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Abstract— To support emerging pairing-based protocols
related to cloud computing, an efficient algorithm/hardware
codesign methodology of ηT pairing over characteristic three is
presented. By mathematical manipulation and hardware schedul-
ing, a single Miller’s loop can be executed within 17 clock cycles.
Furthermore, we employ torus representation and exploit the
Frobenius map to lower the computation cost of final exponenti-
ation. Pipelining and parallelization datapath are also exploited
to shorten the critical path delay. Finally, by choosing suitable
multiplier architecture and selecting an appropriate number of
multipliers, Miller’s loop and final exponentiation can be com-
puted in a fully pipelined manner. With these schemes, a test chip
for the proposed pairing accelerator has been fabricated in 90-nm
CMOS 1P9M technology with a core area of 1.52 × 0.97 mm2.
It performs a bilinear pairing computation over F(397) in 4.76 μs
under 1.0 V supply and achieves 178% improvement to relative
works in terms of area–time (AT) product. To support higher
level of security, a 126-bit secure pairing accelerator that can
complete a bilinear pairing computation over F(3709) in 36.2 μs
is implemented and this result is at least 31% better than relative
works in terms of AT product.

Index Terms— Application-specific integrated circuit (ASIC)
implementation, elliptic curve, ηT pairing.

I. INTRODUCTION

IN 2000, Mitsunari et al., Sakai et al., and Joux inde-
pendently discovered constructive properties of bilinear

pairing [1]. One year later, Boneh and Franklin [2] solved
a long lasting problem of identity-based cryptography based
on bilinear pairing. Since then, an ever increasing number of
protocols based on the bilinear pairing have appeared in the
literature.

In recent years, cloud computing becomes a promising
alternative to traditional local services. However, security and
privacy issues may prevent wide acceptance in practice since
the data no longer store on personal devices. To provide
privacy and enhance security for users, myriad of cryptography
protocols based on bilinear pairing have been presented to
resolve this problem, such as [3] and [4]. Specifically, Sahai
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and Waters [3] introduced a protocol realizing the confiden-
tiality and fine-grained access control of data based on the
attribute-based encryption. On the other hand, Boneh et al. [4]
facilitate the data owner efficiently search the files stored by
cloud servers while prevents cloud servers from learning both
the data file contents and user query information. Furthermore,
the properties of bilinear pairing allows ID-based authen-
tication, ID-based encryption, and hence certificateless key
management becomes practical [5]. In 2008, IEEE established
the draft standard for pairing-based cryptography [6].

Such protocols rely critically on efficient algorithms and
implementations of pairing primitives. According to [1], when
dealing with general curves providing common levels of
security, the Tate pairing is more efficiently computable than
the Weil pairing. Significant improvements were independently
proposed in [7] and [8]. Barreto et al. [9] and Hess et al. [10]
introduced the ηT pairing and Ate pairing, respectively, which
further shortens the loop of Miller’s algorithm. We choose ηT

pairing in this paper since it is symmetric pairing, which can
support more protocols. Moreover, the ηT pairing is defined on
supersingular curve, which can achieve substantially compu-
tation reduction by choosing suitable distortion map and using
ternary field arithmetic.

The ηT pairing contains two major steps [1]: 1) Miller’s
loop and 2) final exponentiation. To enhance throughput,
the hardware of Miller’s loop and final exponentiation can
work independently, as the former data are completed with
the computation of Miller’s algorithm and follows by the
final exponentiation, the latter data can be activated to
start the computation of Miller’s algorithm simultaneously.
In [11]–[13], however, the computation time of Miller’s
algorithm and final exponentiation are far from balanced,
which is hard to employ fully pipeline techniques to enhance
throughput.

In this paper, a new ηT pairing accelerator for high-speed
pairing-based protocols is proposed. To reduce the execution
cycles of Miller’s loop, algorithm selection and hardware
scheduling are exploited and analyzed. Moreover, the torus
representation and mathematical manipulation are used to
shorten the final exponentiation time. In addition, the number
and architecture of multipliers are selected and scheduled so
that these two major steps can be computed in a fully pipelined
manner. The major contributions of this paper are highlighted
here.

1) Considering the recent attack proposed in [14], we sug-
gest to use larger field to achieve 126-bit security level.
To mitigate the corresponding increase of computation
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overhead, we carefully choose algorithm parameters
including reduction polynomial, field element encoding
method, paring algorithm, and so on.

2) This paper reducing the computation cost of both
Miller’s loop and final exponentiation by applying sev-
eral state-of-the art optimization.

3) By designing suitable multiplier architecture and
employing pipelining and parallelization, the implemen-
tation result outperforms relative works in terms of speed
and hardware efficiency.

The rest of this paper is organized as follows. The
algorithm of ηT pairing as well as its parameter selections
are presented in Section II. The improved pairing arithmetic
including Miller’s loop and final exponentiation are proposed
and analyzed in Section III. Moreover, Section IV reports the
hardware architecture of our proposed pairing accelerator as
well. The measurement results of a 90-nm test chip and 126-bit
security level accelerator as well as the comparisons against
relative works are given in Section V. Finally, Section VI
concludes this paper.

II. BACKGROUND

A. Symmetric Pairings

In most of the protocols, symmetric pairing is often selected
as it allows simpler and briefer mathematical statements and
definitions. Let G1 be an abelian group with additive identity
element O and r is a positive integer. Suppose G1 has order r ,
which means [r ]P = O for all P ∈ G1. Suppose G2 is a
cyclic group of the same order r with multiplicative identity
element one. A symmetric pairing is a map

e : G1 × G1 → G2.

Note e should be feasibly computable, bilinear in both
group, and nondegenerate, which enables the construction of
novel and efficient cryptography protocols.

Let n be an integer, then the most crucial function in pairing
is Miller’s function fn,P , and the divisor of Miller’s function
is defined as

( fn,P ) = n(P) − ([n]P)− (n − 1)(O).

Miller’s functions are at the root of most pairing proposed
for cryptographic purpose. We refer the reader to [1] for the
mathematical details of divisor. To compute the function, one
can use Miller’s algorithm [15], which shows that a Miller’s
function satisfies the following observation up to a nonzero
factor in Fq:

fm+n,P = fm,P · fn,P · l[n]P,[m]P/v[n+m]P

where l[n]P,[m]P denotes the line through [n]P and [m]P , and
v[n+m]P is the vertical line through [n + m]P . These two
functions are so called line function in the literature.

An efficient algorithm can be derived from the above
formula, since with this relation, the line function and hence
Miller functions can be computed using usual chord-and-
tangent method on elliptic curve.

Algorithm 1 Miller’s Loop Without Cube Roots of ηT Pairing

B. ηT Pairing

Let r be the largest prime factor of N , so that r2 is not
a factor of N , where N is the order of the curve. Then, we
can write N = i · r , where i is a small positive integer. The
ηT pairing is a symmetric pairing that maps two points in
r -torsion groups into an element of the group of r th roots of
unity μr

E(F3m )[r ] × E(F3m )[r ] → μr ⊂ F∗
3km .

The embedding degree or security multiplier is the least pos-
itive integer k for which μr is contained in the multiplicative
group F∗

3km . The curve used in this paper has k = 6, which is
the maximum value possible for supersingular elliptic curves.
Moreover, let P, Q ∈ E(F3m )[r ] and T = 3m − N , construct
the divisor D = (Q)− (O), and ( fr,P ) = r(P)− r(O). Such
that supports of D and ( fr,P ) are disjoint, then ηT pairing
function ηT (P, Q) is defined by1

fT ,P (ψ(D)) =
⎛
⎝
(m−1)/2∏

i=0

g3i P(ψ(D))
3(m−1)/2−i

⎞
⎠ lV (ψ(Q)).

The above formula contains cube root operations. However,
cube root is substantially slower than calculations of cube in
hardware, thus we adopt a cube-free implementation of ηT

pairing, as shown in Algorithm 1 [11].
The result of ηT pairing is mapped to a coset. To ensure

unique output value of ηT pairing, we have to raise it up
to Mth power, where M = (36m − 1)/N . This additional
step is known as final exponentiation. As suggested by [16],
the final exponentiation can be further factored to (33m − 1)
(3m +1)(3m +1±3(m+1)/2), which can lower the computation
cost. To compute the final exponentiation, [6] suggested to

1ψ(x, y) = (ρ − x, σ y) is the distortion map used in this paper, where
σ 2 = −1 and ρ3 = ρ + b, σ, ρ ∈ F36m . Duursma and Lee inte-
grate distortion map into Miller’s algorithm and introduce the gV function.
gV is a rational function defined over E(F36m )[r], and having divisor
(gV ) = 3(V ) + ([−3]V ) − 4(O). For all V = (xV , yV ) ∈ E(F3m )[r] and
(x, y) ∈ E(F36m )[r], it is defined as gV (x, y) = yV

3 − (xV
3 − x + b)

2
.

lV is the line equation corresponding to addition of [3(m+1)/2]V with [b]V .
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Algorithm 2 Final Exponentiation of ηT Pairing

used composite field representation ηT = F = f0 + f1σ +
f2ρ + f3σρ + f4ρ

2 + r5σρ
2, and the details are illustrated in

Algorithm 2.

C. Parameter Selection

Let E be a supersingular elliptic curve defined by E : y2 =
x3 − x + b, with b ∈ {−1, 1}. The order of curve is given as
N = 3m + 1 + μb3(m+1)/2, with

μ =
{

+1, if m ≡ 1, 11 (mod 12)

−1, if m ≡ 5, 7 (mod 12).

As suggested by [17], one can choose a reduction polyno-
mial as a trinomial of the form P(x) = xm −xn +1 so that the
computation of cubing can be achieved by several additions.
Furthermore, the exponent n should be small, so that the
cubing cost can be further reduced. Because of PARI/GP [18],
we can obtain optimal trinomials in this paper.

Galbraith et al. [8] showed how to compute additions of two
elements a, b ∈ F3 using 12 AND, OR, XOR, and NOT Boolean
functions. Harrison et al. [19] noted that this operation could
be computed using only seven OR and XOR logic operations.
This was considered the minimal number of logical opera-
tions for this arithmetic operation until Kawahara et al. [20]
presented an expression that only requires six logical instruc-
tions. However, the benefits of this construction are that the
multiplication over F3 is precomputed or it would require
pre/postprocessing between addition and multiplication, which
is not suitable for high-speed applications. Therefore, we
choose the encoding method proposed by Harrison.

Using Harrison’s encoding method, an element a ∈ F3
can be written by two bits like a = (ah, al) for ah, al ∈
{0, 1}, ah = a/2, al = a mod 2. Specifically, the symbols
(0, 0), (0, 1), (1, 0) mean 0, 1, 2, respectively. Elements of the
field F3m are represented as polynomial basis. The field F3m

can be regarded as F3[x]/ f (x), where the f (x) is a degree-m
irreducible trinomial.

The multiplication c = a · b in F3 can be written as:
cl = (ah ∧bh)∨ (al ∧bl) and ch = (ah ∧bl)∨ = (al ∧bh). For
m-bit long F3 multiplication, we use serial–parallel scheme
to explore the tradeoff between time and area. By [21], we
can implement the multiplication over F3m by processing an
operand with D words at each clock cycle. Therefore, in each

Algorithm 3 Parallel–Serial Multiplication Over F3m

step, we compute the degree m+ D−2 partial product polyno-
mials: t (x) = ∑D−1

j=0 aDi+ j x j b(x). All the partial products are
summed up by a degree m + D − 1 accumulator polynomial:
s(x) = t (x)+ x D · (s(x) mod f (x)). After 	m/D
 steps, the
output of a(x)b(x) mod f (x) is equal to the polynomial s(x).
Algorithm 3 summarizes this multiplication scheme.

Cubing over F3m is a simple arithmetic operation over
the irreducible trinomial. The operation number of addition/
subtraction of cubing is bounded by m + 2/3 · (2k + n) − 3,
we refer the reader to [17] for the detail of derivation.

Instead of designing a specific operator based on the
extended Euclidean algorithm, we suggest to keep the circuit
area as small as possible by performing inversion according
to [22], which is based on Fermats little theorem. Since this
scheme requires only multiplications and cubings over F3m ,
we do not have to include dedicated hardware for inversion in
our coprocessor.

The security of the pairing is determined by the difficulty
of the Discrete Logarithm Problem (DLP) on the input curve
and on the output multiplicative group. The embedding degree
k acts as a cursor to adjust the size of the multiplicative group
F∗

qk with respect to that of Fq . The best known algorithm to
attack the DLP on the r -torsion is Pollard’s ρ method [23]
while the functional field sieve (FFS) [24] is generally used
to attack DLP on μr ⊂ F∗

qk . According to [14], the improved
FFS can solve the DLP with time complexity

exp(((32/9)1/3 − 0.18)(ln 36m)1/3(ln ln 36m)2/3).

The time complexity of the improved FFS versus m is
plotted in Fig. 1. We can find that the previous work,
which builds on F3509 [25], is not sufficient to provide the
128-bit security level, as suggested in [26]. Therefore, we
list in Table I for a selection of prime extension degrees m
that enjoy large r -torsion subgroups. For a given extension
degree m, we use PARI/GP [18] to find its corresponding
curve, reduction trinomials, and the estimated security level.

III. PROPOSED ηT PAIRING ARITHMETIC

In Algorithm 1, the composite field representation is used,
so that all the operations over F36m can be replaced by
arithmetic over F3m . In Algorithm 2, instead, we suggest to
use torus T2(F33m ) to compress the value of F∗

36m , which can
further reduced the cost of field operations compared with
composite field representation.
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Fig. 1. Time complexity estimation of solving DLP over F(36m).

TABLE I

PARAMETER SELECTION

A. Miller’s Loop

The most critical part of Algorithm 1 is at line 12,
which involves multiplication over F36m . Notice that it is
a sparse (i.e., some of its terms are trivial) multiplication
over F36m , which allows us to optimize the computation.
Bertoni et al. [27] and Gorla et al. [28] take advantage of
Karatsuba multiplication and Lagrange interpolation, respec-
tively, to reduce the number of multiplications over F3m at the
expense of several additions. However, to keep the pipeline of
our multiplier busy, we have to embed a large multioperand
adder and irregular datapath, which would deteriorate the clock
frequency. Thus, we do some manipulation on the formula to
reduce the number of additions while keeping the number of
multiplications small. We first represent F and G using the
composite field representation as follows:

F = f0 + f1σ + f2ρ + f3σρ + f4ρ
2 + f5σρ

2

G = g0 + g1σ + g2ρ + g3σρ + g4ρ
2 + g5σρ

2.

According to line 7 in Algorithm 1, g3 = 0, g4 = −1, and
g5 = 0 here, and we combine lines 12 and 7 in Algorithm 1
so that F = FG becomes F = F3G. Furthermore, F3

can be represented as ( f0
3 + f2

3 + f4
3) + (− f1

3 − f3
3 −

f5
3)σ+( f2

3 − f4
3)ρ+(− f3

3 + f5
3)σρ+ f43ρ2 +(− f5

3)σρ2,

we thus obtain

f ′
0 = ( f0

3 + f2
3 + f4

3)(−t2)+ (− f1
3 − f3

3 − f5
3)u

+( f4
3)t + (− f2

3 + f4
3)

f ′
1 = (− f1

3 − f3
3 − f5

3)(−t2)+ ( f0
3 + f2

3 + f4
3)u

+ f3
3t + (− f1

3 − f5
3)

f ′
2 = ( f2

3 − f4
3)(−t2)+ ( f3

3 − f5
3)u

+(− f0
3 − f2

3 + f4
3)t + ( f2

3)

f ′
3 = (− f3

3 + f5
3)(−t2)+ ( f3

3 − f5
3)u

+(− f0
3 − f2

3 + f4
3)t + (− f2

3)

f ′
4 = ( f4

3)(−t2)+ ( f5
3)u + (− f2

3 + f4
3)t

+(− f0
3 − f2

3 + f4
3)

f ′
5 = (− f5

3)(−t2)+ ( f4
3)u + ( f3

3 − f5
3)t

+( f1
3 − f3

3 − f5
3)+ ( f0

3 + f3
3 − f5

3).

Considering hardware sharing, the formula can be rewritten
as follows:

f ′
0 = ( f0

3 + f2
3 + f4

3)(−t2)+ (− f1
3 − f3

3 − f5
3)u

+( f4
3)t + (− f2

3 + f4
3)

f ′
1 = (( f0

3 + f2
3 + f4

3)− ( f1
3 + f3

3 + f5
3))(−t2 + u)

−( f0
3 + f2

3 + f4
3)(−t2)+ ( f1

3 + f3
3 + f5

3)u

+( f5
3)t + ( f3

3 − f5
3)

f ′
2 = ( f2

3 − f4
3)(−t2)+ ( f3

3 − f5
3)u

+(− f0
3 − f2

3 + f4
3)t + ( f2

3)

f ′
3 = (( f2

3 − f4
3)− ( f3

3 − f5
3))(−t2 + u)

−( f2
3 − f4

3)(−t2)+ ( f3
3 + f5

3)u

+( f1
3 + f3

3 − f5
3)t + ( f3

3)

f ′
4 = ( f4

3)(−t2)+ ( f5
3)u + (− f2

3 + f4
3)t

+(− f0
3 − f2

3 + f4
3)

f ′
5 = (( f4

3)− ( f5
3))(−t2 + u)− ( f4

3)(−t2)+ ( f5
3)u

+( f3
3 − f5

3)t + ( f0
3 + f3

3 − f5
3).

Thus, the cost of sparse multiplication is 15 multiplications,
6 cubings, and 33 additions. Despite of the sparse multiplica-
tions, there left two field multiplications, two additions, and
four cubings in Miller’s loop. Thus, the overall cost is 17 field
multiplication, 10 cubings, and 35 additions over F3m in a
single Miller’s loop.

B. Final Exponentiation

In Algorithm 2, the operations involve power of 33m − 1,
3m + 1, and 3(m+1)/2 in F∗

36m . We aim at reducing the field
operation numbers, so that hardware complexity for final expo-
nentiation can be alleviated. The following section depicts the
idea of our implementation, and we take m = 97 to evaluate
the detail cost of each operation to show the improvement over
relative works.

1) Power of 33m − 1 in F∗
36m : Granger et al. [30] intro-

duced the torus T2(Fq3) for compressing value of Fq6 , and
we used this idea to compute the power of 33m − 1 in
F36m . Note that F∗

36m is a second extension field of F∗
33m ,

thus every element in F∗
36m can be represented as A =

A0 + A1σ with A0, A1 ∈ F∗
33m . Or more formally, torus

T2(F3m
3 ) = {A0 + A1σ ∈ F∗

36m : (A0)
2 + (A1)

2 = 1}.
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Thus, A33m = (A0 + A1σ)
33m = A0

33m + A1
33m
σ 33m =

A0 − A1σ , and A33m−1 = A33m
/A = (A0 − A1σ)/

(A0 + A1σ) = (A0 − A1σ)
2/(A0

2 + A1
2) = (A1

2 − A0
2 −

2A0 A1σ)/(A0
2 + A1

2). Because (A33m−1)2 = ((A1
2 − A0

2 −
2A0 A1σ)/(A0

2 + A1
2))2 = 1, the value A33m−1 ∈ T2(F33m ).

To compute the multiplication and squaring in F∗
33m , direct

implementation will cost ten and six field multiplications,
respectively. We can use Karatsuba scheme [31] to reduce
the cost to six and five field multiplications, respectively.
On the other hand, to calculate the inversion in F∗

33m , let
B = b0 + b1ρ + b2ρ

2 be the multiplicative inverse of A =
a0 + a1ρ + a2ρ

2. Since AB = 1, we obtain the following
matrix:⎡

⎣
b0
b1
b2

⎤
⎦ = w−1

⎡
⎣

a0
2 − a1

2 + a2
2 − a2a0 − a2a1

a2
2 − a0a1

a1
2 − a2

2 − a0a1

⎤
⎦

where w = (a0 + a1 + a2)
3 − a0(a0a2 − a1

2)+ a2
2(a0 − a1),

which involves seven field multiplications and one field inver-
sion. If we construct the squaring from multiplication, power
of 33m − 1 in F∗

36m requires 37 field multiplications, 71 addi-
tions, and one field inversions in F3m .

2) Power of 3m+1 in F∗
36m : For powering 3m+1 in F36m , we

still use the torus concept. We adopt the result in [28], which
requires nine field multiplications and 18 field additions.

3) Power of 3(m+1)/2 in F∗
36m : In this section, we take

advantage of Frobenius, so that the addition number can be
significantly reduced. Let F = f0+ f1σ+ f2ρ+ f3σρ+ f4ρ

2+
f5σρ

2 ∈ F∗
36m . Noting that σ 3i = (−1)iσ, ρ3i = ρ + ib, and

(ρ2)3i = ρ2 − ibρ + i2. We obtain the following formula,
depending on m:
F3(m+1)/2 = f0

3(m+1)/2 + f1
3(m+1)/2

σ 3(m+1)/2 + f2
3(m+1)/2

ρ3(m+1)/2

+ f3
3(m+1)/2

σ 3(m+1)/2
ρ3(m+1)/2 + f4

3(m+1)/2
(ρ2)3

(m+1)/2

+f5
3(m+1)/2

σ 3(m+1)/2
ρ23(m+1)/2

.

Take m = 97

F349 = ( f0
349 + f2

349 + f4
349
)− ( f1

349 + f3
349 + f5

349
)σ

+ ( f2
349 − f4

349
)ρ − ( f3

349 + f5
349
)σρ

+ f4
349
(ρ2)− f5

349
(σρ2).

Thus, to complete the final exponentiation power, we
requires 79 field multiplications, 390 field cubings, and 180
field additions for m = 97. The comparison of these com-
putation costs with other state-of-the-art works are listed in
Table II. As shown in Table II, since Ronan et al. [12]
construct element in F36m using composite field representa-
tion instead of torus representation, their computation cost is
markedly larger than ours. On the other hand, though Beuchat
et al. [29] also employ torus representation, they do not take
advantage of Frobenius and some mathematical manipulation,
thus their computation cost is still higher than ours.

IV. HARDWARE ARCHITECTURE FOR

ηT PAIRING ACCELERATOR

To justify the need of building hardware accelerator in sys-
tem, we first implement the ηT pairing algorithm in software in

TABLE II

COMPARISON AMONG PREVIOUS WORKS IN FINAL

EXPONENTIATION FOR m = 97

TABLE III

PROFILING OF A PAIRING PROTOCOL [4]

Fig. 2. Block diagram of our proposed pairing accelerator.

the context of pairing protocols [4] using MIRACL SDK [32],
where the results are shown in Table III.

The result shows that when building the pairing protocol,
the bilinear pairing is the most time critical part. Furthermore,
the computation time of elliptic curve scalar multiplication
(ECSM) takes much time as well, thus it may be beneficial
to compute both bilinear pairing and ECSM using hardware
accelerator. Our pairing accelerator wrapped with AMBA
AHB bus can work with the ECSM accelerator in [33]–[35]
to alleviate the bottleneck of pairing protocols.

Fig. 2 shows our overall proposed pairing accelerator with
a standard AMBA AHB interface. For supporting arbitrary
field length, the pairing arithmetic unit is designed to have
programmable datapath. The ηT pairing can be calculated
using pairing arithmetic unit controlled by the main controller.

The Miller’s algorithm is an iterative algorithm, while
final exponentiation involves irregular computation. To achieve
high-speed requirement, we design two independent dedicate
hardware modules for Miller’s algorithm and final expo-
nentiation, respectively. By choosing appropriate multiplier
architecture and selecting adequate number of multipliers, we
pipeline these two steps to enhance throughput.
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TABLE IV

HARDWARE SCHEDULING OF MILLER’S LOOP

A. Miller’s Loop Implementation

Multiplication is the pertinent operation of a bilinear pairing
computation, as stated in Section III. Variants of parallel–serial
and Karatsuba multiplier are by far the most efficient two
used in the context. To study a wide range of implementation
strategies, we write a Verilog code generator for parallel–
serial multiplier and modify the Verilog code generator in [36],
which can produce variants of Karatsuba multipliers. The
parallel–serial multiplier seems to be more attractive because it
has smaller area overhead. However, we should carefully deal
with the scheduling and manage to keep the pipeline busy.
To enhance throughput while still maintaining a competitive
critical path delay, we design a seven-stage parallel–serial
multiplier. The coprocessor shown in Fig. 2 embeds this seven-
stage fully pipelined parallel–serial multiplier, which is similar
to our seven-stage pipelined parallel–serial multiplier stated
in the following section except the hardware is duplicated
and control is altered as well. There is a four-input adder to
support the field addition, subtraction, and accumulation in
Algorithm 1. A standalone cubing unit that can complete a
cubing operation in one cycle is also included.

With these arithmetic units, the 17 multiplications in each
iteration of Miller’s loop is scheduled at higher priority, and
the field additions and field cubings are parallel computed with

multiplication, as shown in Table IV. In Table III, MUL IN1,
MUL IN2, and MUL OUT denote the two inputs and output
of the multiplier, respectively, and CUBE indicates the cycle
when cubing operation is conducted. The OUT is the output
of the Miller’s loop coprocessor. We aim to keep the pipeline
busy, so that the data dependency is avoided and the register
usage is minimized. From the scheduling result, each single
Miller’s loop can be completed in 17 clock cycles with the
proposed coprocessor, thus Algorithm 1 can be completed in
17 · (m + 1)/2 cycles including the initial step.

B. Final Exponentiation Implementation

Note that the critical operations in Algorithm 2 are multi-
plications and long sequences of cubings, which are different
from the design of Miller’s coprocessor. As a result, we
propose a new module for arithmetics in final exponentiation.
The computation cost of final exponentiation is smaller than
Miller’s loop according to Section III, thus we can deploy a
slightly more serial architecture to reduce hardware cost.

Inputs and outputs, as well as intermediate results, are stored
in a dual-port random access memory since the hardware
scheduling involves simultaneously read to the register file.
The coprocessor embeds three seven-stage pipelined parallel–
serial multipliers, as shown in Fig. 3, to match the computation
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Fig. 3. Seven-stage pipelined parallel–serial multiplier.

Fig. 4. Chip micrograph of our proposed pairing accelerator.

time of Miller’s loop. Note that in Algorithm 3 the operation
×x D involves only wiring, and a single modulo f (x) reduction
is needed in each iteration. As previously mentioned, since
trinomial is chosen as the irreducible polynomial, reduction
can be done by performing several additions. We also embed
a four-input adder and a cubing unit to deal with addition,
subtraction, and cubing operations. This architecture allows
us to efficiently implement the final exponentiation algorithm,
and the cycle count compared with previous design is listed
in Table II.

Finally, Miller’s loop and the final exponentiation are com-
puted in a pipelined manner in our design, and we can learn
that the computation time of these two steps are nearly equal.
Therefore, the throughput of this pairing accelerator almost
doubles the throughput of nonpipelined pairing accelerator.

V. IMPLEMENTATION RESULTS

With our proposed pairing arithmetic, hardware scheduling,
pipelining multiplier architecture, and parallelism scheme,
a test chip of the ηT pairing accelerator is fabricated in
90-nm 1P9M CMOS process. Due to the limitation of chip
size and for the comparison purpose, the field F(397) is
selected. The chip micrograph is shown in Fig. 4. In this
section, we describe the measurement results, summarize the

Fig. 5. Measurement results. (a) Measured power consumption under
different supply voltages. (b) Shmoo plot.

key characteristics, and compare our application specified
integrated circuit (ASIC) implementation results to other state-
of-the-art designs.

A. Measurement Results

The measurement result of the test chip under different
supply voltages is shown in Fig. 5(a). The results shows
that the accelerator draws 103 mW under 1.3 V supply
voltage while running at 185 MHz. Since the clock cycle is
17 × (97 + 1)/2 for the Miller’s loop, the throughput is thus
about 222K bilinear pairings per second. When supply voltage
is scaled down to 0.7 V, the power is reduced to 35.1 mW
with a better energy efficiency. The Shmoo plot is shown in
Fig. 5(b). Table V summarizes key features of the proposed
pairing accelerator over F(397) test chip under 1.0 V supply
voltage.

B. Comparison With Other ηT Pairing Accelerator

In considering the scaling effect of fabrication technology
and supply voltage, the normalization factor of area–time (AT)
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TABLE V

CHIP SUMMARY

TABLE VI

COMPARISON WITH OTHER ηT PAIRING ACCELERATOR

product and energy can be referred to [40] and [41]. The
normalization factor for AT product is proportional to the ratio
of minimum gate length for transistor; the normalization factor
for energy is proportional to the square ratio of minimum
gate length for transistor multiplied by square ratio of supply
voltage.

To the best of our knowledge, Beuchat et al. [13] design the
first and the only ASIC implementation of ηT pairing, and their
ASIC implementations embeds nine multipliers, an addition
unit, and a cubing unit. However, the computation cost of
their methodology is higher than ours. Moreover, they do not
employ the pipeline techniques, and the computation time of
the two steps is far from balance. According to Table VI,
our design achieves 178% better in terms of technology AT
product.

C. Comparison With Other Ate Pairing Accelerator

The comparison among different pairing accelerator is
especially difficult since the implementation style and design
parameters are distinct from each other.

According to NIST recommendation, 128-bit symmetric
security is essential beyond 2030 [26]. Therefore, various
implementations of pairing accelerator targeting at 128-bit
security level are presented in recent years. A comparison
with three state-of-the-art pairing accelerator designs is given
in Table VII. Note that to make a fair comparison, we use the
widely accepted attack model proposed in [42] and choose the
curve parameters derived in Section II. Such that ηT pairing

TABLE VII

COMPARISON WITH OTHER PAIRING ACCELERATOR

over supersingular curve with curve parameter E/F3709 and
pairing over ordinary curve with curve parameter E/F256 are
in roughly the same security level.

The first ASIC implementations of pairings with 128 bits of
security were presented in [37] and [38], and [39] describes
a more efficient accelerator by modifying the multiplication
scheme. These three implementations use BN-curves so as to
exploit their optimal embedding degree k = 12 while targeting
128 bits of security, but the arithmetic on these curves are
over prime field, which should deal with carry propagation
carefully. In addition, pairings over BN-curves are asymmetric
pairing, which is not well suited for many existing protocols.
We take advantage of the efficient arithmetic of ternary field,
and further minimize the complexity by mathematical formula-
tion and exploration of hardware-efficient multiplier. From the
comparison table, we can observe that our design outperforms
other designs in terms of operation time. Furthermore, the
gate counts of our design are larger than the others due to
the fully pipelining and parallelism techniques, but our design
still achieves better AT product compared with these three
designs.

VI. CONCLUSION

We have presented an efficient pairing accelerator sup-
porting ηT pairing computation over characteristic three that
targets high throughput and hardware efficiency. The test
chip with 1.47-mm2 core area is fabricated in 90-cm CMOS
1P9M technology. It achieves one bilinear pairing compu-
tation over F(397) in 4.76 μs at 175 MHz. Moreover, the
126-bit security level version of our design can perform
a bilinear pairing computation over F(3709) in 36.2 μs at
166 MHz. The performance comparison shows that our archi-
tecture proposal outperforms other related pairing designs in
both operation time and hardware efficiency. These bene-
fits demonstrate that our proposal solution is well suitable
for high-speed pairing-based protocols in cloud services and
applications.
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