Example 7.9 (Linearity property of the Laplace transform and pole-zero cancellation). Find the Laplace transform X
of the function
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where x; and x; are as defined in the previous example. / e utt)-e ult)

Solution. From the previous example, we know that

1
0 Xi(s) = oy for Re(s) > —1 and

) Xz(S)zm for Re(s) > —1.

From the definition of X, we have
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Now, we must determine the ROC of X. We know that the ROC of X must at least contain the intersection of the
ROC:s of X; and X,. Therefore, the ROC must contain Re(s) > —1. Since X is rational, we also know that the ROC
must be bounded by poles or extend to infinity. Since X has only one pole and this pole is at —2, the ROC must also
include —2 < Re(s) < —1. Therefore, the ROC of X is Re(s) > —2. In effect, the pole at —1 has been cancelled by
a zero at the same location. As a result, the ROC of X is larger than the intersection of the ROCs of X; and X;. The
various ROCs are illustrated in Figure 7.10. So, in conclusion, we have

X(s)

= for Re(s) > —2. [ |
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Figure 7.10: ROCs for the linearity example. The (a) ROC of X, (b) ROC of X5, (c) ROC associated with the
intersection of the ROCs of X; and X», and (d) ROC of X.
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