The Z transform (3)

Today

- The inverse Z Transform
- Section 3.3 (read class notes first)
- Examples 3.9, 3.11

The inverse Z-transform

 by expressing the Z-transform as the Fourier Transform of an exponentially weighted sequence, we obtain

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

• The formal expression of the inverse Z-transform requires the use of contour integrals in the complex plane.

Computational methods for the inverse Z-Transform

- For rational Z-transforms we can compute the inverse Z-transforms using alternative procedures:
 - Inspection (Z Transform pairs)
 - Partial Fraction Expansion
 - Power Series Expansion

Inspection method

- Makes use of common Z-Transform pairs in Table 3.1 and of the properties of the Z-Transform (Table 3.2), which we will discuss in the next lecture.
 - Most useful Z-Transform pairs: 1, 5, 6
 - Most useful property: time shifting
- The inspection method can be used by itself when determining the inverse ZT of simple sequences
- Most often, it represents the final step in the expansion-based methods

Example for the inspection method

 Consider a causal LTI system specified by its system function H(z). Compute its unit impulse response h[n].

$$H(z) = \frac{1 - z^{-1}}{1 + \frac{3}{4}z^{-1}}$$

Table 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC	
1. δ[n]	1	All z	
2. u[n]	$\frac{\frac{1}{1-z^{-1}}}{\frac{1}{1-z^{-1}}}$	z > 1	
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a	
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1	
0. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1	
1. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	
2. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	
3. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - a z^{-1}}$	z > 0	

 TABLE 3.1
 SOME COMMON z-TRANSFORM PAIRS

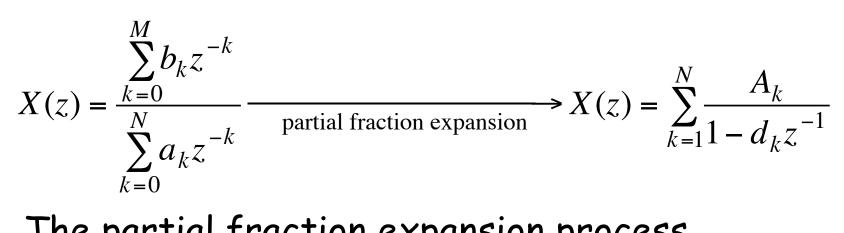
Table 3.2 SOME z-TRANSFORM PROPERTIES

	001112111011			
Property Number	Section Reference	Sequence	Transform	ROC
		<i>x</i> [<i>n</i>]	X(z)	R_{x}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$\frac{-z\frac{dX(z)}{dz}}{X^*(z^*)}$	R_{x}
5	3.4.5	$x^*[n]$	$X^*(z^*)^{dz}$	R_x
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	Contains R_x
8	3.4.6	$x^{*}[-n]$	$X^{2J} X^{*}(1/z^{*})$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

TABLE 3.2SOME z-TRANSFORM PROPERTIES

Inverse ZT via partial fraction expansion

- We will study only the case of first-order poles (all poles are distinct) and M<N.
- Equations 3.45, 3.46, 3.47 are not required
- General idea:



• The partial fraction expansion process computes all coefficients A_k

Example for partial fraction expansion

• Compute the inverse Z-transform for:

$$X(z) = \frac{3z^2 - \frac{5}{6}z}{\left(z - \frac{1}{4}\right)\left(z - \frac{1}{3}\right)} \quad |z| > \frac{1}{3}$$

Inverse ZT via power series expansion

- We start from the definition of X(z) $X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$
- We notice that x[n] is the coefficient of n-th power of z^{-1}
- If we have the Z transform expressed as a series of powers of z⁻¹, then we can retrieve x[n] by direct identification
- Main idea

$$X(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \xrightarrow{\text{power series expansion}} X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$$

For rational ZT: long division

Example 1 for power series expansion

 Determine the sequence x[n] corresponding to the following ZT:

$$X(z) = (1+2z)(1+3z^{-1})$$

Example 2 for power series expansion

 Determine the sequence x[n] that corresponds to the following Z Transform, knowing that this sequence is right-sided

$$X(z) = \frac{1}{1 + \frac{1}{2}z^{-1}}$$

Summary

- The inverse ZT is in general a contour integral.
- For rational ZTs, it is not necessary to explicitly compute this integral
- 3 methods:
 - Inspection (ZT pairs and properties of the ZT)
 - Partial fraction expansion
 - Power series expansion
- Which method should we choose?
 - Power series expansion is an excellent tool when the power series is finite
 - For infinite length sequences, we will work mostly with inspection and partial fraction expansion, since long division is computationally expensive