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Unsupervised clustering algorithm forN-dimensional data
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Abstract

Cluster analysis is an important tool for classifying data. Established techniques includek-means andk-median cluster analysis. However,
these methods require the user to provide a priori estimations of the number of clusters and their approximate location in the parameter space.

makes these
. Presented
the data set.

from

er of
sters

um-
por-
ided
ates

erge
the

are
to
ds of
e
data
, risk
Often these estimations can be made based on some prior understanding about the nature of the data. Alternatively, the user
estimations based on visualization of the data. However, the latter is problematic in data sets with large numbers of dimensions
here is an algorithm that can automatically provide these estimates without human intervention based on the inherent structure of
The number of dimensions does not limit it.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical clustering algorithms are an important tech-
nique for analyzing complex multi-dimensional data, partic-
ularly for determining whether data are organized in classes
by their distribution in some parameter space (Theodorakis
and Koutroumbas, 2003). For example, clustering algorithms
are used in neuronal extracellular action potential discrimina-
tion from microelectrode recordings (Offline Sorter, Plexon
Inc. Dallas, TX). The waveforms of extracellular action po-
tentials can be characterized as a set of amplitude at specific
time points in the waveform. Different waveforms associated
with extracellular action potentials originating from different
neurons will have different sets of amplitudes. Cluster analy-
ses are then applied to isolate different groups of waveforms
with similar amplitude profiles into different clusters. There
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are innumerable examples of cluster algorithms ranging
analysis of gene expression (Datta and Datta, 2003) to dietary
eating habits (Newby and Tucker, 2004).

Currently available clustering algorithms, such ask-mean
or k-median, require a priori estimates as to the numb
clusters contained in the data and locations of these clu
in the parameter space (Stata Reference Manual, 1985). For
many current techniques, the initial estimates of the n
ber of clusters are important. These algorithms utilize a
tioning procedure in which the parameter space is div
depending on the number of clusters anticipated. Estim
with too few clusters lead to solutions that may not conv
and estimating too many leads to arbitrary splitting of
data that reduces the generalizability of the results (Lange
et al., 2004). Initial estimates of the number of clusters
affected by scale (Guedalia et al., 1999). Various attempts
estimate the number of clusters include various metho
thresholding the data (Guedalia et al., 1999). However, thes
algorithms require certain a priori assumptions about the
and require parameters external to the data and thus
0165-0270/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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arbitrariness. Considerable efforts have been made to assess
the validity of initial estimates of the number of clusters
(Lange et al., 2004).

Often a priori estimates of the number and locations of
clusters are based on some a priori intuitions or human in-
spection of the data. This limits the number of dimensions in
the data set and in the case of visualization, typically to three
dimensions that allow for visualization in a Cartesian coor-
dinate space. A new method has been developed for cluster
analysis that does not require a priori estimates and therefore,
can run without supervision. In addition, this new method is
not limited in the number of dimensions used to characterize
the data.

2. Materials and methods

The clustering method automatically estimates the num-
ber and approximates the locations of the centroids of clusters
iteratively, with minimum supervision and without a priori
estimations of the number of locations of putative clusters.
These estimates are then relayed to a variation of standardk-
means clustering algorithms. There are three general phases.
The first is an estimation of the neighborhoods among the
data points. These neighbors provide an initial sample of
data points within a neighborhood to determine the statistical
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statistical characteristics of the cluster. Thus, it is sufficient
to sample only a fraction of the entire cluster. This allows the
use of small radii that reduces the probability of including
multiple clusters into a neighborhood. The following process
is applied to all data points. Each data point serves as an
index to its own neighborhood. Thus, each data point has a
neighborhood of surrounding data points. The initial radius
around the index data point is set to zero and then increased
incrementally. This process is repeated for each data point
until one of the data points has a neighborhood with 10% of
the other data points. The remainder of the other data points
will have fewer neighbors. The data points are then sorted
based on the number of neighbors.

The second phase is a reiterative process applied to each
data point acting as an index beginning with the data point
with the most number of neighbors and processing through
to the data point with the least (Fig. 1A). The process uses
the distribution of neighbor data points surrounding the in-
dex data point to determine the statistical characteristics of
the neighborhood. Then, the closest data point outside the
neighborhood is analyzed to see, if it falls within the statisti-
cal distribution of the neighborhood (Fig. 1B). If so, the data
point is added to the neighborhood, and the centroid of the
new cluster is calculated. The next closest data point outside
the new cluster is analyzed to determine whether it is within
the statistical distribution of the new cluster. If the next data
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haracteristics of the neighborhood. Data points are re
o neighborhoods in distance measured aszscores (statistica
istance) based on the statistical characteristics of the n
orhood. The second phase statistically validates inclusi
xclusion of additional data points into a specific neigh
ood, thus expanding the neighborhood to the entire clu
he third phase analyzes the clusters and their centro
etermine, which are redundant and then combines thos
re. The third phase then reassigns data points to the fin
f clusters based on which centroid is closest in statistica

ance to the data point. This phase is a reiterative proces
ontinues until the centroids are no longer modified eith
umber or location.

The first phase establishes neighborhoods among th
n a hierarchical manner starting with the data point
as the most number of neighbors within a defined m
imensional radius. The assumption is that the data
losest to the centroid of a cluster will have the most ne
ors. The Euclidean distances between all possible pa
ata points in the multi-dimensional space are determine

istanceN1−N2 = ((D1,N1 − D1,N2)2 + (D2,N1 − D2,N2)2

+(D3,N1 − D3,N2)2 + . . .)
1/2

hereD1, D2, D3, . . ., are the dimensions or number of va
bles. Note that distances merely represent an interval
elated to some parameter by which the observations are
ured.

The purpose of the determining neighborhoods is to a
ampling enough data points within a cluster to determin
t
t

t

oint is within the statistical distribution of the new clus
hat data point is incorporated into the new cluster, a
entroid is determined, and the data point is unavailabl
ubsequent clusters. This process is repeated until the
sis demonstrates that the next data point is not within
tatistical distribution of the cluster. Then, the process
ins with the next index data point based on the numb
eighbors.

The method to determine whether the next point is a m
er of the cluster uses the distribution of the data point
eady within the cluster. A straight line is constructed c
ecting the centroid of the initial cluster to the next data p
s shown inFig. 1B to the next data point. The spatial dis
ution of the data points within the cluster are collapse
rojected onto the line connecting the next data point, an
entroid of the cluster as shown inFig. 1C. The projection
nto the connecting line form a distribution of locations on
onnecting line as shown inFig. 1D. The spatial location o
he connecting line for the next data point can be conve
o a z score based on the distribution from the project
f the data points in the initial cluster onto the connec

ine. Thus, the Euclidean distance is converted to a stati
istance. If the statistical distance of next data point on
onnecting line has az score less than 1.96, then the n
ata point is considered to be within the initial cluster,

t is added as a member of the initial cluster, and the
roid is recalculated, and the next nearest data point ana
Fig. 1E).

A line connecting the centroid and the next closest
oint is used to project the spatial distribution of the d
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Fig. 1. (A) Distribution of hypothetical data points. An initial cluster is created by creating a radius around a point and counting the number of otherdata
points within the radius. See text for a description of how the radius is determined. The centroid of the neighborhood with the greatest number of neighbors
is identified and its centroid “X” determined. The next nearest data point outside the initial neighborhood based on Euclidean distance is identified.A straight
line is constructed connecting the centroid of the initial neighborhood to the next data point as shown in B. The next step is to determine whether the next
data point lies within the statistical distribution of data points in the initial neighborhood. The statistical distribution is determined by projecting the data points
within the initial neighborhood onto the line connecting the centroid to the next data point (C). The projections onto the connecting line form a distribution of
locations on the connecting line as shown in C and D. The spatial location on the connecting line for the next data point can be converted to az score based
on the distribution from the projections of the data points in the initial neighborhood onto the connecting line. This converts Euclidean distance toa statistical
distance. If the next data point has az score less than 1.96, then the next data point is considered to be within the initial neighborhood, and it is added as a
member of the cluster. A new centroid is recalculated, and the process is repeated for the next nearest data point.

points within the cluster because it cannot be assumed that
the spatial distribution of the cluster will be symmetric. Some
models implicitly assume a spherical or symmetric distribu-
tion of data (Lange et al., 2004)). This implementation is
different from most others usingk-mean ork-median algo-
rithms, where the mean and standard deviations (S.D.) of the
distances are used irrespective of the direction in the multi-
dimensional space.

The method requires aligning one of the coordinate axes
to the line connecting the centroid to the next data point.
The origins of the Cartesian coordinates are translated such
that the origin of the coordinate system is moved to the
centroid of the cluster under analysis. Axis rotations us-
ing the Graham–Schmidt algorithm align the centroid and
the next data point line on the same single axis (Fig. 2),
and the other axes are rotated orthogonally to the axis that
now is the line between the centroid and the next data
point.

The second phase creates a set of centroids base on the first
phase of the algorithm that defines neighborhoods around
each data point. It is possible that the data point with the
greatest number of neighbors may be in the same cluster as
the data point with the next greatest number of neighbors and

therefore, the clusters are redundant. The third phase then
analyzes the spatial distribution of the centroids using the
same algorithm as described in the second phase applied to
data points to eliminate redundant clusters.

Again, it is necessary to establish a neighborhood around
each centroid in order to determine the statistical character-
istics of the centroid’s cluster. Initially, the three nearest data
points to each centroid based on Euclidean distance are se-
lected as the centroid’s neighborhood and used to determine
the statistical characteristics. The statistical distance of all
the remaining data points, relative to the statistical charac-
teristics of the cluster, is determined as described above and
illustrated inFigs. 1 and 2. Each data point is then assigned
to the cluster, whose centroid has the shortest statistical dis-
tance. The data points were assigned to the cluster and a new
centroid is determined. This process is repeated until there is
no change in the number and locations of the centroids.

3. Results

We tested the algorithm using a simulated set of five clus-
ters in a five-dimensional space. Five centroids were created
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Fig. 2. Schematic representation of the methods used to determine the distance of the next data point from the clusters. The centroid of the cluster is determined
(A). The coordinate system is then translated so that the origin of the translated coordinate system is now located at the centroid of the cluster (B). The translation
is accomplished by subtracting the original coordinates of the centroid from each point by the corresponding coordinate in the original axes. The newvalues of
the coordinates represent their position in the translated coordinate system. The translated coordinate system is then rotated such that the next data point lies
on one of the axes (C). This is done such that one of the axes in the translated coordinate system falls on the connecting line between the centroid of the cluster
and the next data point. The axis containing the largest value coordinate is the axis that will be aligned with the connecting line, for example,D2. The rotation
is performed using the Grahm–Schmidt algorithm such that the other coordinates on the other axes, for example,D1 andD3, become 0. Thus, the coordinates
for the centroid become (0, 0, 0,. . .), while the coordinates for the next data point become (x, 0, 0,. . .), wherex is the value of the coordinate on the translated
and rotated axis and equals the Pythagorean distance of the next data point and the centroid of the cluster. The analysis continues with projecting allthe data
points of the cluster onto the new axis that lies on the connecting line.

with a distances between them of two units along each dimen-
sion. Data points then were created around these centroids.
The density of data points reduced in a Gaussian manner as
distance from the centroid increased (Fig. 3). The density
distribution is determined by the S.D. Thus, the centroids
served as the mean for a Gaussian random number generator

Fig. 3. Demonstration of the distribution of simulated data points along a
single dimension. The horizontal axis represents the value of each data point
in a parameter corresponding to one dimension. The vertical axis represents
the number of data points associated with the interval value of the data point.
Two clusters were created. The first had a mean parameter value of 1 and the
other had a mean parameter value of 3. The S.D. of the data points in each
cluster is 0.8.

using a specified S.D. of 0.1–2 units in 0.1 increments. This
was repeated for each dimension; thus, each data point was
associated with a value in each of the five dimensions. An
example of the first two clusters is shown inFig. 3. This fig-
ure shows the distribution of data points for two clusters. The
horizontal axis could represent the distance along any dimen-
sion. The vertical axis represents the number of data points
are interval distances along the dimension. In this case, the
centroid distance of the first cluster is one unit and the cen-
troid distance of the second cluster is three or two units from
the centroid of the first cluster. The S.D. of the distribution
of the data points is 0.8. While there is considerable overlap
in the distributions, two distinct peaks can be appreciated.

Fig. 4shows the distribution of data points created in five
dimensions. The distribution is shown as a series of two-
dimensional graphs for all non-repeating pairs of dimensions.
Also, the distribution is shown for three of the five dimensions
to help demonstrate the multi-dimensional distributions. The
algorithm was applied for cluster centers separated by two
units for a series of S.D. in the same units.

Success was assessed when the algorithm correctly de-
tected the five simulated clusters.Fig. 5 shows the number
of clusters detected for different standard deviations. As can
be seen, the unsupervised algorithm detected the five clusters
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Fig. 4. Graphs showing the distributions of the simulated data points derived from a Gaussian random number generator utilizing a mean and a S.D. as described
in the text. Representative graphs are shown for S.D. of 0.6, 0.8, 1.0 and 1.5. The two-dimensional graphs show the distribution of points for all non-repeating
pairs of dimensions. For example, the top right figure in each set is the distribution in the first vs. second dimension, the next figure to the right is the distribution
in the first and third dimension, etc. Because all five dimensions cannot be visualized simultaneously, a three-dimensional graph is shown in the lowerleft
corner of each panel showing the distributions in three of the five dimensions in this case, first vs. second vs. third dimensions. This was done to provide a more
intuitive sense of the higher dimensions. The data points are color coded for the clusters identified by the unsupervisedn-dimensional algorithm.

until a S.D. of 0.9 was reached. The algorithm then overes-
timated the number of clusters, when the S.D. was 0.9–1.3.
This most likely resulted because the overlap in the distribu-
tions between centriods appeared as independent clusters as
shown in the multi-modal distribution shown inFigs. 3 and 5.
Consider the example of two clusters whose centroids are
separated by two units and whose distribution of data points
are characterized by a S.D. of 1, the overlap between the two
distributions will be 38% of each distribution.

With S.D. from 1.4 to 2, the algorithm underestimated the
clusters. This is most likely due to the fact that the distri-

butions of the data points overlapped to such an extent that
the distribution had a reduced number of modes as shown in
Fig. 6.

4. Discussion

The algorithm described here can determine the number
and locations of clusters in complex multi-dimensional data
without a priori estimations of the number of clusters or the
locations of their centroids. The algorithm was effective up
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Fig. 5. The number of clusters detected in the simulated data set as a function
of the S.D. used by the Gaussian random number generator used to create
the five-dimensional data set. The algorithm correctly identified the five
clusters up to a S.D. of 0.9. When the S.D. increased to 1.4, the algorithm
underestimated the number of clusters. Note that the centers of adjacent
simulated clusters were 2 units.

Fig. 6. An interval histogram showing the number of data points distributed
along a representative dimension (axis) of the simulated data for different
S.D. Note that with a S.D. of 0.6, five clusters are discernable. At a S.D. of
0.8, the clustering algorithm was still able to identify the five clusters (see
alsoFig. 3), while these would be difficult to visually identify. At a S.D.
of 1.0, it is difficult to distinguish five peaks or clusters and the algorithm
interpreted the distribution as showing seven clusters. At a S.D. of 1.5, the
overlap now combines difficult clusters and four broad peaks are describable
and where identified as four clusters.

to a S.D. of 0.8, which means that clusters could be separated
even when there was a calculated 21.2% overlap between
the clusters as can be seen inFig. 4. With further overlap,
the periphery of the clusters are additive and thus, constitute
their own cluster. From a strictly empiric view, without a
priori knowledge of how the clusters were constructed, these
new clusters created by the overlap are, arguably, legitimate
clusters in their own right. When the overlap reaches 47.8%
associated with a S.D. of 1.4, the algorithm fails to detect
some clusters. Thus, the algorithm lends itself to analyzing
data of large dimensions. Further, it can operate unsupervised,
which facilitates automated data analysis of very large data
sets and very large dimensions that would not be feasible for
human operators.

The algorithm differs from previous methods of clus-
ter analysis without the necessity of a priori estimates of
the number and locations of clusters. Further, the algo-
rithm differs by not using the assumption that the multi-
dimensional spatial distribution is symmetric. Instead, the
distributions of data points within clusters vary by the re-
lationship between the centroid and the data point being
analyzed.
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