UNIVERSITY OF VICTORIA

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 511

Error Control Coding

Spring 2025

Project Questions

INSTRUCTIONS

- 1. State any assumptions that may be necessary.
- 2. Show all details of your solution.
- 3. There are 10 problems of equal weight.

PROVIDE SOLUTIONS FOR THE FOLLOWING PROBLEMS

- 1. Given $\mathbf{u} = u_1, \ldots, u_m$ and $\mathbf{v} = v_1, \ldots, v_n$, define $(\mathbf{u}|\mathbf{v})$ as the vector $u_1, \ldots, u_m, v_1, \ldots, v_n$ of length m + n. Suppose that C_1 is a binary (n_1, M_1, d_1) code (with M_1 codewords) and that C_2 is a binary (n_2, M_2, d_2) code. Form a new code C_3 consisting of all vectors of the form $(\mathbf{u}|\mathbf{u} + \mathbf{v})$ where $\mathbf{u} \in C_1$ and $\mathbf{v} \in C_2$. Show that C_3 is a $(2n, M_1M_2, d)$ code with $d = \min\{2d_1, d_2\}$.
- 2. Let G_1 and G_2 be generator matrices of linear (n_1, k, d_1) and (n_2, k, d_2) codes, respectively. Show that the codes with generator matrices,

$$\left(\begin{array}{cc}G_1 & 0\\ 0 & G_2\end{array}\right) \text{ and } (G_1 \ G_2)$$

are $(n_1 + n_2, 2k, \min\{d_1, d_2\})$ and $(n_1 + n_2, k, d)$ codes, respectively, where $d \ge d_1 + d_2$.

- 3. Consider an [n, k] binary linear code C whose generator matrix G contains no zero column. If all the codewords of C are arranged as rows of a $2^k \times n$ array,
 - a) show that no column of the array contains only zeros.
 - b) show that each column of the array contains 2^{k-1} zeros and 2^{k-1} ones.
 - c) show that the set of all codewords with zeros in a particular location forms a subspace of C. What is the dimension of this subspace?
 - d) show that the set of all codewords with even weight forms a subgroup of Z_2^n .
- 4. Consider the correspondence between letters and length 3 vectors over F_3 from associating a base 3 number to each letter via the following table, and then taking the digits in the base 3 number as entries in a vector.

Letter	Integer	Integer Base 3
blank	0	000
А	1	001
В	2	002
\mathbf{C}	3	010
•••	• • •	
Ζ	26	222

Consider the parity check matrix H for a code C

$$H^{T} = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 0 & 1 \\ 2 & 2 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 0 & 0 \end{bmatrix}.$$

- a) Find a systematic matrix H for C. Then find a systematic generator matrix G for C.
- b) Encode HELP using G.
- c) Make a syndrome decoding table for C using only error vectors of weight 1. How many coset leaders would you need for complete maximum likelihood decoding?
- d) Decode 100021, 220120, 020120, 012111, 000001, 2*2*01, 220121, 1**002. The * indicates an erasure.
- 5. Consider the $[2^m 1, 2^m m 2]$ cyclic code C generated by g(x) = (x+1)p(x) where p(x) is a primitive polynomial of degree m.
 - a) Show that C has minimum distance 4.
 - b) An error pattern of the form

$$e(x) = x^i + x^{i+1}$$

is called a *double adjacent error pattern*. Show that no two double adjacent error patterns can have the same syndrome. Therefore the code is capable of correcting all single error patterns and all double adjacent error patterns.

- 6. Consider the double error correcting narrow-sense Reed-Solomon code of length 7 over GF(8) with generator polynomial $g(x) = (x \alpha)(x \alpha^2)(x \alpha^3)(x \alpha^4) = x^4 + \alpha^3 x^3 + x^2 + \alpha x + \alpha^3$. Use the Berlekamp-Massey algorithm to decode the received word $r = (\alpha^6 01\alpha^3 100)$ where the lowest degree symbol is on the left. Draw the linear feedback shift register (LFSR) defined by the connection polynomial and verify that it generates the desired syndromes.
- Determine a generator polynomial for a single-error-correcting 4-ary BCH code of length 63. The code should have the highest possible rate.
- 8. Construct a syndrome decoding table for the (6, 3, 4) extended Reed-Solomon code over GF(4) given in the course slides. Decode the following received vectors

(a)
$$r = (0\alpha 1\alpha 1\alpha^2)$$

(b) $r = (\alpha\alpha 1\alpha^2 1\alpha)$