
Stabilization Example: Unstable Plant

� causal LTI plant:

P
X Y

P(s) = 10
s−1

� ROC of P:

1 Re

Im

� system is not BIBO stable
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Stabilization Example: Using Pole-Zero Cancellation

� system formed by series interconnection of plant and causal LTI
compensator:

W P
X Y

P(s) = 10
s−1 , W (s) = s−1

10(s+1)

� system function H of overall system:

H(s) =W (s)P(s) =
(

s−1
10(s+1)

)( 10
s−1

)
= 1

s+1

� ROC of H:

−1 Re

Im

� overall system is BIBO stable
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Stabilization Example: Using Feedback (1)

� feedback system (with causal LTI compensator and sensor):

C

Q

P+
X R Y

−

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

� system function H of feedback system:

H(s) = C(s)P(s)
1+C(s)P(s)Q(s) =

10β
s−(1−10β)

� ROC of H:

1−10β
Re

Im

� feedback system is BIBO stable if and only if 1−10β < 0 or equivalently
β > 1

10
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Stabilization Example: Using Feedback (2)

C

Q

P+
X R Y

−

R(s) = X(s)−Q(s)Y (s)

Y (s) =C(s)P(s)R(s)

Y (s) =C(s)P(s)R(s)

=C(s)P(s)[X(s)−Q(s)Y (s)]

=C(s)P(s)X(s)−C(s)P(s)Q(s)Y (s)

[1+C(s)P(s)Q(s)]Y (s) =C(s)P(s)X(s)

H(s) =
Y (s)
X(s)

=
C(s)P(s)

1+C(s)P(s)Q(s)
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Stabilization Example: Using Feedback (3)

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

H(s) =
C(s)P(s)

1+C(s)P(s)Q(s)

=
β( 10

s−1)

1+β( 10
s−1)(1)

=
10β

s−1+10β

=
10β

s− (1−10β)
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Remarks on Stabilization Via Pole-Zero Cancellation

� Pole-zero cancellation is not achievable in practice, and therefore it cannot
be used to stabilize real-world systems.

� The theoretical models used to represent real-world systems are only
approximations due to many factors, including the following:

2 Determining the system function of a system involves measurement, which
always has some error.

2 A system cannot be built with such precision that it will have exactly some
prescribed system function.

2 The system function of most systems will vary at least slightly with changes
in the physical environment.

2 Although a LTI model is used to represent a system, the likely reality is that
the system is not exactly LTI, which introduces error.

� Due to approximation error, the effective poles and zeros of the system
function will only be approximately where they are expected to be.

� Since pole-zero cancellation requires that a pole and zero be placed at
exactly the same location, any error will prevent this cancellation from
being achieved.
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