Example 7.3. Find the Laplace transform X of the function
x(t) = e “u(t),
where a is a real constant.

Solution. Lets = o+ jo, where ¢ and o are real. From the definition of the Laplace transform, we have

X(s) = L{e “u(t)}(s) definition of LT
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At this point, we substitute’'s = ¢ + j® in order to more easily determine when the above expression converges to a
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Thus, we can see that the above expression only converges for o +a > 0 (i.e., Re(s) > —a). In this case, we have that

X(s) = (55555 ) 0- 1] if Re(s)>-a
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The region of convergence for X is illustrated in Figures 7.2(a) and (b) for the cases of a > 0 and a < 0, respectively.
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Thus, we have that

Im(s) Re(s) >-a Im(s) Rels) > -q
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Figure 7.2: Region of convergence for the case that (a) a > 0 and (b) a < 0.
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