ELEC 405/511 Error Control Coding

Reed-Solomon Codes

Irving Reed (1923-2012) Gus Solomon (1930-1996)

Polynomial Codes Over Certain Finite Fields, 1960

Reed-Solomon Codes

- Nonbinary BCH codes
- Consider GF(q) (q=p^r, p prime)
- To construct a *t* error correcting nonbinary BCH code with symbols from GF(*q*), we use the same technique as for binary BCH codes.
- Roots of g(x) are in GF(q^m), n | q^m-1
 n-k ≤ 2mt product of at most 2t minimal polynomials of degree m
 d ≥ 2t+1

- Choose 2t consecutive powers of α, an element of order n in GF(q^m), as roots of g(x).
- For RS codes, m=1 and α is a primitive element in GF(q), then

n = q-1 $n-k \le 2t \longrightarrow n-k = 2t$ $d \ge 2t+1 \longrightarrow d \ge n-k+1$

Singleton Bound

• Theorem 4-10 Singleton bound

The minimum distance for an (*n*,*k*) linear code is bounded by

 $d \le n - k + 1$

For an RS code d ≥ n-k+1, so d = n-k+1 and all RS codes meet the Singleton bound

- they are optimal (n,k,n-k+1) codes, n = q-1

• Codes that meet the Singleton bound are called Maximum Distance Separable (MDS)

Reed-Solomon Codes – Minimal Polynomials

- Coefficients of g(x) are in GF(q), roots of g(x) are also in GF(q).
- Minimal polynomial of α is x- α . There are no conjugates since $\alpha^q = \alpha^{q-1}\alpha = \alpha$.

• BCH:
$$M_1(x) = (x - \alpha)(x - \alpha^q)(x - \alpha^{q^2}) \cdots$$

RS: $M_1(x) = (x - \alpha)$

• RS codes are a subclass of BCH codes with *m* = 1.

Example 8-4 *t*=2 GF(8)

• n = 8 - 1 = 7 Form GF(8) from $x^3 + x + 1$

$lpha^{0} \ lpha^{1} \ lpha^{2}$	$\frac{1}{\alpha}{\alpha^2}$	$g(x) = (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha$	α4)
α^{3}	α + 1	$\begin{bmatrix} 1 \ \alpha \ \alpha^2 \alpha^3 \alpha^4 \alpha^5 \alpha^6 \end{bmatrix}$	
α^4	$\alpha^2 + \alpha$	$\mathbf{H} = \begin{bmatrix} 1 \alpha^2 \alpha^4 \alpha^6 \alpha \alpha^3 \alpha^5 \end{bmatrix}$	
α^{5}	$\alpha^2 + \alpha + 1$	$1 \alpha^{3} \alpha^{6} \alpha^{2} \alpha^{5} \alpha \alpha^{4}$	
$lpha^{6}$	α^2 + 1	$\begin{bmatrix} 1 \alpha^4 \alpha^8 \alpha^5 \alpha^2 \alpha^6 \alpha^3 \end{bmatrix}$	

• (7,3,5) RS code

Comparison: RS vs Binary BCH

• RS: $n = q^{m} - 1$ q = 8, m = 1 (7,3,5)

$$g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$$

- Binary BCH: $n = q^m 1$ q = 2, m = 3 (7,1,7) $g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - \alpha^6)(x - \alpha^5)$
- RS code: $q^k = 8^3 = 512$ codewords
- Binary BCH code: $q^k = 2^1 = 2$ codewords

Comparison: RS vs Binary BCH

- (7,3,5) RS code: 8³ = 512 codewords = 2⁹
- Each symbol can be represented as 3 bits, a codeword has n = 7 symbols = 21 bits and k = 3 data symbols = 9 bits.
- The (7,3,5) RS code can be considered as a (21,9) binary code.
- t = 2 symbols since 5 bit errors may cover 3 symbols, corrects any burst error of 4 bits or less.

Example 8-5 *t*=3 GF(64)

- *n* = 64-1 = 63
- α a root of the primitive polynomial x^6+x+1 $g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - \alpha^5)(x - \alpha^6)$ $= x^6 + \alpha^{59}x^5 + \alpha^{48}x^4 + \alpha^{43}x^3 + \alpha^{55}x^2 + \alpha^{10}x + \alpha^{21}$
- (63,57,7) RS code
- 64⁵⁷ = 8.96x10¹⁰² codewords
- 64⁶³ = 6.16x10¹¹³ vectors
- sphere volume is 9.94x10⁹ so the spheres fill about 14.5% of the vector space

GF(7) Example

- RS codes can be constructed over any finite field
- Consider *q* = 7 so that *n* = *q*-1 = 6, and *t* = 2
- First find a primitive element in GF(7) $\phi(6) = 2$ so two primitive elements $3^{1}=3$ $3^{2}=2$ $3^{3}=6$ $3^{4}=4$ $3^{5}=5$ $3^{6}=1 \rightarrow 3$ is primitive b=1 $g(x) = (x-3^{1})(x-3^{2})(x-3^{3})(x-3^{4})$ = (x-3)(x-2)(x-6)(x-4) (6,2,5) RS code b=2 $g(x) = (x-3^{2})(x-3^{3})(x-3^{4})(x-3^{5})$ = (x-2)(x-6)(x-4)(x-5) (6,2,5) RS code

• One can pick any group of consecutive roots

$$g(x) = (x-3^1)(x-3^2)(x-3^3)$$

 $= (x-3)(x-2)(x-6)$ (6,3,4) RS code
 $= x^3+3x^2+x+6$
 $g(x) = (x-3^2)(x-3^3)(x-3^4)$
 $= (x-2)(x-6)(x-4)$ (6,3,4) RS code
 $= x^3+2x^2+2x+1 = g^*(x)$ self reciprocal

$$g(x) = (x-3^{1})(x-3^{2})(x-3^{3})(x-3^{4})(x-3^{5})$$

= (x-3)(x-2)(x-6)(x-4)(x-5) (6,1,6) RS code
= $x^{5}+x^{4}+x^{3}+x^{2}+x+1 = g^{*}(x)$ self reciprocal

Properties of RS Codes

- The dual code of an RS code is also MDS
 - C (6,2,5) code over GF(7)
 - $-C^{\perp}$ (6,4,3) code over GF(7)
- Since RS codes are cyclic codes, they can always be put in systematic form x^{n-k}m(x)+d(x)
- A shortened RS codes is MDS

 $(n,k,n-k+1) \rightarrow (n-u,k-u,n-k+1) (6,4,3) \rightarrow (5,3,3)$

• A punctured RS code is MDS

 $(n,k,n-k+1) \rightarrow (n-u,k,n-k-u+1) (6,4,3) \rightarrow (5,4,2)$

Example: Bar Codes over GF(64)

Extended RS Codes

- An (n,k) RS code over GF(q) with n = q-1 can be extended twice to a (q+1,k) MDS code
- There is a technique for constructing such codes which are cyclic
- A very few RS codes can be triply extended to obtain an MDS code
 - $-k = 3 \text{ or } n k = 3 \text{ and } q = 2^{m}$
 - In this case n = q+2

Example: NASA/JPL Code

- q = 256, n = q-1 = 255
- (255,223,33) RS code over GF(2⁸)

 $\frac{\text{\# of codewords} \times \text{volume}}{\text{size of vector space}} = 2.78 \times 10^{-14}$

Example: Compact Discs

- 44.1 kHz sample rate
- 16 bit stereo samples
- 2×16×44100=1.41 Mbps
- Original CD capacity: 74 minutes of audio or 650 MB of data
- Data stored on a spiral, not concentric circles
 - length 5.38 km
 - velocity 1.2 m/s

Kees Schouhamer Immink (1946 -)

Sources of Error

- 1) Defects caused during disc production
 - inferior disc pits and bubbles during disc formation
 - defects in the aluminum film and a poor reflective index
- 2) Defects caused in handling
 - fingerprints and scratches
 - dust
- 3) Variations and disturbances during playback
 - disturbance of the servo mechanism
- 4) Jitter time variation of the signal
- 5) Interference

(1)-(3) cause burst errors(4) and (5) cause random errors

Causes of Disc Errors

- Fingerprints cause 43% of errors
- General wear and tear causes 25% of errors
- Player-related issues cause 15% of errors
- User-related issues cause 12% of errors
- Manufacturer errors cause 2% of errors

Causes of Disc Errors

Error Correction

• Reed-Solomon code

- (255,251,5) code over GF(2⁸)

- Shortened to a (28,24,5) outer code
- These codewords are interleaved to reduce the effects of burst errors
- (32,28,5) inner code
- Overall code rate is

$$\frac{24}{28} \times \frac{28}{32} = 0.75$$

CIRC Encoder

• CIRC – Cross Interleaved Reed-Solomon Code

- Interleaving disperses the codewords so they are not contiguous on the disc
- mitigates long burst errors associated with scratches and fingerprints
 - Maximum correctable burst error length
 - 4000 bits = 2.5 mm

Encoding Algorithm

- Samples are split into two 8 bit symbols
- Six samples from each channel are grouped to obtain 24 symbols
- Four outer RS code parity symbols are generated to give a frame of 28 symbols
- Symbols are interleaved over 109 frames
- Four inner RS parity symbols are generated to give 32 symbols
- These frames are also interleaved

Control and Error Correction

- Skips are caused by physical disturbances
 - Wait for disturbance to subside
 - Retry
- Read errors caused by disc/servo problems
 - Detect error
 - Choose location for retry
 - Retry, if it fails interpolate if applicable

Interpolation

- Used when decoding fails
- Fill missing audio data using adjacent data – time or channel
- Only valid for audio CDs

Decoding RS Codes

- 1. Compute the syndromes
- 2. Determine the error locator polynomial $\Lambda(x)$
- 3. Determine the error magnitudes from $\Lambda'(x)$ and $\Omega(x)$ $\Omega(x) = [1 + S(x)]\Lambda(x)$
- 4. Evaluate the error locations and the error values at those locations.

CD Errors due to a Ball Point Pen

A Highly Corroded Disc

 Two minutes can still be played.

Audio Data Format

