ECE 515 Information Theory

Logistic Regression

Cross Entropy

 The cross entropy between the probability distributions p(X) and q(X) is defined as
H(p,q) = H(p(X))+D(p(X)||q(X))
H(p,q) = E_p[-log(q(X)]

$$H(p,q) = -\sum_{i=1}^{n} p(y_i) \log q(y_i)$$

Linear Regression

- Training data: (x_i, y_i) , $i = 1, 2, \dots, n$
- Model: $\hat{y} = wx + b$
- Loss function: Mean Squared Error (MSE)

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Optimization function:

$$\min_{\substack{w,b}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \min_{\substack{w,b}} \frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

ECE 515 Student Data

Hours Studied (x)	Grade (y)	Hours Studied (x)	Grade (y)
2	65	10	100
3	70	3.5	72
5	80	2.5	68
1	50	4.5	78
4	75	6.5	88
6	85	1.5	55
8	95	2.8	66
7	90	3.2	71
9	98	7.5	92
0	45	5.5	83

Logistic Regression

- Important analytical tool in natural and social sciences
- Key supervised machine learning tool for classification
- The foundation of neural networks

Binary Outcomes are Common and Important

- The patient survives the operation or does not
- The accused is convicted or is not
- The customer makes a purchase or does not
- The marriage lasts at least five years or does not
- The student passes the exam or does not

ECE 515 Student Data

Hours Studied (x)	Passed Exam (y)	Hours Studied (x)	Passed Exam (y)
1	0	16	0
2	0	17	1
3	0	18	1
4	0	19	1
5	0	20	1
6	0	21	0
7	1	22	1
8	0	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	0	29	1
15	1	30	1

Linear Regression vs. Logistic Regression

Logistic Regression

• Output is binary

y=1 (pass) or *y*=0 (fail)

- A function is required that is restricted to [0,1]
- A common choice is the Logistic (Sigmoid) function

$$\sigma(z) = \frac{1}{(1+e^{-z})}$$

• Can be treated as a probability

The Logistic (Sigmoid) Function

Logistic Function

Idea of Logistic Regression

- Compute z = wx + b
- Pass it through the logistic function $\hat{y} = \sigma(z) = \sigma(wx + b)$
- Then treat it as a probability

$$p(y = 1|x) = \sigma(z) = \frac{1}{1 + e^{-(wx+b)}}$$
$$p(y = 0|x) = 1 - \sigma(z) = 1 - p(y = 1|x)$$

• Combining these gives

$$p(y|x) = p(y = 1|x)^{y} \times p(y = 0|x)^{1-y}$$

= $p(y = 1|x)^{y} \times (1 - p(y = 1|x))^{1-y}$

Loss Function

• Given *w* and *b*, the probability of generating the training data is the likelihood function

$$L = \prod_{i=1}^{n} p(y_i | x_i)$$

• We want to find the parameters *w* and *b* that maximize *L*

$$\operatorname{argmax}_{w,b} L = \operatorname{argmax}_{w,b} \prod_{i=1}^{n} p(y_i | x_i)$$

• For simplicity, the log is typically used

$$\log L = \sum_{i=1}^{n} \log p(y_i | x_i)$$

• This is called the log-likelihood function

Loss Function

Maximizing the log-likelihood is the same as minimizing the negative log-likelihood

$$\min_{w,b} -\log L = \min_{w,b} - \sum_{i=1}^{n} \log p(y_i | x_i)$$

• Substituting the probability for logistic regression gives

$$-\sum_{i=1}^{n} \log p(y_i|x_i)$$

= $-\sum_{i=1}^{n} y_i \log p(y_i|x_i) + (1 - y_i) \log(1 - p(y_i|x_i))$

Cross Entropy

$$-\sum_{i=1}^{n} y_i \log p(y_i|x_i) + (1 - y_i) \log(1 - p(y_i|x_i))$$
$$H(p,q) = -\sum_{i=1}^{n} p(y_i) \log q(y_i)$$

Distribution p(Y):

$$p(y = 1) = y$$

 $p(y = 0) = 1 - y$

Distribution q(Y):

$$q(y = 1) = \sigma(z)$$
$$q(y = 0) = 1 - \sigma(z)$$

Optimization Function

$$\min_{w,b} - \sum_{i=1}^{n} y_i \log p(y_i | x_i) + (1 - y_i) \log (1 - p(y_i | x_i))$$

 Because the loss function is convex, a simple optimization algorithm such as gradient descent can be used

Example

- Passing ECE 515 Final Exam
- Feature: Hours of Study
- Output: pass or fail

•
$$p(pass) = \frac{1}{1 + e^{-(wx+b)}}$$

•
$$p(fail) = 1 - p(pass) = 1 - \frac{1}{1 + e^{-(wx+b)}}$$

- *x* is the number of hours studied
- w is the weight (slope)
- *b* is the bias (intercept)

ECE 515 Student Data

Hours Studied (x)	Passed Exam (y)	Hours Studied (x)	Passed Exam (y)
1	0	16	0
2	0	17	1
3	0	18	1
4	0	19	1
5	0	20	1
6	0	21	0
7	1	22	1
8	0	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	0	29	1
15	1	30	1

Gradients

- The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.
- **Gradient Descent**: Find the gradient of the loss function at the current point and move in the **opposite** direction.
- For a scalar w

Loss Function

Optimal weight w = 0.296Optimal bias b = -2.373

Logistic Regression

- Training data: $(x_i, y_i), i = 1, 2, \dots, n$
- Model: $\hat{y} = \sigma(z) = \sigma(wx + b)$
- Loss function: cross entropy

$$-\sum_{i=1}^{n} y_i \log p(y_i | x_i) + (1 - y_i) \log (1 - p(y_i | x_i))$$

• Optimization function:

$$\min_{w,b} - \sum_{i=1}^{n} y_i \log p(y_i | x_i) + (1 - y_i) \log (1 - p(y_i | x_i))$$

Turning a Probability Into a Classifier

$$\hat{y} = \begin{cases} 1 \text{ if } p(y = 1|x) > 0.5 \\ 0 \text{ otherwise} \end{cases}$$

0.5 is called the decision boundary

Probabilistic Classifier

Logistic Regression Decision Boundary: Hours Studied vs Passing

Neuron Structure

MSE Loss

- Left: linear regression MSE loss
- Right: logistic regression MSE loss

