Example 7.25. ‘Using a Laplace transform table and properties of the Laplace transform, find the Laplace transform
X of the function x shown in Figure 7.13.
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Figure 7.13: Function for the Laplace transform example.

Second solution (which incurs less work by avoiding differentiation). First, we express x using unit-step functions to
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To simplify the subsequent Laplace transform calculation, we choose to rewrite x as uce-1)
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Combining the above results, we have
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Since x is finite duration, the ROC of X is the'entire complex plane. |
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