ECE 515 Information Theory

Logistic Regression

Cross Entropy

• The **cross entropy** between the probability distributions $p(X)$ and $q(X)$ is defined as $H(p,q) = H(p(X)) + D(p(X) | q(X))$ $H(p,q) = E_p[-log(q(X))]$

$$
H(p,q) = -\sum_{i=1}^{n} p(y_i) \log q(y_i)
$$

Linear Regression

- Training data: (x_i, y_i) , $i = 1, 2, \cdots, n$
- Model: $\hat{y} = wx + b$
- Loss function: Mean Squared Error (MSE)

$$
MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$

Optimization function:

$$
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$

=
$$
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2
$$

ECE 515 Student Data

Logistic Regression

- Important analytical tool in natural and social sciences
- Key supervised machine learning tool for classification
- The foundation of neural networks

Binary Outcomes are Common and Important

- The patient survives the operation or does not
- The accused is convicted or is not
- The customer makes a purchase or does not
- The marriage lasts at least five years or does not
- The student passes the exam or does not

ECE 515 Student Data

Linear Regression vs. Logistic Regression

Logistic Regression

• Output is binary

y=1 (pass) or *y*=0 (fail)

- A function is required that is restricted to [0,1]
- A common choice is the Logistic (Sigmoid) function \blacktriangleleft

$$
\sigma(z) = \frac{1}{(1+e^{-z})}
$$

• Can be treated as a probability

The Logistic (Sigmoid) Function

Logistic Function

Idea of Logistic Regression

- Compute $z = wx + b$
- Pass it through the logistic function $\dot{y} = \sigma(z) = \sigma(wx + b)$
- Then treat it as a probability

$$
p(y = 1|x) = \sigma(z) = \frac{1}{1 + e^{-(wx + b)}}
$$

$$
p(y = 0|x) = 1 - \sigma(z) = 1 - p(y = 1|x)
$$

• Combining these gives

$$
p(y|x) = p(y = 1|x)^{y} \times p(y = 0|x)^{1-y}
$$

= $p(y = 1|x)^{y} \times (1 - p(y = 1|x))^{1-y}$

Loss Function

• Given *w* and *b*, the probability of generating the training data is the likelihood function

$$
L = \prod_{i=1}^{n} p(y_i | x_i)
$$

• We want to find the parameters *w* and *b* that maximize *L*

$$
\underset{w,b}{\operatorname{argmax}} L = \underset{w,b}{\operatorname{argmax}} \prod_{i=1}^{n} p(y_i | x_i)
$$

• For simplicity, the log is typically used

$$
\log L = \sum_{i=1}^{n} \log p(y_i | x_i)
$$

• This is called the log-likelihood function 14

Loss Function

• Maximizing the log-likelihood is the same as minimizing the negative log-likelihood

$$
\min_{w,b} -\log L = \min_{w,b} -\sum_{i=1}^{n} \log p(y_i|x_i)
$$

• Substituting the probability for logistic regression gives

$$
-\sum_{i=1}^{n} \log p(y_i|x_i)
$$

=
$$
-\sum_{i=1}^{n} y_i \log p(y_i|x_i) + (1 - y_i) \log(1 - p(y_i|x_i))
$$

Cross Entropy

$$
-\sum_{i=1}^{n} y_i \log p(y_i|x_i) + (1 - y_i) \log (1 - p(y_i|x_i))
$$

H(p,q) =
$$
-\sum_{i=1}^{n} p(y_i) \log q(y_i)
$$

Distribution p(Y):

$$
p(y = 1) = y
$$

$$
p(y = 0) = 1 - y
$$

Distribution q(Y):

$$
q(y = 1) = \sigma(z)
$$

$$
q(y = 0) = 1 - \sigma(z)
$$

Optimization Function

$$
\min_{w,b} -\sum_{i=1}^{n} y_i \log p(y_i | x_i) + (1 - y_i) \log (1 - p(y_i | x_i))
$$

• Because the loss function is convex, a simple optimization algorithm such as gradient descent can be used

Example

- Passing ECE 515 Final Exam
- Feature: Hours of Study
- Output: pass or fail

•
$$
p(pass) = \frac{1}{1 + e^{-(wx+b)}}
$$

• p(fail) =
$$
1 - p(pass) = 1 - \frac{1}{1 + e^{-(wx+b)}}
$$

- *x* is the number of hours studied
- *w* is the weight (slope)
- *b* is the bias (intercept)

ECE 515 Student Data

Gradients

- The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.
- **Gradient Descent**: Find the gradient of the loss function at the current point and move in the **opposite** direction.
- For a scalar *w*

Loss Function

Optimal weight *w* = 0.296

Logistic Regression Decision Boundary: Hours Studied vs Passing

Logistic Regression

- Training data: (x_i, y_i) , $i = 1, 2, \dots, n$
- Model: $\hat{y} = \sigma(z) = \sigma(wx + b)$
- Loss function: cross entropy

$$
-\sum_{i=1}^{n} y_i \log p(y_i|x_i) + (1 - y_i) \log (1 - p(y_i|x_i))
$$

Optimization function:

$$
\min_{w,b} -\sum_{i=1}^{n} y_i \log p(y_i | x_i) + (1 - y_i) \log (1 - p(y_i | x_i))
$$

Turning a Probability Into a Classifier

$$
\hat{y} = \begin{cases} 1 \text{ if } p(y = 1|x) > 0.5\\ 0 \text{ otherwise} \end{cases}
$$

0.5 is called the decision boundary

Probabilistic Classifier

Neuron Structure

MSE Loss

- Left: linear regression MSE loss
- Right: logistic regression MSE loss

