Analysis of Sampling System
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Figure 6.36: Model of ideal C/D converter with input function x and output sequence y.

Now, let us'consider the above model of sampling in more detail. In particular, we would like to find the rela-
tionship between the frequency spectra of the original function x and its impulse-train sampled version s. In what

follows, let X, Y, P, and S denote the Fourier transforms of x, y, p, and s, respectively. Since p is T-periodic, it can be
represented in terms of a Fourier series as
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Using the Fourier series analysis equation, we calculate the coefficients ¢ to be
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Substituting (6.52) and (6.53) into (6.51), we obtain
L st) = xl¥) pLD)

_ reglace p(t) by its
s(t) = x(¢) Z %’e’kth
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Taking the Fourier transform of s yields £ requency - demain
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Thus, the spectrum of the impulse-train sampled function s is a scaled sum of an infinite number of shifted copies of
the spectrum of the original function x.
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