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Abstract

The phase-vocoder is a well-established tool for time-
scaling and pitch shifting speech and audio signals.
Its theory is now well understood and improvements
have been proposed to reduce artifacts commonly en-
countered when time-expanding signals by large fac-
tors [1, 2, 3, 4]. In the literature, the phase-vocoder
has been described primarily as a tool for time-scaling
rather than pitch shifting, the latter usually being
achieved by a combination of time-scaling and sam-
pling rate conversion [5, 6]. This article focuses mainly
on pitch-scale modification of speech and audio sig-
nals, and discusses the drawbacks of the standard time-
scale/resampling technique. Two alternative tech-
niques are presented that significantly reduce the com-
plexity and computational cost, while offering dramati-
cally extended capabilities. In particular, the new tech-
niques, which operate solely in the frequency domain,
enable chorusing, harmonizing and non-standard fre-
quency modifications such as partial-stretching (non-
linear frequency scaling), frequency inversions and so
on.

0 Introduction

time-scale and pitch-scale modifications of speech and
audio signals have now become a standard feature in
many products ranging from sound-design software to
telephone answering systems, musical effect processors,
professional CD players, hard-disk recorders and so on.

As the computation power of DSP and general pur-
pose processors keeps on increasing, more elaborate
techniques such as the phase-vocoder, once confined to
academic research or dedicated hardware, progressively
make their way into inexpensive consumer products
or PC-based software. Simultaneously, more research

has been devoted to improving their performance and
reducing their cost, see for example [1, 7, 3, 4] for
improved phase-vocoder time-scaling techniques. The
phase-vocoder has always been a highly praised tech-
nique for time-scale modifications of speech and au-
dio signals, being free of the artifacts usually encoun-
tered in time-domain techniques [6, 5], such as war-
bling and tempo-modulation. The most standard way
to carry out pitch-scale modifications in the phase-
vocoder framework is to first perform time-scale modi-
fication, then perform time-domain sampling rate con-
version on the resulting signal. For example, in order
to raise the pitch of a signal by 2 while keeping its
duration unchanged, one would use the phase-vocoder
to time-expand the signal by a factor 2, leaving the
pitch unchanged, and then upsample the resulting sig-
nal by a factor 2, thereby restoring the original du-
ration while raising the pitch by a factor 2. In this
paper, the standard technique is shown to have several
drawbacks: it only enables linear pitch-scaling mod-
ifications (whereby all frequencies are multiplied by
the same ratio) and the computational cost per out-
put sample is a factor of the pitch-scaling modifica-
tion ratio, potentially becoming increasingly larger for
extreme modification factors. Two alternative tech-
niques are presented that eliminate these drawbacks.
In these techniques, the pitch-scale modification is car-
ried out exclusively in the frequency domain, which
enables multiple, non-linear frequency modifications
(frequency-dependent modification ratios). The com-
putational cost is shown to be independent of the type
and amount of modification and is significantly less
than in the standard technique, the arc tangent and
phase-unwrapping stages having been eliminated. Fur-
thermore, the simplest technique can operate at a low
overlap ratio (50%), which further lowers its costs by a
factor 2, compared to standard techniques which usu-
ally operate at a 75% overlap.



This paper is divided into two sections. The first sec-
tion is devoted to the analysis of the standard phase-
vocoder based pitch-scale modification algorithm and
of its shortcomings. The second section presents two
alternative techniques based on peak picking and lo-
cal frequency shifting, and discusses their respective
advantages.

1 Standard
pitch-scaling algorithm

phase-vocoder

1.1 phase-vocoder based time-scale

modification

Because the most standard phase-vocoder based pitch-
modification techniques involve a time-scaling stage,
we devote this small part to the discussion of the most
important aspects of phase-vocoder based time-scaling.
However, since these techniques are well understood,
we will not give a detailed description, but simply in-
troduce our notations and emphasize a few important
points. The reader is referred to [5] or [6] for descrip-
tions of the most standard techniques, and [1, 2, 7] for
improved techniques that reduce the artifacts in the
modified signal.

In the following, we will denote h(n) the analysis win-
dow, w(n) the synthesis window, R, the input hop size
in samples (the number of samples separating two anal-
ysis windows) and Ry the output hop size in samples.
The analysis short-term Fourier transform at frame u
and frequency Qy, is X (%, Q) where t¥ is the analysis
time at frame u and Q; = 21’{,’“ is the center frequency
of the k-th vocoder “channel”. N is the size of the dis-
crete Fourier transform. The synthesis Fourier trans-
form, after modification, is Y (¢, Q) where ¢ denotes
the synthesis time at frame u.

In the rest of this paper, the analysis window is sup-
posed to be symmetrical around n = 0. In addition,
the Fourier transform is supposed to be ”centered at
n =70,

N/2
Xt ) = > a(n+tl)h(n)e %"

n=—N/2

In practice though, Fast Fourier Transform algorithms
introduce an implicit delay equal to half the size of
the transform, in which case some of the results below
become invalid because the delay introduces a linear
phase term in the transform. An easy way to counter
that is to circularly advance the signal by N/2 samples
before taking the Fourier transform.

1.2 Using time-scale modification and
resampling.

A pitch-scale modification by a factor 8 consists of mul-
tiplying the frequencies of all the components in the
signal by @ while keeping the signal’s time-evolution
unchanged. Thus, a modification by a factor § = 2
raises the pitch of a harmonic signal by an octave and
a modification by a factor § = .5 lowers the pitch by
an octave.

The standard technique for performing a factor g pitch-
scale modification using the phase-vocoder relies on a
two-stage process:

1. In the first stage, the phase-vocoder is used to per-
form a time-scale modification of the signal, i.e.,
to modify its duration by a factor 8 while keep-
ing its frequency content unchanged. Here, 8 > 1
means the duration of the signal is increased.

2. In the second stage, the time-scaled signal is re-
sampled at a new sampling rate equal to the orig-
inal sampling rate divided by . At the end of
this stage, the duration of the resulting signal is
equal to that of the time-scaled signal divided by
[ which is equal to the duration of the original sig-
nal. The resampling stage has the effect of modi-
fying the frequency content of the signal, which is
the desired effect.

Note that the order in which these two stages are car-
ried out can be reversed, but the cost of the resulting
algorithm will not be the same: For upward pitch-shifts
(B > 1), it is less costly to first perform the sampling
rate conversion stage, and then apply the time-scaling
stage on the result. For downward pitch-shifts (8 < 1),
time-scaling should be performed first, followed by the
resampling stage. The reason is as follows: The cost
of the resampling stage is proportional to the number
of samples at the output of this stage. The cost of the
time-scaling stage is also proportional to the number of
output samples. To generate L samples of pitch-shifted
samples, performing the sampling rate conversion first
requires calculating L/ intermediate samples, then L
time-scaled samples. The overall cost per output pitch-
modified sample can be approximately expressed as

1
Cl - ECT + Cts

where Cy, is the cost per output sample of the time-
scaling stage, and C, that of the resampling stage.
This expression clearly overlooks the algorithm over-
head which strongly depend on the specific implemen-
tation, but is still useful for comparisons.

Carrying out the time-scaling stage first requires calcu-
lating L time-scaled samples, then L resampled sam-

(1)

(resampling first)



ples, yielding an overall cost per output sample of

Cy = BCss + C. (time-scaling first) (2)
It is clear from inspecting Eqs. (1) and (2) that if 8 > 1
then the first option is less costly, while the converse is
true if 8 < 1. In situations where the pitch-scale mod-
ification factor 3 is constrained to be larger or smaller
than 1 it is practical to choose the most favorable op-
tion. However, if § can vary above or below 1 during
processing, the on-the-fly reversal of the order in which
the resampling and time-scaling stages are carried out
would undoubtedly generate significant overhead which
could offset the cost-saving. If the stages are carried
out in a fixed order, regardless of the modification fac-
tor, then one of Egs. (1) and (2) applies to all values of
[, which means that the algorithm becomes more and
more costly as 8 grows larger and larger, or smaller
and smaller, depending on the order chosen.

Note that if resampling is performed first, the size
of the analysis window and the hop size in the time-
scaling stage should be modified according to the mod-
ification factor (3, to reflect a constant duration in sec-
onds. Since the size of the FFT can also be scaled
accordingly, and because the cost of an overlap/add
process is roughly independent from the FFT size for
a constant overlap in percent, this rescaling does not
necessarily increase the cost of the algorithm. In prac-
tice though, the FFT size which must be a power of
two cannot be rescaled arbitrarily, and the cost of the
algorithm becomes slightly larger for large 3.

The resampling stage (or interpolating stage), can
be performed in the time-domain by use of any of the
many resampling schemes. An inexpensive, low-quality
technique consists of using linear interpolation. Higher
quality can be obtained by use of higher order Lagrange
interpolation, or by the Smith-Gosset algorithm [§],
with a significant increase of computation cost.
Alternately, the resampling stage can be performed in
the frequency domain, and can be combined with the
time-scaling stage, as described in [5].

1.3 Drawbacks of the standard tech-
nique

The standard pitch-scale modification technique, which
combines time-scale modification and resampling, has
several drawbacks. The main drawback is that the cost
per output sample is a function of the modification fac-
tor, as shown by Egs. (1) and (2). While this can be
an attractive feature, for example if the most favor-
able processing order can be selected as a function of
the modification factor, it can also be a nuisance if the
processing order is fixed, since in that case, the algo-
rithm can become more and more costly depending on
the value of 8. An algorithm with a cost independent

of the modification factor is generally preferable.

Another drawbacks of the standard technique is that
only one ”linear” pitch-scale modification is allowed,
i.e., the frequencies of all the components are multi-
plied by the same factor 8. In particular, signal ”har-
monizing” (multiple, superimposed pitch-scale modifi-
cations with different factors) cannot be implemented
in one pass, and requires repeated processing. An algo-
rithm that would be more flexible in terms of how fre-
quencies are altered could provide a much wider range
of creative modifications to the user. The techniques
described below allow such flexible modifications.

2 Peak-based pitch effects in the
phase-vocoder

The underlying idea behind the algorithms described
in this section is the following: The short-term Fourier
transform of a single input complex exponential with a
constant frequency is a peak located around the expo-
nential’s frequency. The spectral shape of the peak is
the signature of the temporal shape of the analysis win-
dow. If instead of rescaling the frequency axis (which
changes the peak frequency but also alters the spectral
shape of the peak) as described in [5], the frequency
bins around the peak are shifted to a new frequency,
then this new spectral shape corresponds to the origi-
nal analysis window modulated at the new frequency.
More specifically, if the original signal is

z(n) = el (wn+o)

the short-term signal at time ¢ is
2" (n) = ej(w(n+t;‘)+¢)h(n)

and its Fourier transform is,
X(t2, Q) = d ORI H(Qy — w)

where H(2) is the Fourier transform of the analysis
window h(n). If we now shift this Fourier transform
by a frequency Aw, i.e.,

Y(tz Qk) = X(ts Qk - Aw)
then the corresponding short-term signal is simply

y*(n) = z* (n)ejAwn — 6j(¢+wt2)ej(w+Aw)nh(n)
which shows that y*(n) corresponds to the same analy-
sis window modulated at a different frequency (w+Aw)
with an additional phase term.

The important point here, is that because the spectrum
has not been rescaled, but merely shifted in frequency,
the short-term signal is not shrunk or expanded in



time, and its duration is still that of the analysis win-
dow h(n), which makes it possible to use the same in-
put and output hop size. It is shown in Appendix A
that if the input signal is a complex exponential,

z(n) = ed(wn+¢)

if in the phase-vocoder we set t* =t = uRy, and

Y(t1;79k) = X(tgzﬂk _ Aw)ejAuJuRO (3)

and if the standard phase-vocoder condition for
perfect-reconstruction is met:

Z g(n+iRp)h(n +iRy) =1 Vn

i=—00

(4)

then the output signal is a perfectly frequency-shifted
complex exponential:

y(n) = elllwtAwntd]
In order to accommodate time-varying frequencies w*
and shifts Aw", Eq. (3) can be replaced by

Y(t, Q) = X (14, Q — Aw*)e/”” with

6" =0 + Aw“ Ry 5)
which is equivalent to Eq. (3) for a constant frequency
shift Aw® = Aw.

This suggests a very simple algorithm for pitch-scale
modification: In each phase-vocoder frame, 1) find the
peaks in the spectrum (which are assumed to indicate
underlying sinusoids), and 2) for each peak, shift the
bins around it to a new frequency, taking into account
the phase correction term in Eq. (5). Notice that Aw
does not necessarily correspond to an integer number of
frequency bins, so Eq. (5) might require interpolation,
since X (t%,Qy) is only known at discrete frequencies
Q.

The successive stages of this algorithm are described
in more detail in the following sections, but the deci-
sive advantages of this technique over the standard one
are already clear: 1) There is a great flexibility as to
how each sinusoidal component will be altered, since
Aw can be a function of the channel index k, 2) the
input and output hop size, and the FFT size do not
need to be a function of the pitch-scale amount, 3) the
phase-correction term in Eq. (5) does not require the
knowledge of the instantaneous frequency w, and there-
fore, no arctangent or phase-unwrapping is needed. In
addition, we will see that in some cases, an overlap as
low as 50% can be used, with no loss of quality.

2.1 Peak-detection

The peak detection can be fairly coarse, since all we
need to do is detect the main sinusoids in the signal.

In the simplest implementation, a channel whose am-
plitude is larger than its four nearest neighbors is said
to be a peak; this criterion is both simple and cost-
effective, but might fail to distinguish local maxima
due to the presence of a sinusoid from local maxima
corresponding to the lobes of the Fourier transform of
analysis window. Any more refined scheme can be used
instead, although it was found that in practice, this
very basic technique yields very good results.

Following this stage, the frequency axis can be split
into ”regions of influence” located around each peak.
Again, a very simple scheme is to cut the frequency
axis half-way in between two consecutive peaks, assign-
ing each half to the closest peak. Another reasonable
scheme is to look for the channel with the lowest am-
plitude between two consecutive peaks, and make this
channel the limit between the two regions of influence.

2.2 Calculating the amount of fre-
quency shift

A very nice feature of this algorithm is that every peak
can be shifted to an arbitrary frequency. If the desired
effect is a standard pitch-scaling with a ratio 3, then
the peak should be shifted by Aw = fw — w where w is
the frequency of the sinusoid responsible for the peak.
However, only an approximate value of w is known,
namely Qp, , where kg is the peak channel, and there-
fore Aw is only known approximately, which can be a
problem. In practice, if the FFT size is large enough,
then Q, might end up being a good enough estimate
of w. If this is not the case, for example if a very precise
amount of pitch shifting is desirable, then the estimate
of w can be refined by use of a quadratic interpolation,
whereby a parabola is fitted to the peak channel and
its two neighbors and the maximum of the parabola is
taken to indicate the true sinusoidal frequency. This is
known to yield the exact frequency for a pure sinusoid
and a Gaussian analysis window if the transform is ex-
pressed in dB.

Linear frequency-scaling is not the only possibility at
this point. One-step "Harmonizing” becomes possible,
because one can shift a given peak to different loca-
tions, as determined by the harmonizing ratios: For
example, to harmonize a melody to a fourth and a sev-
enth, each peak could be shifted to two frequencies,
one corresponding to the ratio 2°/12 the other to the
ratio 2'9/12 Chorusing can also be obtained by harmo-
nizing with ratios close to 1. With the standard tech-
nique, these effects would require multiple passes, mak-
ing them prohibitively expensive. Other interesting ef-
fects can be obtained by using a ratio [ itself a factor
of frequency. For example, setting f(w) = By + yw
turns a harmonic signal (one where the frequencies of
all the partials are integer multiples of a fundamental
frequency) into an inharmonic signal, or an inharmonic



signal into a harmonic signal. Another possibility con-
sists of shuffling the frequencies around, completely al-
tering the spectral content of the signal. Interestingly,
our technique makes it possible to apply the same fre-
quency manipulations allowed by sinusoidal represen-
tations [9, 10, 11, 12, 13], in real-time, and without the
hassle of the preliminary analysis stage.

2.3 Shifting the peaks

Once the amount of frequency shift Aw is known, two
separate cases arise depending on whether Aw does or
does not correspond to an integer number of frequency
channels.

Integer shifts When Aw corresponds to an integer
number of channels, the shift does not require any in-
terpolation, and is just a matter of copying the values
of the Fourier transform from one set of channels to
another. This is by far the simplest case. Notice how-
ever, that two consecutive regions of influence, after
being shifted, can overlap (in which case they can sim-
ply be added) or become disjoint (in which case null
spectral values can be inserted) as shown in Fig. 1.

Amplitude

Frequency

\Ljpward pitch-scale

Downward pnCh:xy

Amplitude
Amplitude

Frequency Frequency

Figure 1: Shifting peaks in frequency: downward pitch-
scaling can cause the areas around peaks to overlap (left)
and upward pitch-scaling can cause them to become disjoint
(right)

Non-integer shifts When Aw corresponds to a non-
integer number of channels, Eq. (5) requires interpo-
lating the spectrum between discrete frequency values.
The operation is essentially a frequency-domain frac-
tional delay. A lot has been written about fractional
time-delays [14, 15, 16, 17, 18], and the same tech-
niques can be applied for fractional frequency-delays.
The simplest technique consists of using linear inter-
polation (both the real and the imaginary part are lin-
early interpolated), which in the dual domain (here, in

the time-domain), can introduce an undesirable modu-
lation. In the worst case of a .5 frequency bin shift, the
linear interpolation introduces an attenuation at the
beginning and end of the short-term signal. Specifi-
cally, the half-channel shifted version of X (t¥, Q) is
given by Y(t", Q) = 0.5(X (8%, Q) + X (2%, Qpsr))
which yields

u _u n
y“(n) =z (n)cosn-N
where N denotes the size of the FFT. The short-
term signal is amplitude-modulated by a cosine func-
tion. Assuming that the analysis and synthesis win-
dows were designed for perfect reconstruction (i.e., sat-
isfied Eq. (4)), then the output signal y(n) will also
exhibit amplitude modulation. This is illustrated
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Figure 2: Amplitude modulation caused by the frequency
domain linear interpolation for a half-bin shift. Top cor-
responds to a 50% overlap, bottom to a 75% overlap, for
a Hanning input window and a rectangular synthesis win-
dow. The dashed lines are the individual cosine modulated
output windows h(n)g(n) and the solid line is the resulting
overlap-add modulation.

in Fig. 2 for a 50% and a 75% overlap add, a Han-
ning analysis window, a rectangular synthesis window
and a FFT size equal to the size of the windows. It is
shown in appendix B that the modulation introduces
sidebands whose levels are a function of the window
type and of the overlap. For an input sinusoid, at a
50% overlap, the sidebands are about 21dB down from
the sinusoid’s amplitude, which is quite audible. As a
result, a 50% overlap cannot be used if linear interpo-
lation is to be used.

At a 75% overlap, however, the amount of ampli-
tude modulation drops significantly: The sidebands are
about 51dB down from the sinusoid’s amplitude. This
level of modulation is much less conspicuous, if audible
at all. Fig. 3 shows the modulation in the frequency do-
main for a sinusoid with a normalized frequency equal
to .04, at 50% and 75% overlaps.



Amplitude in dB

ﬂ. RN S O T

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Normalized Frequency

Amplitude in dB

-100 all 1 1L m A L L L L

I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Normalized Frequency

Figure 3: Amplitude modulation caused by the frequency
domain linear interpolation for a half-bin shift; seen in the
frequency domain for an input sinusoid of normalized fre-
quency 0.04. Top corresponds to a 50% overlap, bottom to
a 75% overlap, for a Hanning input window and a rectan-
gular synthesis window.

In order to still be able to use a 50% overlap, one could
use a FFT size larger than the analysis window length,
or a higher-quality interpolation scheme, such as all-
pass or high-order Lagrange interpolation. Note, how-
ever, that the additional cost of these techniques might
very well offset the savings brought by the use of a 50%
overlap instead of a 75%, depending on the number of
peaks in the spectrum.

In conclusion, if only integer frequency shifts are al-
lowed, then no interpolation is needed, and a 50% over-
lap can be used. If non-integer frequency shifts are a
requirement, then linear interpolation with a 75% over-
lap yields good results.

2.4 Adjusting the phases

As shown in Eq. (5) the phases of the shifted bins
need to be adjusted for the output short-term signals
to overlap coherently. Eq. (5) only requires the cal-
culation of a pair of cosine and sine per peak, and
one complex multiplication per vocoder channel around
the peak. This is significantly simpler than the stan-
dard technique, which requires one arc tangent and one
phase-unwrapping per vocoder channel, in addition to
the cosine, sine and complex multiplication.

When only frequency shifts corresponding to integer
numbers of channels are allowed, and when the hop
size is a submultiple of the FFT size, Eq. (5) becomes
even simpler: In that case, Aw" = 2an/N where N is
the FFT size, and n is an integer, and Ry = N/m with
m integer. As aresult, Aw" Ry = n27/m, i.e., is always
a multiple of 27 /m. For example, if the overlap is 50%,
then m = 2 and Aw*Ry is always a multiple of 7, and
so is 6% (provided #° = 0). As a result, no cosine or

sine calculation is necessary and the rotation is a sim-
ple change of sign! This remark makes the algorithm
based on integer-channel shifts even more attractive.
In both cases, it is useful to note that because the chan-
nels around a given peak are rotated by the same angle
0", the differences between the phases of the channels
around a peak in the input short-term Fourier trans-
form are preserved in the output short-term Fourier
transform. This is similar to the phase-locking scheme
referred to as ”Identity Phase-Locking” in reference [2]
which was shown to dramatically minimize the ”phasi-
ness” artifact often encountered in phase-vocoder time
or pitch-scale modifications.

3 Discussion and conclusion

The two techniques presented above exhibit several
desirable properties, when compared to the standard
time-scale/resampling scheme for pitch-scale modifi-
cations of audio signals. Their cost is independent
of the modification factor, they allow for a much
wider range of modifications and they are significantly
simpler and more cost-effective. When large FFT sizes
are used (50 to 60 ms), for example for input signals
that contain low-pitch signals with closely spaced
harmonics, the simplest pitch-shifting scheme can be
used. This scheme, which restricts the frequency shifts
to be integer numbers of channels, only requires a
50% overlap, does not call for spectral interpolation
or angle calculation, and uses a trivial phase-adjusting
equation. As a result, its cost is roughly that of the
unavoidable Fourier transform and the overlap add
stages. Its drawback is that the pitch-scale factor
can only be approximate, with the approximation
getting better as the FFT size increases, and that the
frequency ratios between the partials in the signal are
only approximately preserved.

Large FFT sizes are undesirable however, as they tend
to worsen the ”phasing” artifacts often noticeable
in modified signals [2, 1]. When using small FFT
sizes (10 to 20ms), the simplest scheme no longer
yields good results, and spectral interpolation has
to be used. This in turns requires a 75% overlap
to minimize amplitude modulation problems, and a
slightly more complex phase-adjustment stage. The
overall algorithm remains far less complex than the
standard phase-vocoder technique. It can be easily
implemented on a PC, performing real-time pitch-scale
modification of a mono 48kHz file, utilizing less than
40% of the cpu power of a pentium-pro running at
200MHz (the simplest algorithm would utilize less
than 20%).

The new algorithms also allow for much more flexible
frequency manipulations: In particular, harmonizing
and chorusing can be implemented in one pass at a



marginal additional cost, whereas such effects would
require multiple passes with the standard algorithm.
More exotic effects, akin to those allowed by sinusoidal
models, are also very simple to implement,.

Finally, both algorithms implicitly implement the
"Identity Phase-Locking” technique described in [2],
and therefore produce much higher-quality modifica-
tions than standard, non phase-locked algorithms.

Arguably, the two techniques presented above bear
some similarities with techniques use in sinusoidal
modeling, [19], coding/modification [20] or synthe-
sis [21], as they manipulate spectral peaks caused by
the presence of ”sinusoid-like” signals. One significant
difference is that the actual shape of the spectral peak
(in both amplitude and phase) is not synthesized in
our algorithms, but merely modified. By contrast, in
sinusoidal modeling, coding or synthesis, one would
replace the spectral peaks by those corresponding to
the underlying sinusoids, based on their estimated am-
plitudes phases and frequencies. An important conse-
quence of this remark is that in the absence of modifi-
cation (no frequency-shifting) our algorithms produce
a signal strictly identical to the original one, whereas
sinusoidal modeling does not.

A Perfect frequency shift of a
complex exponential

In this section, we show that for a complex input ex-
ponential

z(n) = ed(wnto)

using R, = Ry = Ry and setting

Y (4, Q) = X (1, Q — Aw)elAwutio -

yields a perfect frequency shifted complex exponential,
provided the analysis and synthesis windows satisfy a
condition for perfect reconstruction.

At time t} = uRy the short-term input signal is

zd(n) = z(n + uRy)h(n)

a

where h(n) is the analysis window. This yields:
X(t%,Q) = e/ @uFotd) H(Q — w)

in which H(Q) is the Fourier transform of the analysis
window. As a result,

Y (4, 0Q) = X (14, Q — Aw)elAwuko
— ej(qu0+¢+Aqug)H(Q W — Au.))

= el (WA uRo+d) Fr(Q — o — Aw)

and the corresponding short-term output signal is

y"(n) = ej((w+Aw)uRo+d>)ej(w+Aw)nh(n)

Now the output signal is obtained by overlap-adding
the short-term signals in the following way:

[e.e]

S y(n— uRo)g(n — uRy)

uU=—00

y(n) =

and this yields
y(n) = Z el (w+Aw)uRo+9¢) pj(w+Aw)(n—uRo)

U=—00

h(n — uRg)g(n — uRy)

which simplifies as

y(n) = /(H2)H0) N h(n — uRg)g(n — uRo)

U=—00

If the standard phase-vocoder condition for perfect-
reconstruction is met:

Z g(n+iRg)h(n +iRy) =1 Vn

i=—00

then the output signal is a perfectly frequency-shifted
complex exponential:

y(n) _ ej(u)+Au))n+¢

which completes the proof.

B Overlap-add modulation

In this section, we investigate the time-domain am-
plitude modulation caused by overlap-adding cosine-
modulated windows. Given a window w(n) and an
overlap hop Ry, the signal resulting from overlap-
adding w(n) every Ry samples can be written as:

we(n) = Z w(n —iRy)
T L (7)
=w(n)* Y  d&(n—iRy)

i=—00

where d(n) is the dirac function (zero except for n = 0
where it is 1) and * denotes time-domain convolution.
Using a standard result on the Fourier transform of a
series of dirac functions, we can express the Fourier
transform of w,(n) as:

W,(Q) = W(Q)Rio PRI —z’%)

i=—00



which shows that w(n) has a line spectrum and the
amplitude of each line is obtained by sampling W ()
at frequencies 21—2 If a sinusoid of frequency wq is
amplitude-modulated by w(n), then the spectrum of
the resulting signal will be W (2 — wp), ie., W(Q)
shifted to the frequency of the sinusoid, as shown in
Fig. 3

For the overlap-add process to introduce no amplitude
modulation, W, (€2) must be equal to () (w,(n) = 1)
and equivalently, W(z%) must vanish for any i integer
different than 0.

Let us first examine the case where no cosine-
modulation is introduced during the peak-shifting pro-
cess. For a Hanning analysis window of length N, and
a rectangular synthesis window, w(n) is a length-IV
Hanning window and it is well known that the Fourier
transform of such a window is zero for Q = 2kn/N
with & > 2 integer [22]. Consequently, any hop size
Ry = N/k will yield a constant overlap-add signal,
because W(zé—’é) = W(i%k%) = 0 except for i = 0.
We just restated the well-known fact that Hanning
windows overlap-add to unity, provided the hop size
is equal to the window length divided by any integer
larger than 1.

When cosine modulation is introduced, the Fourier
transform of w(n) is no longer the same. In the same
case as above, but with a cosine modulation of the win-
dow, the Fourier transform of w(n) no longer vanishes
at 0 = 2kw /N, as shown in figure 4. In the 50% over-
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Figure 4: Fourier transform of the Hanning window (solid
line) and of the cosine modulated Hanning window (dashed
line). For a 50% overlap, the modulation has sinusoidal
components at multiples of 47/N with a null level for the
Hanning window, and levels decreasing from -21dB for the
modulated Hanning. At 75% overlap, for the modulated
Hanning window, the largest component other than DC
appears at 87/N at a -51dB level.

lap case, the first modulation component, at frequency
47 /N, has a null amplitude for the Hanning window
(perfect overlap) but a -21dB amplitude for the cosine-

modulated Hanning window. For a 66% overlap, the
first modulation component, at frequency 67 /N, has a
-41dB level, and for a 75% overlap, the first modulation
component, at frequency 87 /N, has a -51dB level.
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