
ECE 405/ECE 511
Error Control Coding

Binary Linear Block Codes



Basic Concept
• The key idea is to encode a message by adding redundant 

data or parity to the message.
• The parity bits added at the encoder can be used for 

error detection and/or correction at the decoder.

• Linear codes are the most important class of error 
correcting codes
– simple description
– nice properties
– easy encoding
– conceptually easy decoding
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Modular Arithmetic

• With binary codes, modulo 2 arithmetic is used.
• A number mod 2 is obtained by dividing it by 2 and taking the 

remainder.
• For example, 3 ≡ 1 mod 2 and 4 ≡ 0 mod 2.

mod 2 addition mod 2 multiplication

+ 0 1
0 0 1
1 1 0

● 0 1
0 0 0
1 0 1

same as logical XOR
same as

   logical AND
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Vector Space
• Set of n-tuples over an alphabet A

– n-dimensional vector space Vn

• Example: binary n-tuples of length 5 – V5
– 5-dimensional  vector space   A = {0,1}
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Vector Space Operations

vector addition          scalar multiplication

The space is closed under vector addition and 
scalar multiplication
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• =
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0 (11001) 00000
1 (11001) 11001

a av
11001
10011
01010
+



Inner Product

11001 and 10011 are orthogonal
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Vector Subspace

• A subset of a vector space that is closed under 
vector addition and scalar multiplication

• Example: subspace of V5
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00000
00111
11100
11011

S = +
00111
11011
11100



Basis
• A minimal number of linearly independent 

vectors (k) from the vector space that span 
the space

• Any vector in the space is a linear combination 
of basis vectors

8

• + • =
• + • =
• + • =
• + • =

0 (00111) 0 (11100) 00000
0 (00111) 1 (11100) 11100
1 (00111) 0 (11100) 00111
1 (00111) 1 (11100) 11011

 
 
 

00111
11100



Dual Space

• Set of vectors orthogonal to a vector space
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0000
0111
1100
1011

S
0000
0011
1110
1101

S⊥

S S V⊥× =



Dual Space

• Set of vectors orthogonal to a vector space
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0 0 0 0 0
0 0 1 1 1
1 1 1 0 0
1 1 0 1 1

S =

0 0 0 0 0
0 0 0 1 1
1 1 0 0 0
1 0 1 0 1
1 1 0 1 1
0 1 1 1 0
1 0 1 1 0
0 1 1 0 1

S⊥ =



Vector Space Dimensions

• If a basis has k vectors then the vector space is 
said to have dimension k 

 
dim( ) dim( ) dim( )S S V⊥+ =

0 1 1 1
1 1 0 0

S

 
 
 

0 0 1 1
1 1 1 0

S⊥
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Example

• For the subspace generated by the basis

 find a basis of the dual space
• In this case dim(V) = 5 and k = 2 so

0 0 1 1 1
1 1 1 0 0
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⊥ = =32 8S⊥ = − =dim( ) 5 2 3S



Example

• For the subspace generated by the basis

 a basis of the dual space is
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0 0 1 1 1
1 1 1 0 0
 
 
 

 
 
 
  

1 0 1 0 1
1 1 0 0 0
0 0 0 1 1



Self-Dual Spaces

• Example
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S S⊥=

0000
1010
0101
1111

S
0000
1010
0101
1111

S⊥



Binary Codes in Vector Spaces

Codewords can be considered as vectors in the 
vector space Vn of binary vectors of length n.

Definition A subset C ⊆ Vn is a binary linear block 
code if u + v ∈ C for all u, v ∈ C.

C is a k dimensional subspace of Vn .
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Triple Repetition Code

000

001

111

010

100
110

011

101

V3

• The vector subspace is 000,111
• Basis [111]
• Dimension k = 1
• Length n = 3 16



Binary Linear Block Codes
• Binary linear code: mod 2 sum of any two 

codewords is a codeword
• Block code: codewords have a finite length n
• The number of codewords in a binary linear 

block code C is

• Each codeword of length n represents k data 
bits

• The code rate is

2kC M= =

2log M kR
n n

= =
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dim( ) dim( )nC k V n= =
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Which of the following binary codes is linear?

C1 = {00, 01, 10, 11}
C2 = {000, 011, 101, 110}
C3 = {00000, 11110, 10011, 01101}
C4 = {101, 111, 011}
C5 = {000, 001, 010, 011}
C6 = {0000, 1001, 0110, 1110}

Answer: C1, C2 , C3 and C5
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Generator (Basis) Matrices
• (3,1) repetition code

– n = 3, k = 1

• c = mG

m = 0      c = 000
m = 1      c = 111

[ ]= 1 1 1G
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Generator (Basis) Matrices
• (8,7) single parity check code

– n = 8, k = 7

    ASCII
E = 1000101       c = 10001011
G = 1000111      c = 10001110
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(5,2) Binary Linear Code

• k x n Generator Matrix
• c = mG

 

00 00000
01 11100
10 00111
11 11011

m c

0 0 1 1 1
1 1 1 0 0
 

=  
 

G

n = 5

k = 2
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Linear Codes as Vector Subspaces

all k-tuples
all n-tuples

(00)

(01) (10)

(11)

codewords
0 1 1 0 1 1( ... )  (c ... )k nm m m c c− −→

2k points 2n points

(00000)

(00111)

(11011)

(11100)
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Triple Repetition Code

000

001

111

010

100
110

011

101

V3

16



Richard W. Hamming (1915-1998)
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Hamming at Bell Labs

• The development of error correcting codes 
began in 1947 at Bell Laboratories

• Hamming had access to a mechanical relay 
computer on some weekends

• The computer employed an error detecting 
code, but with no operator on duty during 
weekends, the computer simply stopped or 
went on to the next problem when an error 
occurred
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“Two weekends in a row I came in and found 
that all my stuff had been dumped and 
nothing was done.” And so I said, “Damn it, if 
the machine can detect an error, why can't it 
locate the position of the error and correct 
it?”
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Hamming Weight and Distance
• The  concept of closeness of two codewords is 

formalized through the Hamming distance.
• Let x and y be two codewords in C
  x = 00111    y = 11100
• The Hamming weight of a codeword is defined as 

the number of nonzero elements in the codeword
             w(x) = w(00111) = 3    w(y) = w(11100) = 3
• The Hamming distance between two codewords 

is defined as the number of places in which they 
differ

  d(x,y) = d(00111,11100) = 4
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Hamming Distances for Linear Codes
• For a binary linear code, the addition of any two 

codewords is another codeword
  x + y = z 00111 + 11100 = 11011
• Thus 
    d(x,y) = w(x+y) = w(z) = w(11011) = 4

• Since we are concerned with the error correcting 
capability of a code C, an important criteria is the 
minimum Hamming distance d(C) or dmin between all 
pairs of codewords
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Minimum Hamming Distance
• The minimum Hamming distance of a code C is

  d(C) = min {d(x,y) | x,y ∈ C, x ≠ y}

  (also called dmin)

• For a linear code

  d(C) = min {w(x) | x ∈ C, x ≠ 0}
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31dmin=5

dmin=2

dmin=3

dmin=4



Minimum Hamming Distance
• A code C can detect up to v errors where

   v = d(C)-1

• A code C can correct up to t errors where

 

( ) 1
2

d Ct − =   
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Linear Codes of Length 3

Code rate R = 1
No error correction
No error detection

Code rate R = 2/3
No error correction
Single error detection

Code rate R = 1/3
Single error correction
Double error detection

C1 all 8 vectors used C2 only 4 vectors used C3 only 2 vectors used

dmin=1 dmin=2 dmin=3
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Notation and Examples
An (n,k,d) code C is a linear code where

• n is the length of the codewords
• k is the number of data bits represented by a codeword
• d is the minimum distance of C
  d = d(C) = dmin

Examples 
C1 = {000, 100, 010, 001, 011, 101, 110, 111} is a (3,3,1) code

 C2 = {000, 011, 101, 110} is a (3,2,2) code
C3 = {000, 111} is a (3,1,3) code

A good code has small n-k and large d.
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(5,2,3) Binary Linear Code

• k x n Generator Matrix
• c = mG

• dmin = d(C) = 3  

w( )
00 00000 0
01 11100 3
10 00111 3
11 11011 4

m c c

0 0 1 1 1
1 1 1 0 0
 

=  
 

G

5

2

3 1 1
2

t − = =  
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V5
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Advantages of Linear Block Codes
1. The minimum distance dmin is relatively easy to compute.
2. Linear codes can be simply characterized.

•  To specify a non-linear code often requires all codewords to be listed.
•  To specify a linear (n,k) code it is enough to list k linearly independent 
codewords. These codewords form a basis for the vector subspace and 
this k×n matrix is called a generator matrix for C.

        Examples

3. There are simple encoding and decoding procedures for linear codes.

[ ]= =3

0 0 0
1 1 1

1 1 1
C G

 
= =  

 
2

0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0

C G (3,2,2) code

(3,1,3) code
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Important Linear Block Codes
There are many classes of practical linear block codes:

•  Hamming codes
•  Cyclic codes (CRC codes)
• BCH codes
• Reed-Solomon codes
• Reed-Muller codes
• Product codes 
• LDPC codes
• Turbo codes
•  …      
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