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Example 7.40 (Stabilization of unstable plant). Consider the causal LTI system with input Laplace transform X ,

output Laplace transform Y , and system function

P(s) =
10

s−1
,

as depicted in Figure 7.27. One can easily confirm that this system is not BIBO stable, due to the pole of P at 1. (Since

the system is causal, the ROC of P is the RHP given by Re(s)> 1. Clearly, this ROC does not include the imaginary

axis. Therefore, the system is not stable.) In what follows, we consider two different strategies for stabilizing this

unstable system as well as their suitability for use in practice.
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Figure 7.27: Plant.

(a) STABILIZATION OF UNSTABLE PLANT VIA POLE-ZERO CANCELLATION. Suppose that the system in Fig-

ure 7.27 is connected in series with another causal LTI system with system function

W (s) =
s−1

10(s+1)
,

in order to yield a new system with input Laplace transform X and output Laplace transform Y , as shown in Fig-

ure 7.28(a). Show that this new system is BIBO stable.

(b) STABILIZATION OF UNSTABLE PLANT VIA FEEDBACK. Suppose now that the system in Figure 7.27 is

interconnected with two other causal LTI systems with system functions C and Q, as shown in Figure 7.28(b), in order

to yield a new system with input Laplace transform X , output Laplace transform Y , and system function H. Moreover,

suppose that

C(s) = β and Q(s) = 1,

where β is a real constant. Show that, with an appropriate choice of β , the resulting system is BIBO stable.
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Figure 7.28: Two configurations for stabilizing the unstable plant. (a) Simple cascade system and (b) feedback control

system.

(c) PRACTICAL ISSUES. Parts (a) and (b) of this example consider two different schemes for stabilizing the

unstable system in Figure 7.27. As it turns out, a scheme like the one in part (a) is not useful in practice. Identify

the practical problems associated with this approach. Indicate whether the scheme in part (b) suffers from the same

shortcomings.
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Solution. (a) From the block diagram in Figure 7.28(a), the system function H of the overall system is

H(s) = P(s)W (s)

=

(

10

s−1

)(

s−1

10(s+1)

)

=
1

s+1
.

Since the system is causal and H is rational, the ROC of H is Re(s) > −1. Since the ROC includes the imaginary

axis, the system is BIBO stable.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the

system also has a somewhat reasonable step response. Recall that, for a control system, the output should track the

input. Since, in the case of the step response, the input is u, we would like the output to at least approximate u. The

step response s is given by

s(t) = L
−1 {U(s)H(s)}(t)

= L
−1

{

1

s(s+1)

}

(t)

= L
−1

{

1

s
−

1

s+1

}

(t)

= (1− e−t)u(t).

Evidently, s is a somewhat crude approximation of the desired response u.

(b) From the block diagram in Figure 7.28(b), we can write

R(s) = X(s)−Q(s)Y (s) and

Y (s) =C(s)P(s)R(s).

Combining these equations (by substituting the expression for R in the first equation into the second equation), we

obtain

Y (s) =C(s)P(s)[X(s)−Q(s)Y (s)]

⇒ Y (s) =C(s)P(s)X(s)−C(s)P(s)Q(s)Y (s)

⇒ [1+C(s)P(s)Q(s)]Y (s) =C(s)P(s)X(s)

⇒
Y (s)

X(s)
=

C(s)P(s)

1+C(s)P(s)Q(s)
.

Since H(s) = Y (s)
X(s) , we have

H(s) =
C(s)P(s)

1+C(s)P(s)Q(s)
.

Substituting the given expressions for P, C, and Q, we have

H(s) =
β ( 10

s−1
)

1+β ( 10
s−1

)(1)

=
10β

s−1+10β

=
10β

s− (1−10β )
.
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The system function H is rational and has a single pole at 1−10β . Since the system is causal, the ROC must be the

RHP given by Re(s) > 1− 10β . For the system to be stable, we require that the ROC includes the imaginary axis.

Thus, the system is stable if 1−10β < 0 which implies 10β > 1, or equivalently β >
1
10

.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the

system also has a reasonable step response. (This is not by chance, however. Some care had to be exercised in

the choice of the form of the compensator system function C. The process involved in making this choice requires

knowledge of control systems beyond the scope of this book, however.) Recall that, for a control system, the output

should track the input. Since, in the case of the step response, the input is u, we would like the output to at least

approximate u. The step response s is given by

s(t) = L
−1 {U(s)H(s)}(t)

= L
−1

{

10β

s(s− [1−10β ])

}

(t)

= L
−1

{

10β

10β −1

(

1

s
−

1

s− (1−10β )

)}

(t)

=
10β

10β −1

(

1− e−(10β−1)t
)

u(t)

≈ u(t) for large β .

Clearly, as β increases, s better approximates the desired response u.

(c) The scheme in part (a) for stabilizing the unstable plant relies on pole-zero cancellation. Unfortunately, in

practice, it is not possible to achieve pole-zero cancellation. In short, the issue is one of approximation. Our analysis

of systems is based on theoretical models specified in terms of equations. These theoretical models, however, are only

approximations of real-world systems. This approximate nature is due to many factors, including (but not limited to)

the following:

1. We cannot determine the system function of a system exactly, since this involves measurement, which always

has some error.

2. We cannot build a system with such precision that it will have exactly some prescribed system function. The

system function will only be close to the desired one.

3. The system function of most systems will vary at least slightly with changes in the physical environment (e.g.,

changes in temperature and pressure, or changes in gravitational forces due to changes in the phase of the moon,

and so on).

4. Although a system may be represented by a LTI model, the likely reality is that the system is not exactly LTI,

which introduces error.

For reasons such as these, the effective poles and zeros of the system function will only be approximately where we

expect them to be. Pole-zero cancellation, however, requires a pole and zero to be placed at exactly the same location.

So, any error will prevent the pole-zero cancellation from occurring. Since at least some small error is unavoidable in

practice, the desired pole-zero cancellation will not be achieved.

The scheme in part (b) for stabilizing the unstable plant is based on feedback. With the feedback approach, the

poles of the system function are not cancelled with zeros. Instead, the poles are completely changed/relocated. For

this reason, we can place the poles such that, even if the poles are displaced slightly (due to approximation error),

the stability of the system will not be compromised. Therefore, this second scheme does not suffer from the same

practical problem that the first one does. �
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