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Abstract—We present low complexity formulas for the computation of cubing and cube root over IF3m constructed using special

classes of irreducible trinomials, tetranomials, and pentanomials. We show that for all those special classes of polynomials, field

cubing, and field cube root operation have the same computational complexity when implemented in hardware or software platforms.

As one of the main applications of these two field arithmetic operations lies in pairing-based cryptography, we also give in this paper a

selection of irreducible polynomials that lead to low cost field cubing and field cube root computations for supersingular elliptic curves

defined over IF3m , where m is a prime number in the pairing-based cryptographic range of interest, namely, m 2 ½47; 541�.

Index Terms—Finite field arithmetic, cubing, cube root, characteristic three, cryptography.
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1 INTRODUCTION

ARITHMETIC over ternary extension fields IF3m has gained
an increasing importance in several relevant crypto-

graphic applications, particularly in (hyper) elliptic curve
cryptography. It has been shown that supersingular elliptic
curves over IF3m are excellent choices for the implementation
of pairing-based cryptographic protocols [8]. Furthermore,
some of the fastest algorithms known for pairing computa-
tions on these supersingular elliptic curves [2], [9], [10], [16],
require the efficient computation of the basic arithmetic
finite field operations such as field addition, subtraction,
multiplication, division, exponentiation, cubing and cube
root computation. In particular, cube root computation has
become an important building block in the design of bilinear
pairings [2], [9], [16].

The efficiency of finite field arithmetic implemented in
hardware can be measured in terms of associated design
space and time complexities. The space complexity is
defined as the total amount of hardware resources needed
to implement the circuit, i.e., the total number of logic gates
required by the design. Time complexity, on the other hand,
is simply defined as the total gate delay or critical path of
the circuit, frequently formulated using gate delay units.

Let P ðxÞ be an irreducible monic polynomial of degree m
over IF3. Then, the ternary extension field IF3m can be
defined as,

IF3m ffi IF3½x�= P ðxÞð Þ:

LetA be an arbitrary element in the field IF3m as described
above. Then, the field cubing of A, denoted as C ¼ A3, can

be computed by first cubing A as a polynomial, and then

reducing the result modulo P ðxÞ. Similarly, the field cube

root of A, denoted as A
1
3, or simply,

ffiffiffiffi
A3
p

, is the unique

element D 2 IF3m such that D3 ¼ A, holds. Notice that in

finite fields of characteristic three, cubing and cube root

taking are automorphisms that preserve the base field.
In 2004, Barreto in [7] published an extension of a

method previously used for square root computations in

binary fields, to compute cube roots in ternary fields. Both

approaches in the cases of binary and ternary fields are

especially efficient when the finite field has been generated

by a special class of irreducible trinomials.
Let us consider the ternary field IF3m generated by the

irreducible monic polynomial P ðxÞ, with an extension

degree m ¼ 3uþ r, where u � 1 and r 2 f0; 1; 2g. Let A be

an arbitrary element of the field IF3m , which in polynomial

basis can be written as,

A ¼
Xm�1

i¼0

aix
i

¼
Xu�1þdr2e

i¼0

a3ix
3i þ x �

Xu�1þbr2c

i¼0

a3iþ1x
3i þ x2 �

Xu�1

i¼0

a3iþ2x
3i;

with ai 2 IF3. Then, the field cube root
ffiffiffiffi
A3
p

, can be

computed as [7],1

ffiffiffiffi
A

3
p
¼
� Xu�1þdr2e

i¼0

a3ix
i þ x1=3 �

Xu�1þbr2c

i¼0

a3iþ1x
i þ x2=3

�
Xu�1

i¼0

a3iþ2x
i

�
ðmod P ðxÞÞ:

ð1Þ

Using (1), one can compute a cube root by performing two

third-length polynomial multiplications with the perfield

constants x
1
3 and x

2
3, which can be calculated offline. In the

case that the Hamming weight of x
1
3 and x

2
3 is low, those two
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1. There is a typo in the first equation of Section 2.2 of [7], since the upper
limit of the third summation should not be u but u� 1.
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multiplications are simple to compute. Barreto showed in
[7] that low Hamming weights for x

1
3 and x

2
3 can be obtained

if one uses P ðxÞ ¼ xm þ axk þ b, with a; b 2 IF3, and
m � k � r ðmod 3Þ, with r 6¼ 0. We stress that this is a
strong restriction as those trinomials do not exist for every
extension degree m.2 We also note that if the degree of the
constants x

1
3 and x

2
3 is strictly less than 2uþ r� 1, then the

computation of (1) does not require a reduction process
modulo P ðxÞ.

In [1], Ahmadi et al. studied the Hamming weight ofx
1
3 and

x
2
3 in the general case of irreducible trinomials, wherem is not

congruent with k modulo 3. Authors in [1] showed that
general irreducible trinomials can lead to high Hamming
weights for the constants x

1
3 and x

2
3, thus making the

computation of (1) expensive and therefore, less attractive.3

In [2], and more recently in [16], several cube root friendly
irreducible pentanomials for the extension degree m ¼ 509
were reported. In [16], the pentanomials, P1ðxÞ ¼ x509 �
x477 þ x445 þ x32 � 1 and P2ðxÞ¼x509 � x318 � x191 þ x127 þ 1,
were used. Those polynomials were then successfully
utilized within a software library for computing bilinear
pairings efficiently. However, authors in [2], [16] did not
elaborate further in the search criteria used for finding cube
root friendly pentanomials.

In this paper, we present a study of the computational
efforts associated to field cubing and cube root calculation
in ternary extension fields. We give a result useful for
classifying trinomials that happen to be irreducible over
IF3. Furthermore, we present an extended version of the
Barreto method that is useful for finding families of cube
root friendly irreducible trinomials, tetranomials, and
pentanomials. We also give the necessary and sufficient
conditions required for having irreducible equally spaced
tetranomials and pentanomials over IF3. We present a
careful complexity analysis of the field cubing computation
and report a list of irreducible polynomials with prime
extension degrees m in the range m 2 ½47; 541�, which lead
to efficient computations of the cube root operation. Then,
we discuss how the technique of mapping to a ring can be
useful for speeding-up the cube root computation in certain
ternary fields. Finally, we present a selection of irreducible
polynomials that lead to low cost field cubing and field
cube root computations for supersingular elliptic curves
defined over IF3m . Supersingular elliptic curves have been
found useful for the efficient computation of bilinear
pairings.

The rest of this paper is organized as follows: In Section 2,
we give a short summary of the main results published in the
open literature for computing field squaring and square
roots. In Section 3, we present a lemma that allows the
classification of irreducible trinomial for odd extension
degrees. We also give the computational cost of the field
cubing operation when P ðxÞ happens to be a trinomial or a
tetranomial. Then, in Section 4, we analyze the computational

cost of the cube root operation when P ðxÞ is a special class of
trinomial, tetranomial, pentanomial and/or equally spaced
polynomial. In Section 6, we show how the ring mapping
idea can be used to accelerate the cube root computation in
some ternary fields. Section 7 presents a list of reduction
polynomials that yield low-cost cubings and cube roots for
supersingular elliptic curves with large r-torsion subgroups
over FF3m . Finally, in Section 8, some concluding remarks are
drawn.

2 PREVIOUS WORK ON FIELD SQUARING AND

SQUARE ROOTS IN BINARY FIELDS

Since many techniques used in binary arithmetic can be
extended to ternary arithmetic, we will recount in the rest of
this section the different approaches proposed across the
years for computing field squaring and square root over
binary fields.

2.1 Squaring

Let IF2m be a binary extension field generated by an

irreducible monic polynomial P ðxÞ, and let A be an

arbitrary element of that field. Then, the element A can be

written in canonical (polynomial) basis as, A ¼
Pm�1

i¼0 aix
i.

Let us also assume that the extension degree m can be

expressed as, m ¼ 2uþ 1, with u � 1. Then, the polynomial

squaring operation can be obtained as,

A2 ¼
Xm�1

i¼0

aix
i

 !2

¼
Xm�1

i¼0

aix
2i ¼

Xu
i¼0

aix
2i þ

X2u
i¼uþ1

aix
2i

¼
Xu
i¼0

aix
2i þ x2uþ1

Xu
i¼1

auþix
2i�1

¼
Xu
i¼0

aix
2i þ xm

Xu
i¼1

auþix
2i�1:

Hence, we can compute the field squaring operation
defined as C ¼ A2 ðmod P ðxÞÞ as,

C ¼ A2 ðmod P ðxÞÞ

¼
Xu
i¼0

aix
2i þ xm

Xu
i¼1

auþix
2i�1

 !
ðmod P ðxÞÞ: ð2Þ

It is possible to implement efficiently (2) in software by

extracting the two half-length vectors

AL ¼ ðau; au�1; . . . ; a1; a0Þ and

AH ¼ ða2u; a2u�1; . . . ; auþ2; auþ1Þ;

followed by one field multiplication of length m=2 bits by
the per-field constant xm. In the case that the irreducible
polynomial P ðxÞ is a trinomial of the form, P ðxÞ ¼ xm þ
xk þ 1, then xm ¼ xk þ 1 has a Hamming weight of two. We
stress that the reduction process modulo P ðxÞ, stipulated in
(2), should normally be performed. The only exception
would be if P ðxÞ is an irreducible trinomial of the form,
P ðxÞ ¼ xm þ xþ 1. In this case, one can compute the field
squaring operation without performing any reduction at all.
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2. In ternary fields IF3m , there exist 381 m values less than 1,000 where at
least one irreducible trinomial of degree m can be found. However,
irreducible trinomials of the form P ðxÞ ¼ xm þ axk þ b, with the property,
m � k � r ðmod 3Þ, are available in just 74 values out of the total of
168 prime numbers less than 1,000 (about 44 percent of the cases).

3. Authors in [2] state that there are extension degrees m where no
irreducible trinomial yields sparse x1=3. They give as an example an almost
worst case for m ¼ 163, where there exists an irreducible trinomial that
yields x

1
3 with a Hamming weight of 162 nonzero terms.

fayez
Sticky Note
Change variable to 
j = i - u



2.2 Square Root

One straightforward method for computing pth roots in
prime extension fields is based on Fermat’s Little Theorem,
which establishes that for any element A 2 FFpm , the identity
Apm ¼ A holds. Therefore,

ffiffiffiffi
Ap
p

may be computed as D ¼
Apm�1

with a computational cost of m� 1 field exponentia-
tions to the power p.4

A potentially much more efficient approach for comput-
ing square roots over binary extension fields was presented
by Fong et al. in [15] based on the following observation. Let
A be an arbitrary element in FF2m represented in the
polynomial basis as A ¼

Pm�1
i¼0 aix

i. Then,
ffiffiffiffi
A
p

can be
expressed in terms of the square root of x as:

A
1
2 ¼

Xbm�1
2 c

i¼0

a2ix
i þ x1

2

Xbm�3
2 c

i¼0

a2iþ1x
i

0
@

1
A ðmod P ðxÞÞ: ð3Þ

It is possible to implement efficiently (3) in software by
extracting the two half-length vectors

Aeven ¼ ðam�1; am�3; . . . ; a2; a0Þ and

Aodd ¼ ðam�2; am�4; . . . ; a3; a1Þ;

followed by one field multiplication of lengthm=2 bits by the
precomputed constant x

1
2. However, in the case that the

irreducible polynomialP ðxÞ is a trinomial,P ðxÞ ¼ xm þ xn þ
1 with m an odd prime number, then the square root of an
arbitrary elementA 2 FF2m can be obtained at a very low price:
the computation of some few additions and shift operations
[15].5 Furthermore, Rodrı́guez-Henrı́quez et al. showed in
[22] that for all practical cases, the cost of computing in
hardware the square root over binary fields generated with
irreducible trinomials is not more expensive than the
computational effort required for computing field squarings.

Based on the technique used for trinomials, Avanzi in [5],
[6], published a method that can find irreducible polyno-
mials, other than trinomials, that lead to low-weight con-
stants x

1
2. His method can be summarized as follows: Let us

assume that there exists anm-degree polynomial, irreducible
over FF2, that can be written as P ðxÞ ¼ x � UðxÞ2 þ 1, where
UðxÞ is an m�1

2 -degree polynomial of even weight. Then, it
follows that the perfield constant x

1
2 will be given by,

x
1
2 ¼ xUðxÞ.6

Using the above approach to guide his search of
irreducible polynomials, Avanzi was able to find a rich
family of square root friendly irreducible pentanomials and
heptanomials that produce constants x

1
2 with low Hamming

weight. By virtue of (3), this implies that one can calculate
the field square root operation with a computational effort
comparable to that required by irreducible trinomials.
Avanzi’s square root friendly polynomials became a good
option for binary extension fields with degree extensions m
where no irreducible trinomial can be found.

Other pentanomials that lead to fast computation of the

square root over FF2m were published independently by

Ahmadi et al. in [3], where two square root friendly

irreducible pentanomials for the extension degrees

m ¼ 163; 283, and one irreducible trinomial for m ¼ 233,

were used with advantage for speeding-up the computation

of the scalar multiplication on Koblitz curves. Furthermore,

in [23], Scott proposed to use irreducible pentanomials that

can assure both, fast modular reductions and square root

computations in software implementations. To this end, he

suggested to work with m-degree irreducible pentanomials

of the form P ðxÞ ¼ xm þ xk1 þ xk2 þ xk3 þ 1, such that

m� k1 � m� k2 � m� k3 � 0 ðmod wÞ, where w is the

word length of the target processor and m is a prime

number. These irreducible pentanomials cannot always be

found for a given extension degree m. However, less

efficient alternatives were also suggested in [23].
Finally Panairo and Thompson studied in [21] the

computation of pth roots in finite fields of odd
characteristic p, with p � 5, where irreducible binomials
can be found.

3 FIELD CUBING COMPUTATION

Let us consider the ternary field FF3m generated by the
irreducible monic polynomial P ðxÞ, and let A be an
arbitrary element of that field. Then, the element A can be
written in canonical basis as, A ¼

Pm�1
i¼0 aix

i, ai 2 FF3, where
the extension degree m can be written as, m ¼ 3uþ r, with
u � 1 and r 2 f0; 1; 2g. Then, one can compute the poly-
nomial cubing A3 as,

A3 ¼
Xm�1

i¼0

aix
i

 !3

¼
Xm�1

i¼0

aix
3i

¼
Xu
i¼0

aix
3i þ

X2uþr�1

i¼uþ1

aix
3i þ

X3uþr�1

i¼2uþr
aix

3i

¼ C0 þ x3uþrC1 þ x6uþ2rC2;

where,

C0 ¼
Xu
i¼0

aix
3i; C1 ¼

Xuþr�1

i¼1

aiþux
3i�r; and

C2 ¼
Xuþr�1

i¼r
aiþ2ux

3i�2r:

ð4Þ

Then, the field cubing operation defined as C ¼
A3 ðmod P ðxÞÞ can be performed as,

C ¼ A3 ðmod P ðxÞÞ
¼
�
C0 þ x3uþrC1 þ x6uþ2rC2

�
ðmod P ðxÞÞ

¼ C0 þ xmC1 þ x2mC2

� �
ðmod P ðxÞÞ:

ð5Þ

Equation (5) states that the cubing operation can be
computed by determining the constants xm and x2m, which
are perfield constants, and therefore, they can be precom-
puted offline. In the rest of this section, we will study
several classes of trinomials and tetranomials, and we will
give closed formulas for the field cubing operation.
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4. This is the method suggested in [18], for computing square roots over
binary extension fields.

5. It is noticed that there exist 545 values of m less than 1,000 for which at
least one irreducible trinomial of degree m over IF2 can be found.
Restricting ourselves to extension degrees where m is a prime number,
from the total of 168 prime numbers less than 1,000, irreducible trinomials
can be found for just 82 values (only 48 percent of the cases).

6. We stress that this method will always produce irreducible
polynomials of the form, P ðxÞ ¼ x � UðxÞ2 þ 1 ¼ xm þ xk1 þ � � � þ xkl þ 1,
with m � k1 . . . � kl � 1 ðmod 2Þ.



3.1 Irreducible Trinomials

3.1.1 Classification of Ternary Trinomials

Let us consider ternary extension fields constructed using
irreducible trinomials of the form P ðxÞ ¼ xm þ axk þ b, with
m � 2 and a; b 2 FF3. Then, the following results are useful:

Theorem 3.1. Let m > 2 be an odd number. Then, if k is odd we
have that, P0ðxÞ ¼ xm þ xk þ 1 and P1ðxÞ ¼ xm þ xk � 1 are
always reducible over FF3 and P3ðxÞ ¼ xm � xk þ 1 is
irreducible if and only if P2ðxÞ ¼ xm � xk � 1 is irreducible
over FF3.

If k is even, then P0ðxÞ and P2ðxÞ ¼ xm � xk � 1 are
always reducible over FF3 and P3ðxÞ is irreducible if and only
if P1ðxÞ ¼ xm þ xk � 1 is irreducible.

Proof. From Table 1, we see that P0ð1Þ ¼ 0, and hence, P0ðxÞ
is always reducible. Similarly, we see that if k is odd, then
P1ð�1Þ ¼ 0, and hence, in this case P1ðxÞ is reducible.
Moreover, as shown in Table 1, we see that if k is even
then P1ðxÞ ¼ �P3ð�xÞ. Thus, if k is even, we have that
P1ðxÞ is irreducible if and only if P3ðxÞ is irreducible over
FF3. The remaining claims can be deduced in a similar
way from Table 1. tu
Hence, without loss of generality, we will study in the

rest of this section irreducible trinomials of the form,
P ðxÞ ¼ xm � xk þ 1. We say that a trinomial, where
m � k ðmod 3Þ, is a cube root friendly trinomial. If addition-
ally the condition k < m

2 holds, we say that P ðxÞ is a
preferred trinomial.

3.1.2 Irreducible Trinomials P ðxÞ ¼ xm � xk þ 1, with

m � k � r ðmod 3Þ
Let us consider the ternary field FF3m generated by the
trinomial P ðxÞ ¼ xm � xk þ 1, irreducible over FF3, where
the extension degree m can be expressed as, m ¼ 3uþ r,
1 � u and k ¼ 3vþ r, 0 � v, with m � k � r ðmod 3Þ, r 6¼ 0
and u� 2v � 1. Then, we can write xm ¼ xk � 1 and x2m ¼
ðxk � 1Þ2 ¼ x2k þ xk þ 1. Using (5), we can compute the field
cubing as,

C3 ¼ C0 þ xmC1 þ x2mC2

¼
�
C0 � C1 þ C2 þ xkðC1 þ C2Þ þ x2kC2

�
ðmod P ðxÞÞ:

In order to further expand the above result, it becomes
useful to define CL

1 ; C
H
1 ; C

L
2 ; C

H
2 as,

C1 ¼
Xuþr�1

i¼1

aiþux
3i�r ¼

Xu�v
i¼1

aiþux
3i�rþx3ðu�vÞ

Xvþr�1

i¼1

aiþ2u�vx
3i�r

¼ CL
1 þ x3ðu�vÞCH

1 ;

where the polynomials CL
1 and CH

1 have degrees 3ðu� vÞ � r
and 3vþ 2r� 3, respectively.

C2 ¼
Xuþr�1

i¼r
aiþ2ux

3i�2r

¼
Xu�vþr�1

i¼r
aiþ2ux

3i�2r þ x3ðu�vÞ
Xvþr�1

i¼r
aiþ3u�vx

3i�2r

¼ CL
2 þ x3ðu�vÞCH

2 ;

where the polynomials CL
2 and CH

2 have degrees 3ðu� v�
1Þ þ r and 3vþ r� 3, respectively. We also define CLL

2 ; CHH
2

as follows:

C2 ¼
Xuþr�1

i¼r
aiþ2ux

3i�2r

¼
Xu�2v

i¼r
aiþ2ux

3i�2r þ x3ðu�2vÞ�r
X2vþr�1

i¼1

aiþ3u�2vx
3i�r

¼ CLL
2 þ x3ðu�2vÞ�rCHH

2 ;

where the polynomials CLL
2 and CHH

2 have degrees 3ðu�
2vÞ � 2r and 6vþ 2r� 3, respectively. We recall that
3ðu� vÞ ¼ m� k, 3ðu� 2vÞ � r ¼ m� 2k. Thus, we have

C3 ¼ C0 � C1 þ C2 þ xkðC1 þ C2Þ þ x2kC2 ðmod P ðxÞÞ
¼ C0 � C1 þ C2 þ xk

�
CL

1 þ xm�kCH
1 þ CL

2

þ xm�kCH
2

�
þ x2k

�
CLL

2 þ xm�2kCHH
2

�
¼ C0 � C1 þ C2 �

�
CH

1 þ CH
2 þ CHH

2

�
þ xk

�
CL

1 þ CH
1 þ CL

2 þ CH
2 þ CHH

2

�
þ x2kCLL

2 :

ð6Þ

3.1.3 An Example

Let FF313 be a field generated with the irreducible trinomial,
P ðxÞ ¼ x13 � x4 þ 1, with m ¼ 3uþ 1 ¼ 3 � 4þ 1 ¼ 13, r ¼ 1
and k ¼ 3vþ 1 ¼ 3 � 1þ 1 ¼ 4. Let A ¼

P12
i¼0 aix

i be an
arbitrary element of that field. Then according with the
definitions given above, we have:

C0 ¼
X4

i¼0

aix
3i ¼ a0 þ a1x

3 þ a2x
6 þ a3x

9 þ a4x
12

C1 ¼
X4

i¼1

a4þix
3i�1 ¼ a5x

2 þ a6x
5 þ a7x

8 þ a8x
11

C2 ¼
X4

i¼1

a8þix
3i�2 ¼ a9xþ a10x

4 þ a11x
7 þ a12x

10

1300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

TABLE 1
Irreducibility Conditions over FF3 for Trinomials of the Form P ðxÞ ¼ xm þ axk þ b, with a; b 2 FF3



and

CL
1 ¼

Xu�v
i¼1

aiþux
3i�r ¼

X3

i¼1

a4þix
3i�1 ¼ a5x

2 þ a6x
5 þ a7x

8:

CH
1 ¼

Xvþr�1

i¼1

aiþ2u�vx
3i�r ¼

X1

i¼1

a7þix
3i�1 ¼ a8x

2:

CL
2 ¼

Xu�vþr�1

i¼r
aiþ2ux

3i�2r ¼
X3

i¼1

a8þix
3i�2

¼ a9xþ a10x
4 þ a11x

7:

CH
2 ¼

Xvþr�1

i¼r
aiþ3u�vx

3i�2r ¼
X1

i¼1

a11þix
3i�2 ¼ a12x;

CLL
2 ¼

Xu�2v

i¼r
aiþ2ux

3i�2r ¼
X2

i¼1

a8þix
3i�2 ¼ a9xþ a10x

4;

CHH
2 ¼

X2vþr�1

i¼1

aiþ3u�2vx
3i�r ¼

X2

i¼1

a10þix
3i�2 ¼ a11x

2 þ a12x
5:

Thus,

C ¼ A3 ¼ C0 � C1 þ C2 �
�
CH

1 þ CH
2 þ CHH

2

�
þ xk

�
CL

1 þ CH
1 þ CL

2 þ CH
2 þ CHH

2

�
þ x2kCLL

2

¼ a0 þ ða9 � a12Þxþ ð�a5 � a8 � a11Þx2 þ a1x
3

þ a10x
4 þ ð�a6 þ a9Þx5 þ ða2 þ a5 þ a8 þ a11Þx6

þ a11x
7 þ ð�a7 þ a10Þx8 þ ða3 þ a6 þ a9 þ a12Þx9

þ a12x
10 þ ð�a8 þ a11Þx11 þ ða4 þ a7 þ a10Þx12:

3.1.4 Complexity Analysis

In the following, we will assume that the field addition and
field subtraction operations can be computed at the same
cost in the base field FF3.

The area complexity cost of the field cubing operation
can be directly deduced from (6), along with the definitions
of CL

1 , CH
1 , CL

2 , CH
2 , CLL

2 and CHH
2 , as described next.

We first notice from (4) that each of the m coefficients of
the words C0; C1 and C2 is associated with different powers
xi, for i ¼ 0; . . . ;m� 1. Hence, the term C0 � C1 þ C2 of (6)
is free of overlaps, and consequently, it can be implemented
without cost in hardware, i.e., with no addition/subtraction
operations. Furthermore, it can be noticed that the words

CL
1 , CL

2 , CLL
2 and CH

1 , CH
2 , CHH

2 appear in (6) once and twice,

respectively.
Therefore, the total number of FF3 field adder/subtracter

modules required for computing (6) is upper bounded by,7

# of adder blocks

� jCL
1 j þ jCL

2 j þ jCLL
2 j þ 2 jCH

1 j þ jCH
2 j þ jCHH

2 j
� �

¼ ðu� vÞ þ ðu� vÞ þ ðu� 2v� rþ 1Þþ
þ 2 ðvþ r� 1Þ þ vþ ð2vþ r� 1Þ½ �

¼ 3uþ 4vþ 3r� 3 ¼ mþ 2

3
ð2kþ rÞ � 3:

Table 2 shows prime extension degrees m 2 ½47; 541�, for

which there exist preferred or cube root friendly irredu-

cible trinomials. In that table, we have selected the

irreducible trinomials of the form P ðxÞ ¼ xm � xk þ 1, with

the smallest possible middle term degree k. In the

interval ½47; 541�, there are a total of 86 prime numbers,

but only for 42 of them, a preferred or cube root friendly

irreducible trinomial can be found.

3.2 Irreducible Tetranomials P ðxÞ ¼ xm þ axk1 þ
bxk2 þ c, with m � k1 � k2 � r ðmod 3Þ

Besides trinomials, the next simple option would be to try to

find irreducible tetranomials of the form, P ðxÞ ¼ xm þ
axk1 þ bxk2 þ c, with a; b; c 2 FF3. If the restriction, m � k1 �
k2 � r ðmod 3Þ holds, we say that P ðxÞ is a cube root friendly

tetranomial. If additionally the condition k1 <
m
2 holds, we

say that P ðxÞ is a preferred tetranomial. Table 3 shows some

extensions where there exist no irreducible trinomials, and

thus, the only option is to work with irreducible tetra-

nomials or pentanomials.
Let us write the extension degree m as, m ¼ 3uþ r, u � 1

and k1 ¼ 3vþ r, k2 ¼ 3wþ r, with 0 � w < v < u, with

m � k1 � k2 � r ðmod 3Þ, r 6¼ 0 and u� 2v � 1.
For this class of irreducible tetranomials, we have,

xm ¼� axk1 � bxk2 � c; x2m ¼ �axk1 � bxk2 � c
� �2¼

x2k1 � acxk1 þ 1þ x2k2 � abxðk1þk2Þ � cbxk2
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TABLE 2
Candidate Reduction Trinomials for FF3m , P ðxÞ ¼ xm � xk þ 1 of Degree m 2 ½47; 541� Encoded as mðkÞ,

with m a Prime Number PTr ¼ Preferred Trinomials; CRF ¼ Cube Root Friendly Trinomials.

7. In the following, the operator j � j represents the length in trits of the
term being computed.



Once again, we can use (5) for computing the field cubing
operation,

C3 ¼ C0 þ xmC1 þ x2mC2

¼ ½C0 � cC1 þ C2 � axk1ðC1 þ cC2Þ � bxk2ðC1 þ cC2Þ þ
þ x2k1C2 þ x2k2C2 � abxk1þk2C2� ðmod P ðxÞÞ:

Using the same approach employed in Section 3.1.4, the
computational complexity of the above formula can be
estimated as,

# of adders � ðu� vÞ þ ðu� vÞ þ ðu� 2v� rþ 1Þ
þ 3½ðvþ r� 1Þ þ vþ ð2vþ r� 1Þ� þ ðu� wÞ þ ðu� wÞ
þ ðu� 2w� rþ 1Þ þ 3½ðwþ r� 1Þ þ wþ ð2wþ r� 1Þ�
þ ðu� v� w� rþ 1Þ þ 3½vþ wþ r� 1�
¼ 7uþ 10vþ 10wþ 12r� 12

¼ 2mþ 3ðk1 þ k2Þ þ uþ vþ wþ 4r� 12:

4 FORMULAS FOR CUBE ROOT COMPUTATION

4.1 Irreducible Trinomials P ðxÞ ¼ xm � xk þ 1, with
m � k � r ðmod 3Þ

Let us consider the ternary field IF3m generated by the
trinomial P ðxÞ ¼ xm � xk þ 1, irreducible over IF3, where
the extension degree m can be expressed as, m ¼ 3uþ r,
u � 1 and k ¼ 3vþ r, 0 � v < u, with m � k � r ðmod 3Þ
and r 2 ½1; 2�. In [7], it was found that for r ¼ 1 we have,

x2=3 ¼ �xuþ1 þ xvþ1; x1=3 ¼ x2uþ1 þ xuþvþ1 þ x2vþ1;

whereas for r ¼ 2 we have,

x1=3 ¼ �xuþ1 þ xvþ1; x2=3 ¼ x2uþ2 þ xuþvþ2 þ x2vþ2:

From above results, it follows that when dealing with
irreducible trinomials of this kind, we do not need to
perform the reduction modulo P ðxÞ indicated in (1).

In the following, we will apply Barreto’s trick to the case
of irreducible tetranomials.

4.2 Tetranomials

Let IF3m be a ternary field generated by the tetranomial
P ðxÞ ¼ xm þ axk1 þ bxk2 þ c irreducible over IF3, where the
extension degree m can be expressed as, m ¼ 3uþ r, u � 1
and k1 ¼ 3vþ r, k2 ¼ 3wþ r, with 0 � w < v < u, and m �
k1 � k2 � r ðmod 3Þ, r 6¼ 0. Once again, using (1) one can
compute a cube root by finding the perfield constants x1=3

and x2=3.

4.2.1 Case r ¼ 1

For r ¼ 1, we observe that �c ¼ xm þ axk1 þ bxk2 , which
implies

�cx2 ¼ x2ðxm þ axk1 þ bxk2Þ ¼ x3ðuþ1Þ þ ax3ðvþ1Þ þ bx3ðwþ1Þ:

Hence, x2=3 ¼ �cxuþ1 � acxvþ1 � bcxwþ1. From this we de-
duce that

x4=3 ¼ x2ðuþ1Þ � axuþvþ2 þ x2ðvþ1Þ þ x2ðwþ1Þ � bxuþwþ2

� abxvþwþ2;

and thus, dividing both sides of the above equation by x
we get

x1=3 ¼ x2uþ1 � axuþvþ1 � bxuþwþ1 þ x2vþ1 þ x2wþ1

� abxvþwþ1:

4.2.2 Case r ¼ 2

For r ¼ 2, we observe that �c ¼ xm þ axk1 þ bxk2 , which
implies,

� cx ¼ xðxm þ axk1 þ bxk2Þ ¼ x3ðuþ1Þ þ ax3ðvþ1Þ þ bx3ðwþ1Þ

Hence, x1=3 ¼ �cxuþ1 � acxvþ1 � bcxwþ1. We can directly
obtain x2=3 by computing,

x2=3 ¼ ðx1=3Þ2 ¼ ð�cxuþ1 � acxvþ1 � bcxwþ1Þ2

¼ x2ðuþ1Þ � axuþvþ2 þ x2ðvþ1Þ þ x2ðwþ1Þ

� bxuþwþ2 � abxvþwþ2
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TABLE 3
Reduction Polynomials for FF3m , Giving Low-Cost Cubings and/or Cube Roots

The value NðMÞ is listed, where N is the total number of adders/subtracters over FF3 required, and M is the number of adder delays needed for
computing the operation. PT ¼ Preferred Tetranomials. EST ¼ Equally Spaced Tetranomials. ESP ¼ Equally Spaced Pentanomials. CRFP ¼
Cube Root Friendly Pentanomials.



From the above results, it turns out that for this class of

tetranomials, we do not need to carry out the reduction

process indicated in (1).

4.3 Pentanomials

Let IF3m be a ternary field generated by an irreducible

pentanomial of the form, P ðxÞ ¼ xm � axm�d þ xm�2d þ
axd � 1, with a 6¼ 0, and where m is an odd prime number

that can be written as, m ¼ 3uþ r, where m � r ðmod 3Þ,
r 6¼ 0, and d ¼ 3vþ r is a positive integer so that d < dm2e.
Then, xm ¼ axm�d � xm�2d � axd þ 1, which implies,

xmþd ¼ axm � xm�d � ax2d þ xd

¼ xm�d � axm�2d � xd þ a� xm�d � ax2d þ xd

¼ �axm�2d � ax2d þ a;

xmþdþ1 ¼ �ax2dþ1 � axm�2dþ1 þ ax;

xmþdþ2 ¼ �ax2dþ2 � axm�2dþ2 þ ax2:

ð7Þ

It is noticed that, mþ d � 2d � m� 2d � �r ðmod 3Þ. In the

following, we distinguish two cases.

4.3.1 Case r ¼ 1

If r ¼ 1, from (7) we can write,
ffiffiffi
x3
p ¼ axmþdþ1

3 þ x2dþ1
3 þ xm�2dþ1

3 ,

which implies,

ffiffiffiffiffi
x23
p

¼ ax
mþdþ1

3 þ x2dþ1
3 þ xm�2dþ1

3

	 
2

¼ x2mþdþ1
3 þ x22dþ1

3 þ x2m�2dþ1
3 � axmþ3dþ2

3 � ax2m�dþ2
3 � xmþ2

3 :

4.3.2 Case r ¼ 2

If r ¼ 2, from (7) we can write,ffiffiffiffiffi
x23
p

¼ axmþdþ2
3 þ x2dþ2

3 þ xm�2dþ2
3 :

Furthermore, we have,

ffiffiffi
x3
p
¼

ffiffiffiffiffi
x23
p

x
mþd�1

3 þ x2d�1
3 þ xm�2d�1

3

	 

¼ ax

mþdþ2
3 þ xa2dþ2

3 þ xm�2dþ2
3

	 

x
mþd�1

3 þ x2d�1
3 þ xm�2d�1

3

	 

¼ x2mþ2dþ1

3 � axmþ3dþ1
3 � ax2m�dþ1

3 þ x4dþ1
3 � xmþ1

3 þ x2m�4dþ1
3 :

We stress that the polynomial degrees of the constants x
1
3

and x
2
3 associated to this class of pentanomials force us to

carry out the reduction postcomputation indicated in (1).

4.4 Existence of Cube Root Friendly Fewnomials

Algorithms presented in the previous section depend on the

existence of irreducible polynomials of a special form. From

the results of [25], it follows that if m � 5; 7 ðmod 12Þ, then

there is no irreducible trinomial P ðxÞ ¼ xm � xk þ 1, with

m � k � r ðmod 3Þ. In fact, one can use methods of [4], [13],

[25] to show that if m � 5; 7 ðmod 12Þ, then there is no

irreducible polynomial P ðxÞ ¼ xm þ a1x
k1 þ � � � þ alxkl þ 1

such that m � k1 � � � � � kl ðmod 3Þ. Thus, in this case one

has to look for other types of polynomials, which are cube

root friendly and yield efficient algorithm for cube root

computation. The family of pentanomials suggested in the

previous section can serve as a candidate for cube root

friendly polynomials.

5 EQUALLY SPACED POLYNOMIALS

Irreducible Equally Spaced Polynomials have the same
space separation between two consecutive nonzero coeffi-
cients. They can be defined as

pðxÞ ¼ xm þ pðk�1Þdx
ðk�1Þd þ � � � þ p2dx

2d þ pdxd þ p0; ð8Þ

where m ¼ kd and pid 2 IF	3 for i ¼ 0; 1; 2; . . . ; k� 1. The ESP
specializes to the all-one-polynomials when d ¼ 1, i.e.,
pðxÞ ¼ xm þ pm�1x

m�1 þ � � � þ p1xþ p0, and to the equally
spaced trinomials when d ¼ m

2 , i.e., pðxÞ ¼ xm þ pm
2
x
m
2 þ p0.

In the rest of this section, we give a complete classifica-
tion of equally spaced tetranomial and pentanomials that
are irreducible over IF3, and then we show how one can
compute cube roots in the extension ternary fields con-
structed from some classes of these polynomials. In
particular, we indicate a family of pentanomials where
both of the associated constants, namely,

ffiffiffi
x3
p

and
ffiffiffiffiffi
x23
p

,
happen to have an ideal Hamming weight of one.

5.1 Classification of Irreducible Equally Spaced
Tetranomials and Pentanomials over IF3

The following theorem is the main tool in our classification.
Notice that order of a polynomial fðxÞ 2 IFq½x� whose
constant term is nonzero is the least positive integer e such
that fðxÞjxe � 1 in IFq½x�:
Theorem 5.1 [20, Theorem 3.9]. Let fðxÞ 2 IFq½x� be an

irreducible polynomial of degree m and order e over IFq, and
let t be a positive integer. Then fðxtÞ is irreducible over IFq if
and only if

1. gcdðt; qm�1
e Þ ¼ 1;

2. each prime factor of t divides e; and
3. if 4 j t, then 4 j qm � 1.

Corollary 5.2.8 An equally spaced tetranomial fðxÞ over IF3 is
irreducible if and only if fðxÞ satisfies one of the following:

. fðxÞ ¼ x3d þ x2d þ xd � 1 or x3d � x2d � xd � 1 and
d ¼ 13i for some i � 0,

. fðxÞ ¼ x3d þ x2d � xd þ 1 or x3d � x2d þ xd þ 1 and
d ¼ 2i13j, where i ¼ 0, 1 and j � 0.

Proof. The only irreducible tetranomials of degree 3 over
IF3 are x3 þ x2 þ x� 1, x3 � x2 � x� 1, x3 þ x2 � xþ 1,
x3 � x2 þ xþ 1 whose orders in IF3½x� are 13, 13, 26 and
26, respectively. Now the claim follows from the above
theorem. tu
Similarly, we can prove the following for pentanomials:

Corollary 5.3. An equally spaced pentanomial fðxÞ over IF3 is
irreducible if and only if fðxÞ satisfies one of the following:

. fðxÞ ¼ x4d þ x3d þ x2d þ xd þ 1 orx4d � x3d þ x2d �
xd þ 1 and d ¼ 5i for some i � 0,

. fðxÞ is one of the four polynomials x4d � x3d � x2d þ
xd � 1, x4d þ x3d þ x2d � xd � 1, x4d þ x3d � x2d �
xd � 1, x4d � x3d þ x2d þ xd � 1, where d ¼ 2i5j for
some i, j � 0.
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8. This result was not in the first draft of the paper submitted to the
journal. In the first round of the reviews, one of the anonymous reviewers
conjectured that irreducible equally spaced tetranomials over IF3m exist iff
m ¼ 3 � 13i, for i ¼ 0; 1; 2; . . . . Now this result gives a complete answer to
that conjecture.



Proof. The only irreducible pentanomials of degree 4 over

IF3 a r e x4 þ x3 þ x2 þ xþ 1, x4 � x3 þ x2 � xþ 1,

x4 � x3 � x2 þ x� 1, x4 þ x3 þ x2 � x� 1, x4 þ x3 � x2 �
x� 1, and x4 � x3 þ x2 þ x� 1, whose orders in IF3½x�

are 5, 10, 80, 80, 80, and 80, respectively. Now the claim

follows from the above theorem. tu

5.2 Equally Spaced Tetranomials

Let IF3m be a ternary field generated by an irreducible equally

spaced tetranomial of the form, pðxÞ ¼ xm þ ax2d þ xd � a,

where m ¼ 3d, a 2 IF	3. Then, we have that xm ¼ �ax2d �
xd þ a, which implies,

xmþd ¼ �ax3d � x2d þ axd

¼ x2d þ axd � 1� x2d þ axd ¼ �axd � 1;

xmþdþ1 ¼ �axdþ1 � x;

xmþdþ2 ¼ �axdþ2 � x2:

ð9Þ

It is noticed that mþ d ¼ 4d � d ðmod 3Þ. In the following,

we distinguish two cases.

5.2.1 Case d � 1 ðmod 3Þ
From the last equality of (9), we have, x2 ¼ �axdþ2 �
xmþdþ2, and since d � 1 ðmod 3Þ, we have, mþ dþ 2 �
4dþ 2 � 0 ðmod 3Þ, and dþ 2 � 0 ðmod 3Þ. Therefore, we

can write,
ffiffiffiffiffi
x23
p

¼ �ðaxdþ2
3 þ x4dþ2

3 Þ. Moreover, since x ¼
�axdþ1 � x4dþ1, it implies that,

ffiffiffi
x3
p
¼ �

ffiffiffiffiffi
x23
p �

ax
d�1

3 þ x4d�1
3

�
¼
�
ax

dþ2
3 þ x4dþ2

3

��
ax

d�1
3 þ x4d�1

3

�
:

5.2.2 Case d � 2 ðmod 3Þ
From the second last equality of (9), we have, x ¼ �axdþ1 �
xmþdþ1. Therefore,

ffiffiffi
x3
p
¼ �axdþ1

3 � x4dþ1
3 andffiffiffiffiffi

x23
p

¼
�
� axdþ1

3 � x4dþ1
3

�2 ¼ x2dþ1
3 � ax5dþ2

3 þ x24dþ1
3 :

Furthermore, the polynomial degrees of the constants x
1
3

and x
2
3 associated to equally spaced tetranomials, force us to

have a reduction process postcomputation. Concrete exam-

ples of irreducible equally spaced tetranomials can be found

in Table 3.

5.3 Equally Spaced Pentanomials

Let IF3m be a ternary field generated by an irreducible

equally spaced pentanomial of the form, pðxÞ ¼ xm þ ax3d þ
x2d þ cxd þ ac, where m ¼ 4d and where d is a positive

integer not a multiple of three. Then, xm ¼ �ax3d � x2d �
cxd � ac, which implies,

xmþd ¼ �ax4d � x3d � cx2d � acxd

¼ x3d þ ax2d þ acxd þ c� x3d � cx2d � acxd

¼ ða� cÞx2d þ c;
xmþdþ1 ¼ ða� cÞx2dþ1 þ cx;

xmþdþ2 ¼ ða� cÞx2dþ2 þ cx2:

ð10Þ

It is noticed that mþ d ¼ 5d � 2d ðmod 3Þ. In the following,

we distinguish two cases.

5.3.1 Case d � 1 ðmod 3Þ
If d � 1 ðmod 3Þ, then from the second last equality of (10),

we have, x ¼ ð1� acÞx2dþ1 þ cxmþdþ1. Therefore,
ffiffiffi
x3
p ¼

ð1� acÞx2dþ1
3 þ cx5dþ1

3 and

ffiffiffiffiffi
x23
p

¼ ð1� acÞx2dþ1
3 þ cx5dþ1

3

	 
2

¼ ðac� 1Þx22dþ1
3 þ ða� cÞx7dþ2

3 þ x25dþ1
3 :

5.3.2 Case d � 2 ðmod 3Þ
If d � 2 ðmod 3Þ, then from the last equality of (10), we have,
x2 ¼ ð1� acÞx2dþ2 þ cxmþdþ2. Therefore,ffiffiffiffiffi

x23
p

¼ ð1� acÞx2dþ2
3 þ cx5dþ2

3 ;

whereas,

ffiffiffi
x3
p
¼

ffiffiffiffiffi
x23
p
ðð1� acÞx2d�1

3 þ cx5d�1
3 Þ

¼ ð1� acÞx2dþ2
3 þ cx5dþ2

3

	 

ð1� acÞx2d�1

3 þ cx5d�1
3

	 

¼ ðac� 1Þx4dþ1

3 þ ða� cÞx7dþ1
3 þ x10dþ1

3 :

Notice that by selecting a ¼ c, one will get the pleasant case

where the Hamming weight of both
ffiffiffi
x3
p

and
ffiffiffiffiffi
x23
p

is equal to

one. Unfortunately, although irreducible equally spaced

pentanomials are more abundant than their tetranomials

counterpart, they are still very rare. For m � 1;000, there are

only 20 extensions m, where at least one irreducible equally

spaced pentanomial exists. Concrete examples of irreduci-

ble equally spaced pentanomials can be found in Table 3. It

is noted that the polynomial degrees of the constants x
1
3 and

x
2
3 associated to this class of pentanomials, force us to have a

reduction process postcomputation indicated in (1).

6 RING MAPPING AND ROOT COMPUTATION

One approach proposed in the literature for carrying out the
arithmetic of the finite field IFpm is the embedding of IFpm in
a larger ring and performing all the arithmetic operations in
the ring and projecting the result back to the original field. If
ring is chosen properly, then field arithmetic can be sped
up. This idea is known as the ring mapping. In the
following example taken from [24], we briefly explain this
technique in the context of squaring and square-root taking
in the binary fields (The author in [24] credits this example
to Ito and Tsujii [19]).

Suppose for some m, P ðxÞ ¼ xm þ xm�1 þ � � � þ xþ 1 is
irreducible over IF2 (notice that m has to be an even number
since otherwise P ð1Þ ¼ 0, and hence, P ðxÞ is not irreduci-
ble). Then, we have IF2m ¼ IF2½x�=ðP ðxÞÞ. Now, xmþ1 þ 1 ¼
ðxþ 1ÞP ðxÞ. This implies that

R2 ¼
IF2½x�

ðxmþ1 þ 1Þ ffi IF2m 
 IF2:

Regarding IF2m and R2 as vector spaces over the binary
field IF2,

f1; x; x2; . . . ; xm�1g
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and

f1; x; x2; . . . ; xm�1; xmg

are standard bases for IF2m and R2 over IF2, respectively.
Squaring and square-root taking are very simple in R2. If
b ¼ amxm þ � � � þ a2x

2 þ a1xþ a0 is an element of R2, then
from (2) and the fact that xmþ1 ¼ 1 in R2 it follows that

b2 ¼ am=2x
m þ amxm�1 þ am=2�1x

m�2 þ am�1x
m�3

þ � � � þ a2x
4 þ am=2þ2x

3 þ a1x
2 þ am=2þ1xþ a0:

Since square-root taking is just the inverse operation of
squaring, thus one can take the root of an element easily too.
Further information on how this can be used to square or take
the square root of an element of IF2m can be found in [24].

In [24], it has been mentioned that the above idea can be
generalized to other finite fields. Here, we show the details
of applying the above idea to cubing and cube root taking.

Now suppose for some m, P ðxÞ ¼ xm þ xm�1 þ � � � þ
xþ 1 is irreducible over IF3 (this implies that m 6¼
2 ðmod 3Þ (see [24])). Then IF3m ¼ IF3½x�=ðP ðxÞÞ. We have
xmþ1 � 1 ¼ ðx� 1ÞP ðxÞ. Thus,

R3 ¼
IF3½x�

ðxmþ1 � 1Þ ffi IF3m 
 IF3:

The same as before f1; x; x2; . . . ; xm�1g and f1; x; x2; . . . ;
xm�1; xmg are standard bases for IF3m and R3 over IF3,
respectively. Now if we assume that m � 1 ðmod 3Þ, then
from xmþ1 ¼ 1 in R3, it follows that x

1
3 ¼ xmþ2

3 and x
2
3 ¼ x2mþ2

3 .
Thus, if b ¼ amxm þ � � � þ a2x

2 þ a1xþ a0 is an element of
R3, then from (1), it follows that

b1=3 ¼ am�2x
m þ am�5x

m�1 þ am�8x
m�2 þ � � � þ a2x

ð2mþ4Þ=3

þ amxð2mþ1Þ=3 þþam�3x
ð2m�2Þ=3 þ � � � þ a1x

ðmþ2Þ=3

þ am�1x
ðm�1Þ=3 þ � � � þ a3xþ a0:

Similar formula can be obtained for the case when m is
divisible by three. For how one can move back and forth from
IF3m to R3 see [24]. Notice that one drawback of the above
method is that the embedding mentioned above works just

for composite m while most of the time we are interested in
prime m. One possible alternative strategy, when m is such
that the above method does not work and there is no preferred
irreducible trinomial of degree m, is to look for trinomials or
tetranomials of preferred shape which have degrees higher
than m and are divisible by an irreducible polynomial of
degree m. If such a trinomial or tetranomial exists, then one
can use the idea of ring mapping to accelerate the root
computation. For further information about this method, we
refer the interested reader to [14] and references therein.

7 APPLICATIONS TO PAIRING-BASED

CRYPTOGRAPHY

Let E be a supersingular elliptic curve defined by the
equation E : y2 ¼ x3 � xþ b, with b 2 f�1; 1g. Then the set
of IF3m -rational points on E is defined as [17], [26],

EðIF3mÞ ¼ fðx; yÞ 2 IF3m 
 IF3m : y2 � x3 þ x� b ¼ 0g [ fOg;

where O is the point at infinity. It is known that EðIF3mÞ
forms an additive Abelian group with respect to the elliptic
point addition operation. The number of rational points in
EðIF3mÞ, denoted #EðIF3mÞ, is called the order of E over
IF3m , which in the case of this class of elliptic curves is given
as N ¼ 3m þ 1þ �b3ðmþ1Þ=2, with

� ¼ þ1; if m � 1; 11 ðmod 12Þ;
�1; if m � 5; 7 ðmod 12Þ:

�

Let ‘ be a large prime factor of N , so that ‘2 6 j N . Then, we
can write N ¼ i � ‘, where i is a small positive integer. A
subgroup of order ‘ is known as an ‘-torsion group, denoted
EðIF3mÞ½‘�. If P is a rational point on E, then ½i�P , the point
resulting from adding i copies of P , belongs to the ‘-torsion
subgroup. The embedding degree of E with respect to ‘ is
the smallest positive integer k such that ‘jqk � 1. For the
specific case of supersingular curves over IF3m , we have
k ¼ 6, and the modified Tate pairing of order ‘ is defined as
the bilinear map, ê : EðIF3mÞ½‘� 
 EðIF3mÞ½‘� �! IF	36m=ðIF	36mÞ‘:

Assuming that m�1
2 is an even integer, the total number of

IF3m field operations required for computing the Tate pairing

AHMADI AND RODR�IGUEZ-HENR�IQUEZ: LOW COMPLEXITY CUBING AND CUBE ROOT COMPUTATION OVER IF3m IN POLYNOMIAL BASIS 1305

TABLE 4
Reduction Polynomials that Yield Low-Cost Cubings and/or Cube Roots for Supersingular Elliptic Curves Defined by

the Equation y2 ¼ x3 � xþ b, with Large ‘-Torsion Subgroups over IF3m , with m a Prime Number in the Range ½47; 541�



using the algorithm described in [12] is of 25m�1
4 þ 6,

82m�1
4 þ 8, m and mþ 1 multiplications, additions, cubings

and cube roots, respectively. Additionally, in order to obtain
a unique representative of the coset ðIF	36mÞ‘, one needs to
perform a final exponentiation operation by raising the
computed value êðP;QÞ to the M ¼ ð33m � 1Þ � ð3m þ 1Þ �
ð3m þ 1� �b3ðmþ1Þ=2Þ power. As described in [10], the cost of
the final exponentiation is of 3mþ 3 field cubing operations
plus 73 field multiplications, one field inversion and about
3mþ 175 field additions. Furthermore, authors in [11]
describe an alternative procedure able to achieve a faster
computation of the final exponentiation by reducing the
number of required addition operations and by trading
3mþ 3 field cubing operations with 3m� 3 field cube root
calculations.

From the above description of the Tate pairing arithmetic
operation costs, one can conclude that efficient hardware

and/or software implementations of the Tate pairing over
EðIF3mÞ supersingular curves require the usage of cube root
friendly reduction polynomials. Otherwise the computa-
tional effort needed for calculating cubing and cube root
operations over IF3m may become comparable to the field
multiplication cost. On the other hand, it is desirable to
have ‘ as large as possible so that the discrete logarithm
problem associated to pairing-based cryptography remains
as a hard computational problem. Hence, in the context of
pairing computation an important design task consists of
finding extension degrees m where N has large prime
factors ‘ and where a cube root friendly irreducible
polynomial can be found.

We list in Table 4, cube root friendly reduction polynomial
for a selection of prime extension degrees m 2 ½47; 541� that
enjoy large ‘-torsion subgroups. For a given extension degree
m, we look first for preferred trinomials or cube root friendly
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TABLE 5
Reduction Polynomials for IF3m , Yielding Low-Cost Cubings and/or Cube Roots, with m a Prime Number in the Range ½47; 307�



trinomials. Otherwise, if we cannot find such irreducible
trinomials, we try to find preferred tetranomials or penta-
nomials as the ones defined in Section 4.9

8 CONCLUSION

In this paper, we investigated the computational cost
associated with field cubing and cube root computation in
ternary extension fields IF3m , generated by special classes of
irreducible polynomials. We presented cube root friendly
families of irreducible trinomials, tetranomials, and penta-
nomials that exist for most prime extension degreesm, which
are the cases of interest in modern cryptographic applica-
tions. More specifically, in the range ½47; 541�, there exist a
total of 86 prime numbers. Using the irreducible trinomials,
tetranomials, and pentanomials discussed in Section 4, we are
able to propose a reduction polynomial for all the 86 instances
except for m ¼ 89; 149; 151; 283; 449; 463; 521. The proposed
polynomials are listed in Appendix, along with the corre-
sponding values of the constants x

1
3 and x

2
3.

APPENDIX
In Tables 5 and 6, we list the reduction polynomials for IF3m

yielding low-cost cubings and/or cube roots, withm a prime
number in the range ½47; 307� and ½311; 541�, respectively. We

also list the values of the constants x
1
3 and x

2
3 generated by the

proposed polynomials.
In the range ½47; 541�, there exist a total 86 prime

numbers. Using the irreducible trinomials and pentano-

mials discussed in Section 4, we are able to propose a

reduction polynomial for all the 86 instances, excepting for

m ¼ 89; 149; 151; 283; 449; 463; 521.
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