Example 7.8 (Linearity property of the Laplace transform). Find the Laplace transform of the function

X = X1 +x2,

where

x1(t)=e"u(t) and xp(t) =e "u(t)—e 2 u(t).

Solution. Using Laplace transform pairs from Table 7.2, we have
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So, from the definition of X, we can write
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Now, we must determine the ROC of X. We know that the ROC of X imust contain the intersection of the ROCs of X

and X,. So, the ROC must contain Re(s) > —1. Furthermore, the ROC cannot be larger than this intersection, since

X has a pole at —1. Therefore, the ROC of X is Re(s) > —1. The various ROCs are illustrated in Figure 7.9. So, in
conclusion, we have

(s) = s+3

e for Re(s) > —1. L
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Figure 7.9: ROCs for the linearity example. The (a) ROC of X, (b) ROC of X;, (c) ROC associated with the
intersection of the ROCs of X; and X», and (d) ROC of X.
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