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Analysis and Minimization of_9-Sensitivity
for Linear Systems and Two-Dimensional
State-Space Filters Using General Controllability
and Observability Gramians

Takao HinamotpFellow, IEEE Shuichi Yokoyama, Takuya Inoue, Wu Zeng, and Wu-Shengellow, IEEE

~ Abstract—A novel expression for the evaluation ofL -sensitivity mensional (2-D) state-space digital filters [11]-{15]. Recently,
is developed for the cases of linear discrete-time systems, linearthe L,-sensitivity minimization problem has also been treated
continuous-time systems, and two-dimensional (2-D) state-spacej, the 2-D case [16]-[18].

digital filters. This is accomplished by introducing the concept of . e s
general controlability and observability Gramians in each case. This  paper addressesl thé2—§en3|t|V|ty m|n|m|zat|0n
Moreover, the L.-sensitivity measures obtained here contain the Problem for the cases of linear discrete-time systems, linear
conventional L, / L, -sensitivity measures as a special case. An iter- continuous-time systems, and 2-D state-space digital filters. To
ative procedure for constructing the optimal coordinate transfor-  this end, we introduce the concept of general controllability

mation matrix that minimizes the L-sensitivity measure is then 54 ghservability Gramians, and derive a novel expression for
presented in each case. This procedure is advantageous since the

initial estimate and the estimate at each iteration can be calculated gvaluatlng theLQ-senslltlwty for each ,C,a.S& This expression
analytically. Finally, three numerical examples are given to illus- includes the conventional,/L-sensitivity measure as a
trate the utility of the proposed techniques. special case. Next, an iterative procedure for the minimization
Index Terms—La-sensitivity, linear continuous-time systems, Of @nL2-sensitivity measure with respect to a positive-definite
linear discrete-time systems, optimal realization, sensitivity and symmetric matrix is presented in each case. This iteration
minimization, two-dimensional state-space digital filters. procedure can be performed analytically. Three numerical
examples are presented to demonstrate that the proposed algo-
rithms offer faster convergence as well as improved solutions.
Throughout this papet, denotes the identity matrix of ap-
NE OF THE primary finite-length register effects in fixedpropriate dimension. The transpose (conjugate transpose) of a
point digital filters is changes in the input—output descrimatrix A is indicated byA” (A4*), andtr[A] and& are used
tion of the filter due to approximating real-number parametets denote the trace of a square matfixand the direct sum of
with a finite binary representation. Such an effect is looselatrices, respectively.
called coefficient sensitivity and has been an important research
topic since coefficient truncation or rounding may cause an orig- ||, 7.,-SENSITIVITY MINIMIZATION OF LINEAR SYSTEMS
inally stable filter to be an unstable one. Itis well-known that th
undesirable finite-word-length (FWL) effects can be reduc
considerably by the appropriate selection of the filter structure.Let (A, b, ¢, d),, be a state-space description of a stable, con-
Several techniques for synthesizing linear discrete-time systeti@lable, and observable linear discrete-time system, i.e.,
that minimize the coefficient sensitivity have been reported in
[1]-[9]. These techniques can be divided into two main classes: z(k+ 1) =Az(k) + bu(k)
L,/ Ly-sensitivity minimization [1]-[5] and.,-sensitivity min- y(k) =cx(k) + du(k) (1)
imization [6]-[9]. It has been pointed out [6]-[9] that the sensi-
tivity measure based on tHe norm only is natural and reason-Wherez(k) is ann x 1 state-variable vector(k) is a scalar
able. TheL; /L,-sensitivity minimization has also been coninput,y(k) is a scalar output, and, b, ¢, andd are real constant
sidered in linear continuous-time systems [10]. The probleffatrices of appropriate dimensions. The transfer function of (1)
of minimizing the coefficient sensitivity measure evaluated by given by
using a mixture ofL; /L, norms has been studied for two-di-

. INTRODUCTION

Linear Discrete-Time Systems

H(z)=c(zI — Ao+ d. 2

Manuscript received May 21, 2001; revised April 15, 2002. This paper was Syppose that (1) is implemented by finite-word-length (FWL)

recommended by Associate Editor R. W. Newcomb. ] ] " . . . . .
T. Hinamoto, 3. Yokoyama, T. Inoue, and W, Zeng are with the Gradudixed-point arithmetic with &-bit fractional representation and

School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527S realized by(le, I;, c, cz)n with

Japan.
W.-S. Lu is with the Department of Electrical and Computer Engineering, A=A + AA (N, =b+ Ab
University of Victoria, Victoria, BC V8W 3P6, Canada. .
Publisher Item Identifier 10.1109/TCSI.2002.802362. ¢c=c+Ac d=d+ Ad 3)

1057-7122/02$17.00 © 2002 IEEE



1280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 9, SEPTEMBER 2002

whereAA, Ab, A¢, and Ad stand for the quantization errorsentry of X(=). The Ly-norm of X (=) is then defined as [19,
of the coefficient matrices. The transfer function of the FWb. 48]
realization is then expressed in the form

1/2
A(z) = (T — D) b +d. @ IXE@l= l / <ZZ [ () ) dw]
Let{p;} be the set of the ideal parameters of a realization and let <
tr l

p=1lg=1
1/2
{p: } be its FWL version wherg; = p;+Ap;, andAp; indicates - ij[ X(2)X*(z )d7 ) . (11)
the corresponding parameter perturbation. Assuming that this 215 Jyz)=1 z
realization hasV parameters, the first-order approximation of From the foregoing arguments, the overali-sensitivity
measure is defined by

Taylor’s series expansion yields
2) 2+ OH(2)||?
5 od

It is obvious that the smallétH (z)/dp;, i = 1,2,..., N yield T FT SN ) 2
the smaller transfer-function erréeH (z). For a fixed-point im- - HG 2)F ( @l +1 (12)
plementation of3 bits, the parameter perturbations are C0n5|gv

ered independent random variables uniformly distributed W|th|n

the range[—2—2~1,278-1], Then a measure of the transfer F(z)=(zI — A", G(2)= (] — A)™*
function error can statistically be defined by

AH(z) =h;(2)a;1f)(z) s, UQAH
=" T Ap,. )
; op;

The terminology L»-sensitivity” used here reflects the fact that

oAy == E[|AH(2)]? dz the terms involved in (12) are all,-norms, and the definition
21 Jiz1=1 ? differs itself from the mixed_, /L, sensitivity defined by
1 27 .
o [ BlaHE)R © . [HG|F [HE | [2HE | | |0 |
27 Jo Sy = + + 5T 54
. . 1 2 2
where E(-) denotes the ensemble average operation. Since 13a

{Ap,} are independent random variables uniformly distributedhose upper bound, i.e.,
it follows that

N ) 4= G @S IFEIE+ 6 (2) (25 +1 (130)
2 9H (2) 2 o
E[AH(HP1 =) “ap | (7)  was the sensitivity measure employed by the authors of [1]—[5].
i=1 ' From a technical point of view, the main motivation of inves-
where tigating theL, /L, sensitivity was to overcome the difficulties
1 introduced if thel; -norm term inS,; would have been replaced
o? = E[(Ap)?] = —=2725. by a L,-norm term. See [6]-[9] for some detailed accounts of
12 this and other issues concerning the relationship between these
By carrying out a coordinate transformation two sensitivity measures.
_ . Note that theL,-sensitivity measure, (12), can also be ex-
z(k) =T z(k) (8) pressed as
to (1), a new realizationA, b, ¢, d),, characterized by Sy = te[M] + tr[Wo] + te[Ko] + 1 (14a)
A=T'AT, b=T'b, e=cr (9)  where
can be derived. From (2) and (9), it is clear that the transfer 5, _ 1 F>GY)[F(-)G(» )]T dz (14b)
function H(z) is invariant under the coordinate transformation 21J J|z1=1
of (8). 1 T, _1.dz
Definition 1: Let X be anm x n real matrix and letf(X) Ko 215 i F(z)F" (=) — (14c)
be a scalar complex function &, differentiable with respect 1 dz
to all the entries ofX. The sensitivity function of with respect Wo=— G"(2)G(zH)—. (14d)
; : 277 J|z1=1 z
to X is then defined as
9 9 The matricesKy and W are called the controllability and
af f " ; : .
Sx = X’ (Sx)i; = O (10) observability Gramians, respectively, and can be obtained by
ij

solving the Lyapunov equations [20]
wherez;; denotes théi, j)th entry of the matrixX. - -

Definition 2: Let X(z) be anm x n complex matrix-valued Ko =AKoA" +bb (152)
function of a complex variable and letz,, (=) be the(p, g)th Wo=A"W, A+ e (15b)
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Definition 3: The general controllability and observabilityit is possible to write théd matrix as

Gramians for a linear discrete-time system (1) are defined by

11 . ‘
K; =AK A" + 3 [A”bbT + bbT(AT)Z} (16a)

W =ATW A+ [Ted + (A7) (16D)

respectively, wheré = 0,1,2, .. ..

oo o0 oo o0

200 > Abed(AT)
121=1 =0 1= Oz_ofl_o
2

zZ

~2rj 7{

TbT(AT)p k4l—i—p=™~

oo oo o0

=303 ArbeA'(ATY BT (AT (22)

k=0 [=0 ¢=0

Notice that, with: = 0, (16a) and (16b) become (152) angyherep = k + I — i > 0. SinceeA'(AT)¢T is a scalar, it
(15b), respectively. In other words, the conventional controllgg|iows that

bilty and observability Gramiang o andW g, can be viewed as
the special cases of the general controllability and observability
Gramians,K; andW .
The theorem below relates the evaluation of the ma¥fixo
the general controllability and observability Gramians.
Theorem 1: The matrixM defined in (14b) is symmetric and
positive-definite and can be expressed in the form

tI‘[Wo]KO +2 Z T)I‘[WZ]I(Z

i=1

M= 17)

Proof: The symmetry of matrid4 can be verified by eval-
uatingM? using (14b) as

F(2)G()[F( )G

zZ

1
1
=5 /.
1

T or
1

" 2rj
=M.

M* =

|z|=1

27
F()Q(A)F (e )G (e )]  dw

F(e™%)G(e ™) ()G ()] du

Fle )G PG

<

Hence

M

|z|=1
(18)

To show the positive definiteness M, let « be an arbitrary
nonzero column vector of dimensierand use (14b) to compute

1 4
e Mz =— S FCDG O FR) G s
27{7 |z|=1 z
1 2 d7
=5 |[F(2)G () x| —
275 Jiz1=1 z
1 27 . T 12
=5 |[F(ej‘“)G(eJ“’)] :c| dw > 0. (29)
m
Next, noting that
(2l — A7 =27 T+ 2724+ 27 2A% +
=) 2 Ak (20)
k=0
and utilizing theCauchy integral theorem
1 x4z 1, k=0
g L S 21
27l'j C z { 07 k 7£ 0 ( )

whereC' is a counterclockwise contour that encircles the origin,

M— ZZCAI ATzTZAkbbT AT Etl—i

= 0 =0

=0 k=0

+ ZCAI(AT)I—ICT ZAkbbT(AT)k—l—l
=1 k=0

+ ZCAI(AT)I—QCTZAkbbT(AT)k-l—Q

=2 k=0

+ Z cAifl(AT)icT Z AkbbT(AT)k71
=1 k=1

+ Z cAi*Q(AT)icT Z AkbbT(AT)k72
=2 k=2

(23)
=0 k=0

4 |:CAAI (AT + cAl (AT)IATCT:|

1
2
2|4
k=

0

ARBBT AT(ATYE + A"‘AbbT(AT)’“}

s ma

+ % l [CAQAI(AT)I T +CAI(AT) (AT)QCT:|

f:[ RobT (AT)2(AT)* +A"A2bbT(AT)}

k=0
+ -

Il
S

=tr

e

N
Il
<

(AT)ICTCAI] ZAkbbT(AT)k

k=0

NE

+

,.g

(AT (T eA + ATcTc)Al]

l\DIr—\
—~
Il
=)

A* (bbTAT n AbbT) (ATY*

10

e_—f

NgE

+ (A"){(c"ed® + (A7)

[N

2CTC)AI]

N
I
<)

Amg

}.
Il
S

AF (bbT(AT)Q +A2bbT) (AT)k

+oes (24)
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which coincides with (17). This completes the proof oLetting d5,(P)/0P = 0 provides

Theorem 1. , PG(P)P = H(P) (31a)
Making use of (17), we can write (14a) as

- where
Sa = ([Wol + 1) (tx[Ko] + 1) + 2 ) _ tx[W]tr[Ki]. (25) H(P) =(tx[WoP] + 1)Ko + 2 _ tx[W,P]K; (31b)
=1 =1
This is a new formula for expressing the-sensitivity of (12) in G(P) :(tr[Kop—l] + )W,
terms of the general controllability and observability Gramians. o0
OnceK; andW; are obtained, the computation quantity of each +2 Z tr[K, P |W;. (31c)
term in the right-hand side of (25) is constant independeiit of i=1

Also, the infinite sum can be approximated with the finite sumihe matrixG(P) in (31c) can be expressed as

by truncation provided that the system is stable. It should be = o0 =

noted that the first term in the right-hand side of (25) is iden- G(P) =tr[KoP '|Wo+2)  t[K,P ' [W,; + W,

tical to the upper bound of thg, /L,-mixed sensitivity mea- i=1

sure [1]-[5]. Therefore, the new formula for tlig-sensitivity o > =

reveals its connection to the, / L»-mixed sensitivity measure =tr[Ko[Wo +2 ; t[Ki Wi + Wo. (32)

in a natural way. Using an argument similar to that of the proof for Theorem 1,

Next, we conS|der.the pr_oblem of Syﬁ}hesmng the Optlmﬂlcan be shown that the sum of the first two terms in the above
state-space model with minimuf-sensitivity.

From (16a), (16b), and (9), the general controllability an
observability GramiansK; and W; in the new realization
(A,b,¢,d), are related to the original ones by

expression gives a symmetric and positive-definite matrix. Since
H1e third term, matrix¥ o [see (14d)], is also symmetric and
positive-definite, matribG(P) is positive-definite.
It is noted that the sensitivity measu$g(P) here is essen-
K,=T'K,T7%, W,=1T"W,T (26) tially equivalent to a functiom?(P) defined in [8, p. 104] or
. T f(P) defined in [17, p. 811], which has been shown to be uni-
}/;/hcehr;: g’tl’ 2,.... For the new realizatio(4, b, 2, d)n, (25) modal whose stationary point is unique, symmetric, and posi-
gedto tive-definite and is the global minimum of the function. Conse-

SoTT") = (:[Wo] + 1) (tx[Ko] + 1) quently, in what follows, our attention will be focused on solving
o (31a).
+2 Z tr[W ]t [ K] (27) Note thatPW P = M has the unique solution [5] as
=1 P= W—(l/?)[Wl/QMW:L/Q]l/Qw—(l/Q) (33)
or equivalently in the case wheb > 0 andM > 0 are symmetric. A natural
Sa(P) = (tx[WoP] + 1) (tr[KoP ']+ 1) iteration scheme suggested by (31a) is
P, 1G(P;)Piy 1 = H(P;). (34)

+2) " t[W,Plu[K,P '] (28)
=1
whereP = TT” is ann x n positive-definite symmetric matrix. Pi+1 = G~/ (P;) [GI/Q(Pvi) H(P;)
Note that in (27) and (28) the dependence of thesen- 12 2w
sitivity measure on the coordinate transformation maffix G (Pz‘)} G (Pi). (35)
(equivalently P) has been explicitly indicated. In this regardrThis iteration process continues until
it can be readily verified that thé,-sensitivity measure of the oy ‘
original realization as defined in (12) [and evaluated in (14a) _ |Sd(PZ_+1) Sa(Pi)l <e (36)
and (25)] can be referred to #&(I) whereT is the identity Wheree > 0 is a prescribed tolerance.

By (33), the matrixP;, satisying (34) can be obtained as

matrix of dimensiom. To obtain a reasonable initial estimak®y analytically, we
Using the formula for evaluating matrix gradient [21, p. 275]enote the principal term &,(P) in (28) as
oa(MX)] _, s SO(P) = (e[WoP] + 1) (r[Ko P~ + 1) (37)
oX . N Note thatSflO)(P) in (37) corresponds to the upper bound of
Ir(MX ") (XMX YT (29) L,/ L,-mixed sensitivity measure [1]-[5]. The positive-definite
7). 4 B symmetric matrixP, say Py, minimizing (37) is then derived
it follows from (28) that uniquely as
—(1/2 1/2 1/2 1/2 —(1/2
85:;}()P) =(tr[Ko P+ 1)W, Py = Wo( /» [Wo/ KOWO/ } Wo( /» (38)
— (a[WoP] + )P LK P! which serves as the initial estimate in the iteration process (35).
0o Once the optimal positive-definite symmetric matfxthat
+2 Z (tr[Kip—l]Wi minimizes (28) is obtained, the optimal coordinate transforma-
i1 tion matrix 7T’ is constructed as

W, P)PT K, P) . (30) T=P/%U (39)
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wherel is anyn x n orthogonal matrix. The optimal state-which can be approximated by
space model with minimunh,-sensitivity can then be realized

hd T

by substituting (39) into (9). M ~ / ceM A AT

0
B. Linear Continuous-Time Systems . /Oo CA(t—)\)bbTCAT(t—)\)dt:| d\

In a linear continuous-time system, the transfer function is L0 -
given by +%z/ AN AT i) T
H(s)=c¢(sl — A)™'b+d (40) Vim0

. AN 3T AT (t-2—iA)

instead of (2). Equation (14a) is then written in the form /0 ¢ bb~ e dt| dA

S, = tr[M] + tr[Wo] + tr[Kg] + 1 (42) A 2 e ) T
_ [M] + tx[Wo] + tr[Ko] LA Z/ cATHin) AT T
with ' V2 =10
1 JOO T r o0 - T
“3mj ) F(=s)G(=3)[F'(s)G(s)]" ds : / (Al—r—id)pt A <t—r>dt} dr
[e9) T L~/ 0
Ko = / Aty A gt _ / AT
0
o o
WO :/ CA tCTCCAtdt B / eA(t—)\)bbTeAT(t—)\)dt:| d\
0
F(s) =(sT — A)~'b TN 2o e e A
G(s) =c(sI — A)~" + 5 > /0 cetret DRl
where the controllability and observability Gramiaks and - 007_1 ‘ _—
W can be obtained by solving the Lyapunov equations [20] : / ACHN T At ) gy
AK + KoAT = — bb” (42a) - 2 o e -
ATWo+Wod=—ce (42b) + 7 Z/ ccAr+ia) A'r T
in place of (15a) and (15b). o= 0 . ]
Definition 4: The general controllability and observability . / AT A 42 | 17 (47)
Gramians for a linear continuous-time system are defined by LJo i

whereA denotes a sampling interval. From (47) it follows that

1 ) y

AK; + KiAT = - 3 (bbTe*‘ﬂA + eA”AbbT) (43a)

M~ / ceA)‘eAT)‘ch)\ / eAtbbTeATtdt
0 0

1 . T,
AW, + W, A=— 3 (cTceA7’A + A 7’AcTc) (43b)

where: = 0,1, 2,..., andA stands for a sampling interval. n A i OoceA’\eAT’\eATchd)\
Theorem 2: The M matrix defined in (41) can be approxi- V2 —~ Jo
mated by At AireaT AT
oo ~/ete”bbe tdt
M ~ tx[WolKo + vV2A) " w[W,]K;. (44) 0
i=1 AT Aia A AT 1
Proof: Applying the inverse Laplace transform yields - EE;/O ce T e Tetdr
-1 _ = A(t—‘r) Ar oo - T T
LU F(s)G(s)] = /0 AC-pe AT (45a) _ /0 A ATia AT,
hd T T o oo
A =
where [20, p. 67] o0 - 0 2v2
A _ { f %Aktkv t>0 .Ztr {/0 A (CA chc—i—cchAm) CA)\d)\:|
— Y k=0 i=1
0 t<O0. o0 . T, T
’ At [ Aing T 7 ATin\ A
Using Parseval’'s theorem, we can write the mabdbin (41) as '/0 e (@ bb" +bb c )@ fdt (48)
M:/ / / A=V pecAN which is identical to (44). This completes the proof of
o Jo S0 Theorem 2.
A TR A D i dt Making use of (44), one can write (41) as
o> o> T
_ / / AN AT 7T S, ~ (4x[Wo] + 1) (6x[Ko] + 1)
0 0

[ / AT A D gt andr (46) +V2A Y u[Wilu[K;].  (49)
0 =1
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This can be viewed as the continuous-time version of (25), Hugt the coordinate transformation be specified by
in the present case (49) is an approximate expression for evalu- . 1.

ating thel,-sensitivity of a linear continuous-time systemin the &(i,§) =T~ a(i, ) (55)
state-space description. The infinite sum in (49) can be appravhereT = T; & T, with T, andT, nonsingular. Then the
imated with a finite sum by truncation provided that the systetl§S model (53) is equivalent to a new realizatigh b, ¢, d) ., .
is stable. Note that the first term in the right-hand side of (49) eharacterized by

the upper bound of thé, /L,-mixed sensitivity measure [10],

A 71 7, _ p—1 - _
thus thel,-sensitivity expression in (49) offers an analytical re- A=T"AT, b=T"b e=dr (56)
lation to theL; / L,-mixed sensitivity measure. in the sense that the transfer functiéf(z;, z2) remains in-
In the realization of the optimal linear continuous-time&ariant under such a transformation.
system with minimumn.,-sensitivity, (49) is changed to Definition 5: Let X(z1,22) be anm x n complex matrix
T T . o valued function of the complex variables and z;. The L,
Se(TT") == (tx[T” WoT] + 1)(bx[T " KoT™ "]+ 1) norm of X (21, zQ) is then defined as
+V2AS” w[T"W, T[T K, T~"] (50) dzydzy |MP
2 W ] Xl = | oz § . 1Kzl 57)
i=1 (275)2 2172
or equivalently where || X (#, z2)||r is the Frobenius norm of the matrix

X (21, z2) defined by
S.(P) ~ (tx[WoP] + 1)(tx[KoP 1] + 1)

o m n 1/2
+vV2A 4 [W, Pltr[K; P (51) X (21, 22)||F = lZZIwm(zmz)IQ]

i=1 p=1q=1

whereP = TT" . Similar to the discrete-time case, thg-sen- andI'” = {(z1,22) : 1] = 1, |22 = 1}. An Ly-sensitivity is
sitivity measure evaluated in (41) and (49) may be referred %en evaluated by
asS.(I). It follows that the formulas in (31a), (34), and (35) OH (21, 22)

S, — 2 8H(zl, ZQ) 2
also hold for the present case provided thEtP) and G(P) 2d = 9A +

g 2 ob 2
are modified to H OH (21, 22) 2 ) H OH (21, 25) 2
o T
H(P)=(tx[WoP|+1)Ko+V2A> " r[W;P|K, (52a) . de 2 ) 0d L )
=1 :HG (Zl,ZQ)F (751722)”2—’_ HG (Zl,ZQ)HQ
e 2
G(P)<(ir[KoP |+ 1)Wo+V2A S K, P W,. (52b) (2, 2)ll; +1 (58)
i=1 where
Consequently, the iteration process described by (34) and (35) F(z,2) =(xln @ 21, — A)'b

and Fhe |n|t|a_l estimate given by (38) can also apply to the linear G(z1,20) =1L @ 200 — A)L.
continuous-time systems.
By Definition 5, we can write (58) as

. Lo-SENSITIVITY MINIMIZATION OF 2-D DIGITAL FILTERS Saq = tr[M] + t[Woo] + tr[Koo] + 1 (59)

A 2-D digital filter can be represented by the following loca]
state-space (LSS) modéA, b, ¢, d),,, ,, which is stable, sep-
arately locally controllable, and separately locally observable apf = 7{% 71 ,72 G (71 L z5 1)
[22]: 27U r:

where

dz1dz
T W1l
|:Ih(i—|-1,j):| _ [Al A2:| [ (i, )} n [bl}u(i i) [F(71,72 G(21, 22)] e
zV(i,j +1) As Ay | xv(,)) by | N 7{]{ . S dzdzy
2Ax(i, J)‘H’U(MJ) Koo = (2mj)? (o0, ) {217 2 2172
g 4) — (LaJ) oo _—7{ 1 d71d72
vid)=le @l 500 i) Woo =gz § §, G GaG (7 55") 20
—C.’l,'(L 3)+du(i,g) (53) The matriceK oo andW  here are called 2-D local controlla-

) _ ~bility and observability Gramians, respectively, and can be de-
wherez" (i, j) is anm x 1 horizontal state vector" (i, ) iS  rived from

ann x 1 vertical state vectow(s, j) is a scalar inputy(z, j) is o oo
a scalar output, and,, Az, Az, A4, b1, ba, c1, 2, andd are F(z1,2) :Z Zf(i,j)zl_iz;] (60a)
real constant matrices of appropriate dimensions. The transfer i=0 j=

function of (53) is given by

G(z1,2) = 9 (i) " 2 (60b)
H(z1,20) =zl @ 201, — A0+ d. (54) ;;
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where

sy =a [l 0] 0]

and the state transition matrid“?) is derived from
o) _ [Im O ©o1n_ |0 O
A o |: 0 0:| 4 A o |:0 I, A

ACO = o ACRD =0 (12> 1)
AV =0 (jz1)
AGI) — A0 pG=1.0) | A(0.1) A(E5=1)
=AC1) AL0) 4 AGT=D 4O
(.5) > (0,0).

By utilizing the following 2-D Cauchy integral theorem:

7{7{ ™ nd21d22 |1, (m,n)=1(0,0)
27TJ 2 2172 o 07 (m,n) 7& (an)

(61)

whereC is a counterclockwise contour that encircles the origin,

it is possible to write thé o, andW in the form

Ko =Y > f(i.i)f (62a)
i=0 j=0

Woo => > g(i,5)g" (i,5) (62b)
i=0 j=0

Definition 6: The general 2-D local controllability and ob-
servability Gramians for a 2-D state-space digital filter, (53),

are defined by

K¢ =5 ZZ[

=0 j=0

TG+&5+¢)

&+ OF (i5)]  (63a)

Wee =5 ZZ Ti4+6,7+Q)
z—O 3=0
+g(i+&,5+(g" (4,5)]  (63b)
where(0,0) < (£,¢) < (00, 00).

Theorem 3: The matrixM defined in (59) can be evaluated

as

M= tl‘[Woo]Koo +2 (64)

2.2

(0,0)<(£,¢)<(o0,00)

tr[Wee|Kec.
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For the new realizatiofA, be, d).m,» Characterized by (56), it
is easy to show that (65) is changed to

SQd(P) = (tr[WO()P] + 1)(tr[K00P_1] + 1)
+2 0 Y Y uWePla[Ke PTY (66)

(0,0)<(¢,¢)<(00,00)

where

p— Py 0
P=TT", P_{O PJ.

According to the partition of?, the Gramiand¥ ¢ and K¢,
become

(1) (2)
_ lec Wee ] 7

By introducing

s . (87)
@

X wh o X kY o
Wee = [ s ] g = [ s (68)
(4) (4)
0 W 0 &

we can expresszq(P) in (66) as
Soq(P) = (tr[WooP] + 1) (tr[Koo P + 1)

+2 ZZ tI‘[chp]tI‘[IA(fcpl].
(0,0)<(£,¢)<(00,00)

(69)

Hence, it suffices to deal with the matri instead ofK. To
make the subsequent derivation simple, in the following we omit
the hat and writek for K.

By letting 9S54(P) /0P, = 0 anddSyq(P) /0P, = 0, we
obtain

P, F,(P)P; =F,(P)
P,F3(P)Py =F,(P)

(70a)
(70Db)
respectively, where
Fi(P) =tr[KooP W)
+2 0 > >
(0,0)<(€,¢)<(00,00)
Fy(P) =tx[Woo PIK§})
+2 0 > >
(0,0)<(€,¢)<(o0,00)
F3(P) =tr[Koo P IWSY
+2 > >
(0,0)<(€,¢)<(o0,00)
Fy(P) =tx[Woo PIK§})

+2 0 Y )

(0,0)<(£,¢)<(00,00)

tr[Kec P 1]W(1)

1

W PIKS
tI‘[Kfcp ]W(4)

4
w[We PIK.

Proof: This can be proved by substituting (60a) and (60B)ne jterative procedure reported in [18] can be used to solve
into the M matrix defined in (59) and utilizing the 2-D Cauchy(70a) and (70b) foP; and Py, that is,

integral theorem stated in (61).
Substituting (64) into (59) yields

Saa = (tr[W o] + 1)(tr[Koo] + 1)

+2 Y>>

(0,0)<(€,¢)<(00,00)

tr[We]tr[Kec].  (65)

PYH) —F_(l/Q)(P(”))[ 1/2(P(z VFs (P(z))
(

FI/Q(P(z )]1/2F (1/2) P ) (713)
PS_H) —F; (l/?)(P(z F 1/2(P(z VFy (P(z))
Fé/Q(P(i, NY2ET (1/2)(P( ) (71b)
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whereP is derived from the previous iteration. The iteration TABLE |
continues until L-SENSITIVITY PROFILE OF THEFIRST TEN ITERATIONS

|S2q (P(i+1)) _ SQd(P(i))| <e (72) i L,-Sensitivity | l L,-Sensitivity
159.8909109417472 8.832683342813343
8.943594607334033 8.832683342812404

1
5
6
8.833335506929652 | 7 | 8.832683342812398
8
9

wheres > 0 is a prescribed tolerance.

The initial estimateP® = P @ P{”’ can be obtained by
minimizing the upper bound df, / L,-norms mixed sensitivity
measure [11], [14]

8.832687360817378 8.832683342812402
8.832683367564366 8.832683342812402
8.832683342964870 | 10 | 8.832683342812393

Bl =o

S5 (P) = (2[WooP] + 1)([KooP~ '] +1)  (73)

which yields a closed-form solution as
12 or equivalently
PO — w1/ |:W1/2K W1/2:| wo1/2) 74
00 00 007 00 00 (74) 1.538415708 4.703727215  6.621467159
Once the positive-definité,-optimal symmetric matril®» =  To = | 3.039406990 4.443971631  2.056 848 672
P, ¢ P, is obtained, the.,-optimal coordinate transformation 4.246 846977 2.126 308653 —0.424694816

matrix can be constructed as .
Using (28) and (37), we evaluate
T= [P/ e P{?| V10U (75)
_ S4(Po) =8.943 59461
wherelU; andU, are arbitrarym x m andn x n orthogonal S((IO)(PO) —5.755 476 18,

matrics, respectively. Thes-optimal filter structures that min-
imize (69) can be synthesized by substituting (75) into (56). Applying (35) to minimize (28), after ten iterations we obtain

IV. NUMERICAL EXAMPLES 81.46913871 48.38423145 17.98009171
Example 1:Consider a linear discrete-time system, (1), Pyo = | 48.38423145 39.032444 13 24'1‘33 ?558 09
specified by 1798009171 24.14333809 23.95155207
0 1 0 or equivalently
A=| 0 0 1
045377 —1.55616 1.97486 1.283114259 5.356474502 7.150 590005
T To=|3.056235553 4.759869047 2.652454530
b=[0 0 1] 4.338392561 2.264582260 0.039613 686
¢=1[0.02317 0.02302 0.07930] .
d —0.015 94 Using (28) and (37), we evaluate
whose poles are at = 0.6578817 andz = 0.6584892 =+ Sa(P1o) =8.832683 34
70.506 098 9. SE(Pyo) =5.81485521.
Using (15a) and (15b), its controllability and observability
Gramians are calculated as The Lo-sensitivity profile of the first ten iterations is given in
[17.06183537 14.88646408 9.602767 53 Table |, from which we see that Wlth a t_olerance: 10_-7 .
Ko = | 14.88646408 17.06183537 14.886464 08 the algor_lthm converges after four iterations. By_ sub_st_ltutmg
i 9.60276753 14.88646408 17.06183537 T = Tlolllntlo (9), the optlmal state-space model with minimum
[ 0.048103930  —0.119291362 0095427125 | 27Sensitivity is then obtained as
Wy=1-0.119291362 0.311061239 —0.249967573 | . [ 0.796 804 001 —0.414267323 —0.025 895 398
| 0.095427125  —0.249967573  0.231012260 A= 0414267323  0.565420531 —0.316443915
By using (16a), (16b), (25), and (37), the-sensitivity measure [ —0.025895398  0.316443915  0.612635467
and the first term in it are computed as B [ 0.444 118830
S, —15 4 b= -0.413263073
. =159.8909109 | 0.229880039
Sy (I) =82.984214 45 €=[0.444118830 0.413263073 0.229880039]

where the infinite sum in (25) was truncated witk= 100 (the  d =0.015 940 000.
same truncation will be applied hereafter in this example).

The initial estimateP, is derived from (38) as For comparison purposes, the gradient-flow-based algorithm
[8] in which P, is generated by
68.33559995 39.19845769 13.72288921
Py = (3919845769 33.21750517 21.48361875 9Sq(P;)

13.72288921 21.48361875 22.737 26342 Pipn=Pi—n—pp (76)
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was applied to the above example with the same initial estimate. TABLE I
In the simulation, the step-sizein (76) is set to 0.28 (which L SENSITIVITY PROFILE OF THEFIRST TEN | TERATIONS
seems the best), and the algorithm after 1000 iterations yields

| LySensitivity
Sa(P1ooo) = 8.83274657. 67.38327994750175 20.57670199135822
20.70454380351688 20.57670199135815

Ly-Sensitivity | i
5
6

20.57708100856075 | 7 | 20.57670199135823
8
9

This is slightly larger than

20.57670318054942 20.57670199135817
20.57670199508960 20.57670199135819
20.57670199136992 | 10 | 20.57670199135813

Sq(P1o) = 8.832683 34

E=S IR I ) L e

obtained by our method.
Example 2:Now we consider a linear continuous-time
system, (40), characterized by

andG(P) are given by (52a) and (52b). Ten iterations yield

0 1 0 [ 14.932872358 —3.417647079 —3.136150798
A= 0 0 1 Pio= | —3.417647079 6.452249132 —1.114438061
—0.162484210 —0.526273961 —0.628831301 —3.136150 798 —1.114438061  2.621 026 248
T - J
b=[0 0 1] or equivalently
c=1[0.250120406 0 0.191751308] [ 2.001302974  3.020964828  1.342173712 ]
d=—10.5393521 Tio= | 1.185944380 —1.030092946 —1.996169728 | .
| —0.360253310 —1.235733847 0981939744 |

whose poles are given by=—0.376 731 3 ands=—0.126 050

+ j0.644 5242, Now (51) gives
The controllabilty and observability Gramia#&, and W S.(P1g) ~20.576 702
are computed from (42a) and (42b) as Séo) (P10) =10.308 948.
0.148531757  0.152935083  0.192511683 The L,-sensitivity profile of the first ten iterations is given in

Wo = 10152935083 0.248817754  0.290599 751 Table II. It is observed that, with a toleranee= 10—, the

[ 0.192511683  0.290599752  0.491 362 363 algorithm converges after four iterations.

[11.487179114 0.000000000 —2.968181165 By substituting?” = 7’14 into (9), the optimal state-space
Ky= | 0.000000000 2968181165 0.000000000 |. modelwith minimumL.-sensitivity is then obtained as

[ —2.968181165 0.000000000  1.562076 459 0.083598330 —0.505801407 —0.130205421

By letting A = 0.01 and using (43a) and (43b), the formulad = | 0.505801407 —0.191285835 —0.417 260962

(49), where the infinite sum was truncated to its first 8000 terms, —0.130205421  0.417260962  —0.353947 136
gives b= [0.431487669 —0.518651368 0.523993 264 ]T
S. ~67.383 280 ¢ =[0.431487669 0.518651368 0.523993264]
S((:O) (I) =32.141035 d=—0.5393521.
where Example 3: Consider a 2-D stable state-space digital filter of
order (2,2) modeled by (53) where
SO(P) = (tx[WoP] + 1)(tr[Ko P! + 1). 188899 —0.91219 1.0 0.0

1.0 0.0 0.0 0.0
0.02771 —0.02580 1.88899 1.0
—0.02580 0.02431 —-0.91219 0.0
13.645073461 —2.672229834 —3.167232201 b=1[0.219089 0.0 —0.028889 0.091 219]T

Po= | —2.672229834 6.099162847 —1.239205730 c=[0.28880 —0.091219 —0.219080 0.0]
—3.167232201 —1.239205730  2.880278 340

The same truncation will be applied hereafter in Example 2. The A=
initial estimateP, was obtained using (38) as

d =0.87021.

First, (60a), (60b), (62a), and (62b) were used with the trun-
2.058386621 2912443826  0.962 179 266 cation(0,0) < (¢,7) < (100, 100) to evaluateK o, and W
To= | 0.993607653 —0.940504298 —2.056054071 | . as shown at the bottom of the next page. Né&t, and W,
—0.923906291 —1.287114675 1.083 272877 were calculated using (63a) and (63b) with truncati@ng) <
(¢,¢) < (100,100) and (0,0) < (4,5) < (100,100). The
L,-sensitivity measure was then computed using (65) as

or equivalently

In this case, (51) yields

S.(Pg) ~20.704 544 Saq =1.04961937 x 107
SO(Po) =10.256 183. S$(I) =2.304669 43 x 10°

In order to minimizeS.(P) in (51), we apply (35) wher# ( P) whereSég) (I) is defined in (73).
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The initial estimate?® = P{”’ & P{”’ was computed using
(74) as

0
P§>—[

P = [

18.23031272 18.793 85826
18.793 85826 20.020376 79

0.18668352 —0.17520854
—0.17520854 0.17117480

Then, using (69) and (73), we obtain

Saq(P) =7.900097 87 x 10°
SO(P©) =501.395 756 76.

Finally, by appl){mg (71a) and (71b), with two iterations we ob-

tain P® = @ P where
P(2) 39.187 32693 40.669 77497
40.66977497 43.444 55278
P _ 0.08808260 —0.08208280
4 71 -0.08208280 0.07946989
or equivalently
T2 _ 4.69642605 4.13895027
1 4.13895027 5.129682 59
() _ [ 0.23320700  —0.183 56769
4 71 -0.18356769 0.21394578

The Ly-sensitivity profile of the first ten iterations is given in

Table Ill. Then, (69) and (73) were calculated as

Saq(P®) =4.779951 63 x 10°
S (PP =807.469 530 86.
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TABLE I
Ly SENSITIVITY PROFILE OF THEFIRST TEN I TERATIONS

i L-sensitivity i Lo-sensitivity

1.04961937 x 107 4.77998761 x 10°

7.90009787 x 10° 4.77998760 x 10°

1 | 4.78462354 x 10° 4.77998760 x 103

4.77995163 x 103 4.77998760 x 10°

4.77998982 x 10% | 9 | 4.77998760 x 10°

4.77998749 x 10% | 10 | 4.77998760 x 10°

By substitutingl’® = T? a7 into (56), the optimal filter
structure with minimuml,-sensitivity was obtained as shown
at the bottom of the page.

It is noted that theL,-sensitivity measureS,q(P?) =
4.77995163 x 10% in the optimal filter structure obtained here
is considerably smaller thafhby = 6.222 57856 x 10% in the
optimal filter structure obtained by Li [17].

V. CONCLUSION

Novel expressions for thels-sensitivity of linear dis-
crete-time systems, linear continuous-time systems, and
2-D state-space digital filters have been developed. Each
expression is derived in terms of the general controllability
and observability Gramians. It has been shown that, for each
class of systems, the new formula offers a natural connection
between thel.-sensitivity and thel, /L,-mixed sensitivity.

An iterative procedure has also been proposed to facilitate
the minimization of the new expressions of the-sensitivity
measure. Our computer simulation results have demonstrated
the effectiveness of the proposed techniques compared with
several existing methods.

r87.09615905 85.18196473 1.63649020 —1.53601192
Koo — 85.18196473 87.09270706  1.31792548 —1.230067 10
0071 1.636 49020 1.31792548 113375598 —1.03484650
L—-1.53601192 —1.23006710 —1.03484650 0.97280328
r11.33767913 —10.35207667 15.856 78762 12.350254 75
W — —10.35207667  9.66197314  —15.00759446 —11.566 13634
071 1585678762 —15.00759446 638.95928802 622.90731771
L 12.35025475 —11.56613634 62290731771 638.944 55368
0.96297355 —0.14767517 —0.17187245 0.13528851
A 0.13855174 0.926 016 45 0.13867749 —0.10915927
0.07557078 —0.03014312 0.98322700  0.14346512
—0.03121145 0.05788553 —0.15069421 0.905763 00
b=[0.16146755 —0.13028217 0.65224855 0.986001 03]T

¢=[0.97919962 0.72777683

—0.05109309 0.04021766]
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