
1

Using Metrics To Manage Software
Risks

1. Introduction
2. Software Metrics
3. Case Study: Measuring Maintainability
4. Metrics and Quality

2

1. Introduction

Measurement gives a snapshot of specific parameters represented by numbers,
weights or binary statements. Taking measurements over time and comparing
them with specific baseline generate metrics.

Definition
Measurement is the process by which numbers or symbols are
assigned to attributes of entities in the real world so as to describe
them according to specified rules.

-There are two broad use of measurement: assessment and prediction:
•Predictive measurement of some attribute A relies on a mathematical model relating A to

some existing measures of attributes A1, …, An.
•Assessment is more straightforward and relies on the current status of the attribute.

3

Rationale for Software Metrics
•Why use metrics in software development?

•Improve software development process through the ability to measure it.
•Manage the process by assessing or predicting software quality.

•As a matter of fact, software metrics have been successfully developed for a broad
range of quality attributes including reliability, performance, and maintainability.

4

2. Software Metrics
Overview
-Software metrics provide a quantitative vehicle for evaluating and
managing quality factors and risks related to a given software product.

-The software artifacts concerned by metrics include analysis, and
design models, as well as program code.

-Metrics can be used at early stages as leading quality indicators of the
software architecture design. They can also be used to drive an
iterative design process (such as the Rational Unified Process).

-Metrics may be collected either dynamically or statically.
-Dynamic metrics require execution of the software system,
which restrict their applicability to later phase of the development.

-Static metrics, in contrast can be collected and used at early stages
of the design.

5

-There are 3 classes of entities of interest in software measurement:
processes, products, and resources.

•processes: Are any software related activities which take place over time.
•products: are any artifacts, deliverables or documents which arise out of the

processes.
•resources: are the items which are inputs to processes

-Examples of software measures:
•product cost
•development effort
•development time
•product size
•productivity
•defect count
•scalability
• reliability

Software Measurement

6

-In software measurement, a distinction is made between internal and
external attributes:
•Internal attributes: are those which can be measured purely in terms of the product,

process, or resource itself. Example: size for product and elapsed time for process.

•External attributes: are those which can only be measured with respect to how the
product, process, or resource relates to other entities in its environment. Example:
reliability for product and productivity for resource (e.g. people).

-Software Managers and Users would like to measure and
predict external attributes.

•External attributes are easy to interpret but hard to measure directly, while
internal attributes are hard to interpret but easy to collect directly.

-Measurement always targets specific software attribute or concept:
•Examples: complexity, cohesion, coupling, size, length, time, effort, maintainability etc.

7

-In practice, measurement of external attributes are derived indirectly
from internal (attributes) measures, through correlation or statistical
analysis such as regression or Bayesian probabilistic models.

•Example:
Product Cost = f(effort, time); Effort (person/month)= g(size)

8

3. Case Study: Measuring Maintainability

-Complexity is mastered by applying the principle of “divide and
conquer”, which typically underlies another common design
principle, namely modular design.

-Good modular design requires high cohesion of modules, and less
coupling between them.

•Less cohesion means more complexity.
•Strong coupling means reduced reusability.

-Several software product metrics have been proposed to evaluate the
complexity factors that affect the creation, comprehension,
modification, and maintenance of a piece of software.

•Complex code is difficult to understand, and thereby to maintain and evolve. Complex code
increases the cost of testing, because the likelihood of faults is higher.

-Important aspects of maintainability include product simplicity,
understandability, flexibility, and reusability.

9

Metrics Available at Design Constructs/
Concepts

Cyclomatic complexity (CC) N Method/
Complexity

Lines of Code (LOC) N Method/
Size, complexity

Comment percentage (CP) N Method/
Complexity

Weighted methods per class (WMC) Y Class,Method/
Complexity

Response for a class (RFC) N Class, Method/
Complexity

Lack of cohesion of methods (LCOM) N Class/Cohesion

Coupling between objects classes
(CBO)

Y Class/Coupling

Depth of inheritance tree (DIT) Y Inheritance/
Complexity

Number of children (NOC) Y Inheritance/
Complexity

10

Cyclomatic Complexity (CC)
-Also called McCabe complexity metric
-Evaluate the complexity of algorithms involved in a method.
-Give a count of the number of test cases needed to test a method
comprehensively;

CC= e- n + 2 = 8 – 7 + 2 = 3

-Use a control flow graph (CFG) to describe the software module or
piece of code under study:

•Each node correspond to a block of sequential code.
•Each edge corresponds to a path created by a decision.

-CC is defined as the number of edges minus the number of nodes
plus 2: CC= edges - nodes + 2

Low CC means reduced
testing, and better
understandability.

11

Primitive Operations of Structured Programming

y=2+x;

CC=1-2+2 = 1

if (x>2) y=2x;
else y=2;

CC = 4 – 4 + 2 = 2

while (x>2)
y=2x;

CC=3-3+2=2

sequence repeatwhileif/then/else case

for(int i=0;i<5;
i++)

x=x+i;

CC=3-3+2=2

switch(c) {
case 0:…;
case 1: …;
default:…;

}

CC=6-5+2=3

12

Size
-The size of a piece of code can be measured using different metrics.

•Lines of code (LOC) count all lines, including comments;
•Non-comment non-blank (NCNB) counts all lines except

comments and blanks.
•Executable statements (EXEC) count the number of

executable statements.

if x>2
then y=x+z;

LOC=2, NCNB=2, EXEC=1

/*evaluates…*/
if x>2
then y=x+z;

x=2z;

LOC=5, NCNB=3, EXEC=2

High size decreases
understandability, and

therefore
increases risk and faults.

Examples:

13

Comment Percentage (CP)
-Is obtained by the total number of comments divided by the total
number of lines of code less the number of blank lines.

/*evaluates…*/
if x>2
then y=x+z;

x=2z;

/*computes…*/
z=x*x-y;

CP = 2/(8-2)=33%

Example:

Higher comment percentage
means better understandability

and maintainability.

14

Weighted Methods per Class (WMC)
-Is measured either by counting the number of methods associated
with a class, or by summing the complexities (CC) of the methods.

Person

name: Name
employeeID: Integer
title: String

getContactInformation():
ContactInformation

getPersonalRecords():
Personalrecords WMC=2

n
WMC = Σ ci, ci = CCii=1 Example:

High WMC value is a sign of high
complexity, and less reusability.

15

Response For a Class (RFC)
-Measures the number of methods that can be invoked in response to a message

to an object of the class or by some methods in the class; this includes all the
methods accessible in the class hierarchy.

StoreDepartments

manager
employees

display()
credit()

Clothing

customer_gender
size_range

exchange()

Appliances

category

delivery()
service()
parts_ordering()

RFC (StoreDepartments)
=2+1+3=6

RFC(Clothing) = 2+1=3

RFC(Appliances)=2+3=5

Higher RFC value is a predictor of
larger number of communications with

other classes, so more complexity.

Example:

16

Lack of Cohesion (LCOM)
-Measures the cohesion or lack of a class; evaluate the dissimilarity
of methods in a class by instance variables or attributes.

-LCOM is measured by counting the number of pairs of methods that
have no attributes in common, minus the number of methods that do.
A negative difference corresponds to LCOM value of zero.

Device

type:int
reading:int
mode: boolean

compute(x:int,y:int):int
update(a: int):int
test(t:int)

Class Device {
int reading, type;
boolean mode=false;

public int update (int a) {return a + reading; }
public int compute(int x, int y) {return x*y*type - reading;}
public void test (int t) { if t ==1 mode=true;}

}
LCOM(Device)= 2 – 1 = 1

Low cohesion is a sign of high complexity,
and shows that the class can be subdivided.
High cohesion indicates simplicity and high

potential for reuse. Example:

17

Coupling Between Object Classes (CBO)
-Measures the number of classes to which a class is coupled.
-A class A is coupled to class B iff A uses B’s methods or instance variables.
-Coupling Is calculated by counting the number of distinct non-inheritance related

class hierarchies on which a class depends.

StoreDepartments

manager
employees

display()
credit()

JacketDepartment

customer_type
size_range

exchange()

SlacksDepartment

customer_type
size_range

exchange()
purchase()

Warehouse

Supplier

stock

products

CBO(StoreDepartments)=1
CBO(Warehouse)=1
CBO(Supplier)=0

Useful for
determining
reusability

High coupling
means increased

dependency among
the classes; this

restricts reusability.

Example:

18

Depth of Inheritance Tree (DIT)
-Measures the number of ancestor classes of a given class involved in

an inheritance relation.

StoreDepartments

manager
employees

display()
credit()

Clothing

customer_gender
size_range

exchange()

Appliances

category

delivery()
service()
parts_ordering()

Department

DIT (Appliances) = 2
DIT(StoreDpartments)=1
DIT(Department)=0

Example:

Greater value of DIT means more
methods to be inherited, so increased

complexity; but at the same time
that means increased reusability;
so a trade-off must be made here.

19

Number of Children (NOC)
-Measures the number of immediate subclasses of a class in an

inheritance hierarchy.

StoreDepartments

manager
employees

display()
credit()

Clothing

customer_gender
size_range

exchange()

Appliances

category

delivery()
service()
parts_ordering()

Division NOC(Division) =1
NOC(StoreDepartments)=2
NOC(Appliances)=0

Example:

High NOC means high reuse, but may also
be the sign of improper abstraction or
misuse of inheritance. High NOC may also
be the sign of increased complexity. So a
trade-off must be made for this metric.

20

EXAMPLE:

Message
text: string

WarningLtrs

PeriodicMsgs

Customer
name:string
address:string
birth_date:DateTime
account_num:long

create_customer()

Purchase
date:DateTime
tax_rate:float

price()
tax()

Bill
issue_date:DateTime
payment_date:DateTime

price()
tax()
customer()
list_purchases()

21

------Lack of
Cohesion in
Methods

011211Coupling
Between
Objects

------Response for a
Class

001100Depth of
Inheritance
Tree

020000Number
of Children

1 00024Weighted
Methods/Class

CustomerMessagePeriodic
Msgs

Warning
Ltrs

PurchaseBillMetric

22

M etr ic So urce O O

C o nstruct
O bjectiv es Q ua lity A ttr ibute

C C T rad itio n a l M eth o d L o w T estab ility
U n d ers tan dab ility

L O C T rad itio n a l M eth o d L o w U n d ers tan dab ility
R eu sab ility
M a in ta in ab ility

C P T rad itio n a l M eth o d ~ 2 0 -3 0 % U n d ers tan dab ility
M a in ta in ab ility

W M C N ew O O C lass/
M eth o d

L o w T estab ility
R eu sab ility

D IT N ew O O In h e ritan ce L o w
(T rad e-o ff)

R eu se
U n d ers tan dab ility
M a in ta in ab ility

N O C N ew O O In h e ritan ce L o w
(T rad e-o ff)

R eu sab ility
T estab ility

C B O N ew O O C o u p lin g L o w U sab ility
M a in ta in ab ility
R eu sab ility

R FC N ew O O C lass/
M eth o d

L o w U sab ility
R eu sab ility
T estab ility

L C O M N ew O O C lass/
C o h esio n

L o w H ig h C o m p lex ity
R eu sab ility

4. Metrics and Quality
Metrics can be useful indicators of unhealthy code and design, pointing
out areas where problems are likely to occur, by focusing on specific
quality attributes.

