eu) +--1 I d i v u 3  = --c<(~~ } (5.26) 

 (05) I o - ~  - - d i v u = - - f l t r 6  l 

with the supplementary law (see also (5.15)) 

dS~ e - -~  + div (q/O) = k(qZ/O z) + Cr OD)/0 + fl(tr 6)2/(30), (5.27) 

which automatically fulfills the entropy principle. 
Furthermore we have the new entropy density given by (5.24) and the new 

chemical potential listed in (5.21). 
From (5.24) and (5.21) we observe that:  

G~ = e + p V  - -  19S~v - -  O{q,  �9 ( ~ 5 : / ~ q , )  - -  a ' ,  : (~5:/~o, ' )  -- ~ , (~5: /~ , )}  

and, therefore, (comparing with (4.15)) discover that apart from the new entropy 
density also the terms related to relaxation contribute to the new chemical 
potential. 

We emphasize that the Lagrangian derivatives arise naturally in our system (5.26), 
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6. Convexity and Hyperbolicity of the System 

Until now we have shown that  the new system (Eqs. (1.1), (5.26)) is con- 
servative, that  the entropy principle is satisfied and tha t  SN and G~ may  be 
determined from (5.24), (5.21), starting only from one constitutive function Sf. 
The crucial point, i.e. the hyperbolicity of the system, must now be attacked. To 
prove hyperbolicity using the usual definition would be a considerable task; 
however, as a consequence of the construction of the system, it is enough to 
show that  h~ ~ is a convex function of the field F~. ~ since this condition ensure 
hyperbolicity (through the properties of symmetric systems). Thus, we investigate 
whether the quadratic form 

Q = ~h~~ ~F~- ; -~o  ~ " SF~T~ 

is positive for any non vanishing variation ~F,v ~ Because (4.3) implies for ~ = 0 
ux" ~- ~hx~ ~ we may equivalently prove that  

Q = 6u~,' �9 bF~ ~ > O. 

Straightforward calculations yield for our system 

Q : Q1-  ~ + ~q, " ~ (o~ ~-~,) + (5(I,D:6 (~ ~ )  

(6A) 

where @ denotes the analogous quanti ty when it is evaluated for an inviscid 
fluid at  thermal equilibrium 

I t  is known that  @ is positive provided that  the specific heat at  constant pressure 
% is positive and (~p/Oo~)s > 0; equivalent is to say that  the negative chemical 
potential  a t  equilibrium is a convex function of p and 0 (such conditions always 
hold at  equilibrium and ensure hyperbolicity of the equations governing a per- 
feet fluid). The proof is given in [48]. 

By  developing (6.1) we obtain 

Q = Qs + o{6q, " 5(~ /Oq , )  + (~a, v : d(OSP/Oa, D) + &~,d(Od~/Oa,)}. (6.3) 

We conclude that Q is positive, i /and only i / 5  ~ is a convex/unction o/ ire arfuments. 
Therefore by chosing 5 f as a convex function of q . ,  6 .  D, and (~. one finds that 

h~, ~ is also a convex function of F~v ~ and then obtains a symmetric-hyperbolic 
system. 

A question arises what physical meaning the convexity condition for the func- 
tion ~ might correspond to. We recall that  the convexity of a generic function 
with respect to a vector field X E ]p,n is expressed also by  the condition 

0k~ 
~(Xo) --  ~v(X) + ( X - -  Xo) �9 ~ > 0 
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for any X, Xo (X ~: Xo) belonging to a convex subset of ]R ~. Let  us identify ~/J 
with St, X with (q, ,  a ,  D, %)  E ]R 9 and Xo with the equilibrium state [Xo ------ (0a, 
05, 01)] in which St vanishes. Then the convexity condition becomes 

St  --  q ,  �9 (~Stl~q,)  -- a ,  D : (~Stl~a,  D) -- a , ( a S t / ~ , )  < 0. 

From (5.24) the above condition is equivalent to the physically relevant result: 

S~ < S I V (q. ,  ~.D, a .)  # (0a, 02, 01). (6.4) 

Condition (6.4), which expresses the physical condition o] thermodynamic stability 
(maximum entropy) at equilibrium (required also by Mi~ller in [2]), is guaranteed by 
the hyperbolicity o/our system. 

This result seems to confirm that  our method, which a priori may  appear  
as rather formal, is based on a sound physical ground. 

Even though the system we have reached is quite different from that  pro- 
posed by  Miiller, it preserves essentially the main features required by  that  
author : Existence of an entropy principle and the idea of modifying some thermo- 
dynamic variables in non-equilibrium. 

:Now we ask whether or not it is possible to reset also MSller's idea concerning 
nearness between non-equilibrium and equilibrium variables. In  other words 
we look for a new criterion of nearness between GN and G, S~ and S. 

7. An Interesting Special Case 

Our model is specified by the constitutive function S t , which depends on 
the variables q , ,  6 ,  D, (r,. Such a function is a measure of the "distance" between 
our model and the classical FNS theory. In  fact when St vanishes, the model 
becomes the FNS theory. 

I t  is reasonable to assume that  this function is not very large. I f  it is re- 
quired to be convex, it seems interesting to examine as the special case where 
St is a quadratic function of the variables 

= ~_ (T0q,2 _f_ TI(~,D : (~,D _~ T20-,2), (7.1) St 

in which v~ are positive constants. The system (5.26) then becomes 

Z {~ogd (q/O2) q - g r a d O ) l : - - q ,  

2v] { "~I~d (6D/O) - I (Vu ~- VTu) -[- l l div u } 3  = --aD' (7.2) 

3~ {~o~ d (tra/O) -- d i v u }  = - - t r  6, 

and (5.21), (5.24) becomes: 

G~ = G -- OSt; SN -- S - St. (7.3) 
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Gibbs' relation is modified into: 

d S ~ v = d S - -  30 d - -  ~ - ~  : d 

- T ~ T d  - -  . 

(7.4) 

We point out that in (7.4) the measure of "nearness" is quant i ta t ively defined 
by the squares of q/O 2, 6D/0, and tr 6/0, instead of the squares of q, 6% t r a  as 
it happens in Miiller's theory. Our measure involves also the "coldness" 1/0. 

8. Conclusion 

Our model, based on the idea of preserving the symmetry structure of the 
classical FNS theory possesses also the main properties of "extended irreversible 
thermodynamics": 1) modified thermodynamic variables at non-equilibrimn; 
2) entropy inequality; 3) "nearness" of equilibrium and non-equilibrium (in 
the particular case of sect. 7). Moreover, it has the advantage offered by a con- 
servative symmetric hyperbolic system: 

i) existence and uniqueness of the solution in a neighbourhood of the initial 
time, with the same regularity of the initial data, when they belong to a Sobolev 
space H s with s =~ 4 [51]. 

ii) reality and finiteness of the speeds of propagation of the discontinuity waves; 

iii) compatibility with shock-wave propagation, boundedness of the shock speed 
and entropy growth across the shock [41], [42], [52]. 

Furthermore, the mode] requires modification of the non-equilibium entropy 
and chemical potential only, and mantains a unique thermodynamic absolute 
temperature, which, through the coldness, plays a fundamental role for relaxation. 

Appendix 

Some De/ in i t ions  Relevant  to Quasi -Linear  Sys tems 

As a matter  of convenience, we recall here some definitions for quasi-linear 
systems. 

We consider a quasi-linear system of first order: 

A~(u)  0,u = f(u) (A 1) 

for the unknown N-vector u =-- u ( x  ~) ; A~ are real matrices N • N (cr z 0, 1, 2, 3 ; 
i = 1,2, 3). 

De] in# ion  I - -  The system (A 1) is said to be conservative if A ~ ~ ~F~/~u, i.e. 
exhibits the form (4.1) ~,F~(u) --~ f(u). 

De/ in i t ion  I I  - -  The system (A 1) is said to be hyperbolic in the direction-t if: 

i) d e t A  ~  
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ii) k/ n =-- (hi) : ]lnJj = 1, the  fol lowing e igenvalue  p rob lem 

( A i n i  - -  ;~4 ~ r = 0 (A2). 

has only  real  p rope r  values/% and  N l inear ly  i n d e p e n d e n t  e igenvectors  r .  
R e m a r ] c  I -  n and  ,t--= ~(u, n) in the  t heo ry  of wave  p r o p a g a t i o n  have  t h e  
physical meaning of unit normal and normal velocity to the wave front re- 
speetive]y. 

i)e/initio~ If! -- A system of the type (A I) is said to be symmetric (see i.e. [32]) if: 

i) A ~ = (A~) ~, 

ii) A ~ is pos i t ive  defini te .  

R e m a r k  I I  - -  As well k n o w n  f rom l inear  a lgebra,  a n y  symmet r i c  sys tem is a lso  
hyperbo l i c  (see Def. I I ) .  
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