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Abstract—A novel expression for the evaluation of 2-sensitivity
is developed for the cases of linear discrete-time systems, linear
continuous-time systems, and two-dimensional (2-D) state-space
digital filters. This is accomplished by introducing the concept of
general controlability and observability Gramians in each case.
Moreover, the 2-sensitivity measures obtained here contain the
conventional 1 2-sensitivity measures as a special case. An iter-
ative procedure for constructing the optimal coordinate transfor-
mation matrix that minimizes the 2-sensitivity measure is then
presented in each case. This procedure is advantageous since the
initial estimate and the estimate at each iteration can be calculated
analytically. Finally, three numerical examples are given to illus-
trate the utility of the proposed techniques.

Index Terms— 2-sensitivity, linear continuous-time systems,
linear discrete-time systems, optimal realization, sensitivity
minimization, two-dimensional state-space digital filters.

I. INTRODUCTION

ONE OF THE primary finite-length register effects in fixed
point digital filters is changes in the input–output descrip-

tion of the filter due to approximating real-number parameters
with a finite binary representation. Such an effect is loosely
called coefficient sensitivity and has been an important research
topic since coefficient truncation or rounding may cause an orig-
inally stable filter to be an unstable one. It is well-known that the
undesirable finite-word-length (FWL) effects can be reduced
considerably by the appropriate selection of the filter structure.
Several techniques for synthesizing linear discrete-time systems
that minimize the coefficient sensitivity have been reported in
[1]–[9]. These techniques can be divided into two main classes:

-sensitivity minimization [1]–[5] and -sensitivity min-
imization [6]–[9]. It has been pointed out [6]–[9] that the sensi-
tivity measure based on the norm only is natural and reason-
able. The -sensitivity minimization has also been con-
sidered in linear continuous-time systems [10]. The problem
of minimizing the coefficient sensitivity measure evaluated by
using a mixture of norms has been studied for two-di-
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mensional (2-D) state-space digital filters [11]–[15]. Recently,
the -sensitivity minimization problem has also been treated
in the 2-D case [16]–[18].

This paper addresses the -sensitivity minimization
problem for the cases of linear discrete-time systems, linear
continuous-time systems, and 2-D state-space digital filters. To
this end, we introduce the concept of general controllability
and observability Gramians, and derive a novel expression for
evaluating the -sensitivity for each case. This expression
includes the conventional -sensitivity measure as a
special case. Next, an iterative procedure for the minimization
of an -sensitivity measure with respect to a positive-definite
and symmetric matrix is presented in each case. This iteration
procedure can be performed analytically. Three numerical
examples are presented to demonstrate that the proposed algo-
rithms offer faster convergence as well as improved solutions.

Throughout this paper, denotes the identity matrix of ap-
propriate dimension. The transpose (conjugate transpose) of a
matrix is indicated by , and and are used
to denote the trace of a square matrixand the direct sum of
matrices, respectively.

II. -SENSITIVITY MINIMIZATION OF LINEAR SYSTEMS

A. Linear Discrete-Time Systems

Let be a state-space description of a stable, con-
trollable, and observable linear discrete-time system, i.e.,

(1)

where is an state-variable vector, is a scalar
input, is a scalar output, and, , , and are real constant
matrices of appropriate dimensions. The transfer function of (1)
is given by

(2)

Suppose that (1) is implemented by finite-word-length (FWL)
fixed-point arithmetic with a -bit fractional representation and
is realized by with

(3)
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where , , , and stand for the quantization errors
of the coefficient matrices. The transfer function of the FWL
realization is then expressed in the form

(4)

Let be the set of the ideal parameters of a realization and let
be its FWL version where , and indicates

the corresponding parameter perturbation. Assuming that this
realization has parameters, the first-order approximation of
Taylor’s series expansion yields

(5)

It is obvious that the smaller , yield
the smaller transfer-function error . For a fixed-point im-
plementation of bits, the parameter perturbations are consid-
ered independent random variables uniformly distributed within
the range . Then a measure of the transfer
function error can statistically be defined by

(6)

where denotes the ensemble average operation. Since
are independent random variables uniformly distributed,

it follows that

(7)

where

By carrying out a coordinate transformation

(8)

to (1), a new realization characterized by

(9)

can be derived. From (2) and (9), it is clear that the transfer
function is invariant under the coordinate transformation
of (8).

Definition 1: Let be an real matrix and let
be a scalar complex function of , differentiable with respect
to all the entries of . The sensitivity function of with respect
to is then defined as

(10)

where denotes the th entry of the matrix .
Definition 2: Let be an complex matrix-valued

function of a complex variable and let be the th

entry of . The -norm of is then defined as [19,
p. 48]

(11)

From the foregoing arguments, the overall -sensitivity
measure is defined by

(12)

where

The terminology “ -sensitivity” used here reflects the fact that
the terms involved in (12) are all -norms, and the definition
differs itself from the mixed sensitivity defined by

(13a)
whose upper bound, i.e.,

(13b)

was the sensitivity measure employed by the authors of [1]–[5].
From a technical point of view, the main motivation of inves-
tigating the sensitivity was to overcome the difficulties
introduced if the -norm term in would have been replaced
by a -norm term. See [6]–[9] for some detailed accounts of
this and other issues concerning the relationship between these
two sensitivity measures.

Note that the -sensitivity measure, (12), can also be ex-
pressed as

(14a)

where

(14b)

(14c)

(14d)

The matrices and are called the controllability and
observability Gramians, respectively, and can be obtained by
solving the Lyapunov equations [20]

(15a)

(15b)
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Definition 3: The general controllability and observability
Gramians for a linear discrete-time system (1) are defined by

(16a)

(16b)

respectively, where .
Notice that, with , (16a) and (16b) become (15a) and

(15b), respectively. In other words, the conventional controlla-
bilty and observability Gramians, and , can be viewed as
the special cases of the general controllability and observability
Gramians, and .

The theorem below relates the evaluation of the matrixto
the general controllability and observability Gramians.

Theorem 1: The matrix defined in (14b) is symmetric and
positive-definite and can be expressed in the form

(17)

Proof: The symmetry of matrix can be verified by eval-
uating using (14b) as

(18)

To show the positive definiteness of , let be an arbitrary
nonzero column vector of dimensionand use (14b) to compute

(19)

Next, noting that

(20)

and utilizing theCauchy integral theorem

(21)

where is a counterclockwise contour that encircles the origin,

it is possible to write the matrix as

(22)

where . Since is a scalar, it
follows that

(23)
Hence

(24)
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which coincides with (17). This completes the proof of
Theorem 1.

Making use of (17), we can write (14a) as

(25)

This is a new formula for expressing the-sensitivity of (12) in
terms of the general controllability and observability Gramians.
Once and are obtained, the computation quantity of each
term in the right-hand side of (25) is constant independent of.
Also, the infinite sum can be approximated with the finite sum
by truncation provided that the system is stable. It should be
noted that the first term in the right-hand side of (25) is iden-
tical to the upper bound of the -mixed sensitivity mea-
sure [1]–[5]. Therefore, the new formula for the-sensitivity
reveals its connection to the -mixed sensitivity measure
in a natural way.

Next, we consider the problem of synthesizing the optimal
state-space model with minimum -sensitivity.

From (16a), (16b), and (9), the general controllability and
observability Gramians and in the new realization

are related to the original ones by

(26)

where . For the new realization , (25)
is changed to

(27)

or equivalently

(28)

where is an positive-definite symmetric matrix.
Note that in (27) and (28) the dependence of the-sen-

sitivity measure on the coordinate transformation matrix
(equivalently ) has been explicitly indicated. In this regard,
it can be readily verified that the -sensitivity measure of the
original realization as defined in (12) [and evaluated in (14a)
and (25)] can be referred to as where is the identity
matrix of dimension .

Using the formula for evaluating matrix gradient [21, p. 275]

(29)

it follows from (28) that

(30)

Letting provides

(31a)

where

(31b)

(31c)

The matrix in (31c) can be expressed as

(32)

Using an argument similar to that of the proof for Theorem 1,
it can be shown that the sum of the first two terms in the above
expression gives a symmetric and positive-definite matrix. Since
the third term, matrix [see (14d)], is also symmetric and
positive-definite, matrix is positive-definite.

It is noted that the sensitivity measure here is essen-
tially equivalent to a function defined in [8, p. 104] or

defined in [17, p. 811], which has been shown to be uni-
modal whose stationary point is unique, symmetric, and posi-
tive-definite and is the global minimum of the function. Conse-
quently, in what follows, our attention will be focused on solving
(31a).

Note that has the unique solution [5] as

(33)

in the case when and are symmetric. A natural
iteration scheme suggested by (31a) is

(34)

By (33), the matrix satisying (34) can be obtained as

(35)

This iteration process continues until

(36)

where is a prescribed tolerance.
To obtain a reasonable initial estimate analytically, we

denote the principal term of in (28) as

(37)

Note that in (37) corresponds to the upper bound of
-mixed sensitivity measure [1]–[5]. The positive-definite

symmetric matrix , say , minimizing (37) is then derived
uniquely as

(38)

which serves as the initial estimate in the iteration process (35).
Once the optimal positive-definite symmetric matrixthat

minimizes (28) is obtained, the optimal coordinate transforma-
tion matrix is constructed as

(39)



HINAMOTO et al.: ANALYSIS AND MINIMIZATION OF -SENSITIVITY FOR LINEAR SYSTEMS AND 2-D STATE-SPACE FILTERS 1283

where is any orthogonal matrix. The optimal state-
space model with minimum -sensitivity can then be realized
by substituting (39) into (9).

B. Linear Continuous-Time Systems

In a linear continuous-time system, the transfer function is
given by

(40)

instead of (2). Equation (14a) is then written in the form

(41)

with

where the controllability and observability Gramians and
can be obtained by solving the Lyapunov equations [20]

(42a)

(42b)

in place of (15a) and (15b).
Definition 4: The general controllability and observability

Gramians for a linear continuous-time system are defined by

(43a)

(43b)

where , and stands for a sampling interval.
Theorem 2: The matrix defined in (41) can be approxi-

mated by

(44)

Proof: Applying the inverse Laplace transform yields

(45a)

(45b)

where [20, p. 67]

Using Parseval’s theorem, we can write the matrixin (41) as

(46)

which can be approximated by

(47)

where denotes a sampling interval. From (47) it follows that

(48)

which is identical to (44). This completes the proof of
Theorem 2.

Making use of (44), one can write (41) as

(49)
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This can be viewed as the continuous-time version of (25), but
in the present case (49) is an approximate expression for evalu-
ating the -sensitivity of a linear continuous-time system in the
state-space description. The infinite sum in (49) can be approx-
imated with a finite sum by truncation provided that the system
is stable. Note that the first term in the right-hand side of (49) is
the upper bound of the -mixed sensitivity measure [10],
thus the -sensitivity expression in (49) offers an analytical re-
lation to the -mixed sensitivity measure.

In the realization of the optimal linear continuous-time
system with minimum -sensitivity, (49) is changed to

(50)

or equivalently

(51)

where . Similar to the discrete-time case, the-sen-
sitivity measure evaluated in (41) and (49) may be referred to
as . It follows that the formulas in (31a), (34), and (35)
also hold for the present case provided that and
are modified to

(52a)

(52b)

Consequently, the iteration process described by (34) and (35)
and the initial estimate given by (38) can also apply to the linear
continuous-time systems.

III. -SENSITIVITY MINIMIZATION OF 2-D DIGITAL FILTERS

A 2-D digital filter can be represented by the following local
state-space (LSS) model which is stable, sep-
arately locally controllable, and separately locally observable
[22]:

(53)

where is an horizontal state vector, is
an vertical state vector, is a scalar input, is
a scalar output, and , , , , , , , , and are
real constant matrices of appropriate dimensions. The transfer
function of (53) is given by

(54)

Let the coordinate transformation be specified by

(55)

where with and nonsingular. Then the
LSS model (53) is equivalent to a new realization
characterized by

(56)

in the sense that the transfer function remains in-
variant under such a transformation.

Definition 5: Let be an complex matrix
valued function of the complex variables and . The
norm of is then defined as

(57)

where is the Frobenius norm of the matrix
defined by

and . An -sensitivity is
then evaluated by

(58)

where

By Definition 5, we can write (58) as

(59)

where

The matrices and here are called 2-D local controlla-
bility and observability Gramians, respectively, and can be de-
rived from

(60a)

(60b)
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where

and the state transition matrix is derived from

By utilizing the following 2-D Cauchy integral theorem:

(61)

where is a counterclockwise contour that encircles the origin,
it is possible to write the and in the form

(62a)

(62b)

Definition 6: The general 2-D local controllability and ob-
servability Gramians for a 2-D state-space digital filter, (53),
are defined by

(63a)

(63b)

where .
Theorem 3: The matrix defined in (59) can be evaluated

as

(64)

Proof: This can be proved by substituting (60a) and (60b)
into the matrix defined in (59) and utilizing the 2-D Cauchy
integral theorem stated in (61).

Substituting (64) into (59) yields

(65)

For the new realization characterized by (56), it
is easy to show that (65) is changed to

(66)

where

According to the partition of , the Gramians and
become

(67)

By introducing

(68)

we can express in (66) as

(69)

Hence, it suffices to deal with the matrix instead of . To
make the subsequent derivation simple, in the following we omit
the hat and write for .

By letting and , we
obtain

(70a)

(70b)

respectively, where

The iterative procedure reported in [18] can be used to solve
(70a) and (70b) for and , that is,

(71a)

(71b)
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where is derived from the previous iteration. The iteration
continues until

(72)

where is a prescribed tolerance.
The initial estimate can be obtained by

minimizing the upper bound of -norms mixed sensitivity
measure [11], [14]

(73)

which yields a closed-form solution as

(74)

Once the positive-definite -optimal symmetric matrix
is obtained, the -optimal coordinate transformation

matrix can be constructed as

(75)

where and are arbitrary and orthogonal
matrics, respectively. The -optimal filter structures that min-
imize (69) can be synthesized by substituting (75) into (56).

IV. NUMERICAL EXAMPLES

Example 1: Consider a linear discrete-time system, (1),
specified by

whose poles are at and
.

Using (15a) and (15b), its controllability and observability
Gramians are calculated as

By using (16a), (16b), (25), and (37), the-sensitivity measure
and the first term in it are computed as

where the infinite sum in (25) was truncated with (the
same truncation will be applied hereafter in this example).

The initial estimate is derived from (38) as

TABLE I
L -SENSITIVITY PROFILE OF THEFIRSTTEN ITERATIONS

or equivalently

Using (28) and (37), we evaluate

Applying (35) to minimize (28), after ten iterations we obtain

or equivalently

Using (28) and (37), we evaluate

The -sensitivity profile of the first ten iterations is given in
Table I, from which we see that with a tolerance
the algorithm converges after four iterations. By substituting

into (9), the optimal state-space model with minimum
-sensitivity is then obtained as

For comparison purposes, the gradient-flow-based algorithm
[8] in which is generated by

(76)
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was applied to the above example with the same initial estimate.
In the simulation, the step-sizein (76) is set to 0.28 (which
seems the best), and the algorithm after 1000 iterations yields

This is slightly larger than

obtained by our method.
Example 2: Now we consider a linear continuous-time

system, (40), characterized by

whose poles are given by and
.

The controllabilty and observability Gramians and
are computed from (42a) and (42b) as

By letting and using (43a) and (43b), the formula
(49), where the infinite sum was truncated to its first 8000 terms,
gives

where

The same truncation will be applied hereafter in Example 2. The
initial estimate was obtained using (38) as

or equivalently

In this case, (51) yields

In order to minimize in (51), we apply (35) where

TABLE II
L SENSITIVITY PROFILE OF THEFIRST TEN ITERATIONS

and are given by (52a) and (52b). Ten iterations yield

or equivalently

Now (51) gives

The -sensitivity profile of the first ten iterations is given in
Table II. It is observed that, with a tolerance , the
algorithm converges after four iterations.

By substituting into (9), the optimal state-space
model with minimum -sensitivity is then obtained as

Example 3: Consider a 2-D stable state-space digital filter of
order (2,2) modeled by (53) where

First, (60a), (60b), (62a), and (62b) were used with the trun-
cation to evaluate and
as shown at the bottom of the next page. Next, and
were calculated using (63a) and (63b) with truncations

and . The
-sensitivity measure was then computed using (65) as

where is defined in (73).



1288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 9, SEPTEMBER 2002

The initial estimate was computed using
(74) as

Then, using (69) and (73), we obtain

Finally, by applying (71a) and (71b), with two iterations we ob-
tain where

or equivalently

The -sensitivity profile of the first ten iterations is given in
Table III. Then, (69) and (73) were calculated as

TABLE III
L SENSITIVITY PROFILE OF THEFIRST TEN ITERATIONS

By substituting into (56), the optimal filter
structure with minimum -sensitivity was obtained as shown
at the bottom of the page.

It is noted that the -sensitivity measure
in the optimal filter structure obtained here

is considerably smaller than in the
optimal filter structure obtained by Li [17].

V. CONCLUSION

Novel expressions for the -sensitivity of linear dis-
crete-time systems, linear continuous-time systems, and
2-D state-space digital filters have been developed. Each
expression is derived in terms of the general controllability
and observability Gramians. It has been shown that, for each
class of systems, the new formula offers a natural connection
between the -sensitivity and the -mixed sensitivity.
An iterative procedure has also been proposed to facilitate
the minimization of the new expressions of the-sensitivity
measure. Our computer simulation results have demonstrated
the effectiveness of the proposed techniques compared with
several existing methods.
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