ELEC 405/511
 Error Control Coding

Reed-Solomon Codes

Irving Reed (1923-2012) Gus Solomon (1930-1996)

Polynomial Codes Over Certain Finite Fields, 1960

Reed-Solomon Codes

- Nonbinary BCH codes
- Consider GF(q) ($q=p^{r}, p$ prime)
- To construct a t error correcting nonbinary BCH code with symbols from $\operatorname{GF}(q)$, we use the same technique as for binary BCH codes.
- Roots of $g(x)$ are in GF($\left.q^{m}\right), n \mid q^{m}-1$ $n-k \leq 2 m t$ product of at most $2 t$ minimal polynomials of degree m $d \geq 2 t+1$
- Choose $2 t$ consecutive powers of α, an element of order n in $\operatorname{GF}\left(q^{m}\right)$, as roots of $g(x)$.
- For RS codes, $m=1$ and α is a primitive element in GF(q), then

$$
\begin{aligned}
& n=q-1 \\
& n-k \leq 2 t \rightarrow n-k=2 t \\
& d \geq 2 t+1 \rightarrow d \geq n-k+1
\end{aligned}
$$

Singleton Bound

- Theorem 4-10 Singleton bound

The minimum distance for an (n, k) linear code is bounded by

$$
d \leq n-k+1
$$

- For an RS code $d \geq n-k+1$, so $d=n-k+1$ and all RS codes meet the Singleton bound
- they are optimal ($n, k, n-k+1$) codes, $n=q-1$
- Codes that meet the Singleton bound are called Maximum Distance Separable (MDS)

Reed-Solomon Codes - Minimal Polynomials

- Coefficients of $g(x)$ are in $G F(q)$, roots of $g(x)$ are also in GF(q).
- Minimal polynomial of α is $x-\alpha$. There are no conjugates since $\alpha^{q}=\alpha^{q-1} \alpha=\alpha$.
- $\mathrm{BCH}: \quad M_{1}(x)=(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right) \ldots$

RS: $\quad M_{1}(x)=(x-\alpha)$

- RS codes are a subclass of BCH codes with $m=1$.

Example 8-4 $\quad t=2 \quad \mathrm{GF}(8)$

- $n=8-1=7$ Form GF(8) from $x^{3}+x+1$

α^{0}	1
α^{1}	α
α^{2}	α^{2}
α^{3}	$\alpha+1$
α^{4}	$\alpha^{2}+\alpha$
α^{5}	$\alpha^{2}+\alpha+1$
α^{6}	$\alpha^{2}+1$

$$
\begin{aligned}
& g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right) \\
& =x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3}
\end{aligned}
$$

$$
\mathbf{H}=\left[\begin{array}{cc}
1 \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \\
1 \alpha^{2} \alpha^{4} \alpha^{6} \alpha \alpha^{3} \alpha^{5} \\
1 \alpha^{3} \alpha^{6} \alpha^{2} \alpha^{5} \alpha \alpha^{4} \\
1 \alpha^{4} \alpha^{8} \alpha^{5} \alpha^{2} \alpha^{6} \alpha^{3}
\end{array}\right]
$$

- $(7,3,5)$ RS code

Comparison: RS vs Binary BCH

- RS:

$$
n=q^{m}-1 \quad q=8, m=1
$$

$(7,3,5)$

$$
g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)
$$

- Binary BCH: $n=q^{m}-1 \quad q=2, m=3$
$(7,1,7)$

$$
g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{5}\right)
$$

- RS code: $q^{k}=8^{3}=512$ codewords
- Binary BCH code: $q^{k}=2^{1}=2$ codewords

Comparison: RS vs Binary BCH

- $(7,3,5)$ RS code: $8^{3}=512$ codewords $=2^{9}$
- Each symbol can be represented as 3 bits, a codeword has $n=7$ symbols $=21$ bits and $k=3$ data symbols $=9$ bits.
- The $(7,3,5)$ RS code can be considered as a $(21,9)$ binary code.
- $t=2$ symbols - since 5 bit errors may cover 3 symbols, corrects any burst error of 4 bits or less.

Example 8-5 $\quad t=3 \quad G F(64)$

- $n=64-1=63$
- α a root of the primitive polynomial $x^{6}+x+1$

$$
\begin{aligned}
g(x) & =(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{5}\right)\left(x-\alpha^{6}\right) \\
& =x^{6}+\alpha^{59} x^{5}+\alpha^{48} x^{4}+\alpha^{43} x^{3}+\alpha^{55} x^{2}+\alpha^{10} x+\alpha^{21}
\end{aligned}
$$

- $(63,57,7)$ RS code
- $64{ }^{57}=8.96 \times 10^{102}$ codewords
- $64^{63}=6.16 \times 10^{113}$ vectors
- sphere volume is 9.94×10^{9} so the spheres fill about 14.5% of the vector space

GF(7) Example

- RS codes can be constructed over any finite field
- Consider $q=7$ so that $n=q-1=6$, and $t=2$
- First find a primitive element in GF(7)
$\varnothing(6)=2$ so two primitive elements
$3^{1}=3 \quad 3^{2}=2 \quad 3^{3}=6 \quad 3^{4}=4 \quad 3^{5}=5 \quad 3^{6}=1 \rightarrow 3$ is primitive $b=1$ $g(x)=\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)$ $=(x-3)(x-2)(x-6)(x-4) \quad(6,2,5)$ RS code
$b=2 \quad g(x)=\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)\left(x-3^{5}\right)$ $=(x-2)(x-6)(x-4)(x-5) \quad(6,2,5)$ RS code

One can pick any group of consecutive roots

$$
\begin{aligned}
g(x) & =\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right) \\
& =(x-3)(x-2)(x-6) \quad(6,3,4) \text { RS code } \\
& =x^{3}+3 x^{2}+x+6 \\
g(x) & =\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right) \\
& =(x-2)(x-6)(x-4) \quad(6,3,4) \text { RS code } \\
& =x^{3}+2 x^{2}+2 x+1=g^{*}(x) \quad \text { self reciprocal }
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)\left(x-3^{5}\right) \\
& =(x-3)(x-2)(x-6)(x-4)(x-5) \quad(6,1,6) \text { RS code } \\
& =x^{5}+x^{4}+x^{3}+x^{2}+x+1=g^{*}(x) \quad \text { self reciprocal }
\end{aligned}
$$

Properties of RS Codes

- The dual code of an RS code is also MDS
- $C(6,2,5)$ code over GF(7)
$-C^{\perp}(6,4,3)$ code over GF(7)
- Since RS codes are cyclic codes, they can always be put in systematic form $x^{n-k} m(x)+d(x)$
- A shortened RS codes is MDS

$$
(n, k, n-k+1) \rightarrow(n-u, k-u, n-k+1)(6,4,3) \rightarrow(5,3,3)
$$

- A punctured RS code is MDS

$$
(n, k, n-k+1) \rightarrow(n-u, k, n-k-u+1) \quad(6,4,3) \rightarrow(5,4,2)
$$

Example: Bar Codes over GF(64)

$(63,53,11)$ RS code

Extended RS Codes

- An (n, k) RS code over $\operatorname{GF}(q)$ with $n=q-1$ can be extended twice to a ($q+1, k$) MDS code
- There is a technique for constructing such codes which are cyclic
- A very few RS codes can be triply extended to obtain an MDS code
$-k=3$ or $n-k=3$ and $q=2^{m}$
- In this case $n=q+2$

Example: NASA/JPL Code

- $q=256, n=q-1=255$
- $(255,223,33)$ RS code over GF(2^{8})
\# of codewords \times volume

$$
=2.78 \times 10^{-14}
$$ size of vector space

Example: Compact Discs

- 44.1 kHz sample rate
- 16 bit stereo samples
- $2 \times 16 \times 44100=1.41 \mathrm{Mbps}$
- Original CD capacity: 74 minutes of audio or 650 MB of data
- Data stored on a spiral, not concentric circles

- length 5.38 km
- velocity $1.2 \mathrm{~m} / \mathrm{s}$

Kees Schouhamer Immink (1946-)

Sources of Error

1) Defects caused during disc production

- inferior disc pits and bubbles during disc formation
- defects in the aluminum film and a poor reflective index

2) Defects caused in handling

- fingerprints and scratches
- dust

3) Variations and disturbances during playback

- disturbance of the servo mechanism

4) Jitter - time variation of the signal
5) Interference
(1)-(3) cause burst errors
(4) and (5) cause random errors

Causes of Disc Errors

- Fingerprints cause 43% of errors
- General wear and tear causes 25% of errors
- Player-related issues cause 15% of errors
- User-related issues cause 12\% of errors
- Manufacturer errors cause 2% of errors

Causes of Disc Errors

Error Correction

- Reed-Solomon code
- $(255,251,5)$ code over GF($\left.2^{8}\right)$
- Shortened to a $(28,24,5)$ outer code
- These codewords are interleaved to reduce the effects of burst errors
- $(32,28,5)$ inner code
- Overall code rate is

$$
\frac{24}{28} \times \frac{28}{32}=0.75
$$

CIRC Encoder

- CIRC - Cross Interleaved Reed-Solomon Code

- Interleaving disperses the codewords so they are not contiguous on the disc
- mitigates long burst errors associated with scratches and fingerprints
- Maximum correctable burst error length
- 4000 bits $=2.5 \mathrm{~mm}$

Encoding Algorithm

- Samples are split into two 8 bit symbols
- Six samples from each channel are grouped to obtain 24 symbols
- Four outer RS code parity symbols are generated to give a frame of 28 symbols
- Symbols are interleaved over 109 frames
- Four inner RS parity symbols are generated to give 32 symbols
- These frames are also interleaved

Control and Error Correction

- Skips are caused by physical disturbances
- Wait for disturbance to subside
- Retry
- Read errors caused by disc/servo problems
- Detect error
- Choose location for retry
- Retry, if it fails interpolate if applicable

Interpolation

- Used when decoding fails
- Fill missing audio data using adjacent data
- time or channel
- Only valid for audio CDs

Decoding RS Codes

1. Compute the syndromes
2. Determine the error locator polynomial $\Lambda(x)$
3. Determine the error magnitudes from $\Lambda^{\prime}(x)$ and $\Omega(x)$

$$
\Omega(x)=[1+S(x)] \wedge(x)
$$

4. Evaluate the error locations and the error values at those locations.

CD Errors due to a Ball Point Pen

A Highly Corroded Disc

- Two minutes can still be played.

Audio Data Format

