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Introduction

Course Purpose

• The introduction of the basic elements used in analog electric circuit and some of the core analy-
sis methods.

- We do not cover the transistor (basis for digital circuits)

- We also do not cover Laplace transform (3rd year - simplifies frequency analysis)

• For Elec and Ceng students this course is the basic building block for many courses in 3rd and 
4th year. For example:

- Digital Signal processing (3rd and 4th years)
- Transistor Circuits (3rd year)
- Digital Design Courses (3rd and 4th years)
- Power (4th year)
- etc.

If you learning this material now it will make 3rd and 4th year easier.
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• For Mech students this course is the core introduction to electric circuits and circuit theory

- Use for understanding/employing sensors (i.e., stress sensors change resistance with 
applied stress)

- For connecting electronic control (e.g. microcontrollers) to mechanical systems.

- Mechatronics (4th year option)

- Pure mechanical systems rarely exist - almost everything is connected back to a com-
puter, to electronic sensors, to electronic controllers, etc.

- Industrial mechanical systems are high voltage high current systems - safety.

- etc.

• If you want to do well in the course:

- Don’t sit at the back!

- The room is large (~100 students in a 300-seat lecture hall)

- Siting 50+ feet from the black board and overheads is not going to improve the 
learning experience.

- The lights in the back of the lecture hall will be turn off - if the light above you is 
off you are sitting too far back.
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- DO PROBLEMS, DO PROBLEMS, DO PROBLEMS

- Don’t just copy solutions (for any engineering course, you learn best by doing) 

- More importantly, you figure out what you don’t know or don’t quite understand 
by trying problems.

- Read the text.

- Attend the lectures (even at 8:30 am) 

- A core focus of the lectures is to show you how to solve problems. 

- In the lectures we talk about where the common mistakes are made and how to 
avoid them.

- Attend the tutorials 

- To review and sometimes get a different ‘take’ on the material and to clarify the 
fine points.

- 5% of your course mark will come from single question quizzes in each tutorial.
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- The course is structured to provide 3 different ‘takes’ on the material

- text, 

- lectures and lecture notes, 

- and the tutorials). 

If you don’t “get it” through one of them then you may “get it” through one of the others.

- Try problems: 

- Engineering is not a field where pure memorization works - understanding the con-
cepts and theories and, more importantly, how and when to apply them is what is 
important.

- It is not unusual for there to be more than one valid path to arrive at a solution ( or 
multiple paths that look valid) - but, usually one path is better than the others for 
the particular problem.

- Knowing what this better path is and why is what distinguishes good engineers 
from poor ones. 
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- Real-world engineering mistakes tend to arise due to either: (a) invalid assump-
tions, and/or (b) error prone solution paths (i.e., poor solution paths). 

- The only way to gain the understanding and knowledge (and intuition) required to 
do good engineering is by doing the work of working through problems. 

- If you do not understand something - ASK 

- in the lectures, 

- in the tutorials, 

- in the lab, 

- during the office hours,

- by e-mail,

- etc.

For checking correctness: usually, within the context of the course material we cover, independent 
approaches exist which allow you to check you answers (or at least part of your answers) - for the 

circuits we deal with there is only one correct answer. 

This is a very good skill to master - real-world engineering has no solution sets.
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• Marking

- Standard Engineering Grading Scheme (see handout)

- Assignments 10% (one assignment per chapter)

- Lab 10%

- Midterm 30% (June 26th)

- Tutorial Quizzes 5%

- Final 45%

• Course Web Site: http://www.ece.uvic.ca/~sneville/Teaching/Elec250

- Office hours and contact information and all lecture notes are on the web site.

- IMPORTANT: 

- All Elec 250 e-mail must have “Elec 250:” as the beginning of the subject line.

- E-mail must come from uvic.ca domain to bypass spam filters.
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Course Outline

Chapter 1: Circuit Variables and Circuit Elements
Chapter 2: Resistive Circuits
Chapter 3: Network Theorems
Chapter 4: Node Voltage Analysis
Chapter 5: Mesh Current Analysis
Chapter 6: Energy Storage Elements (Inductance and Capacitance)
Chapter 7: First-Order RC and RL Circuits
Chapter 8: Second-Order Circuits
Chapter 9: Phasors
Chapter 10: AC Analysis Using Phasors
Chapter 11: AC Power
Chapter 12: Series and Parallel Resonance
Chapter 13: Mutual Inductance
Chapter 14: Balanced Three-Phase Circuits
Chapter 15: Operational Amplifiers
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Format: 

- Theory will be presented on the overheads

- Examples will then be worked on the board.

- Solutions to lecture note examples will only be provided as part of the lectures

- They will not be posted on the web.

- The overheads only present an overview of the material (i.e., the key concepts)

- They are not intended to be a substitute for reading the text book. 

- Test material will be inclusive of what is covered both in the text book and on the 
lecture slides.

- In class interaction is expected:

- If you have a question - ASK!

- If you do not understand something - ASK!

- If you are not following something then most likely the person next to you isn’t 
either - ASK!
S.W. Neville Page 8
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0.1. Basic Symbols

Quantity Symbol Units

Time t seconds (s)
Resistance R Ohms (Ω)
Capacitance C Farads (F)
Inductance L Henries (H)
Voltage V, v or v(t) Volts (V)
Current I, i or i(t) Amperes (A)

• Convention: 

- Upper case symbols are constants

- Lower case symbols are variables (or time varying parameters)
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0.2. Circuit Elements and their Circuit Symbols:

• Generic Passive Circuit Element (Consumes Power)

a B.

+ -
Vab

Iab

- Arrow shows direction of current flow.

- +/- show direction of the voltage drop.

- Note the convention is that current is the flow of positive charge.

- Actual electron flow is opposite to the current flow 

- i.e., in a battery the electrons flow from the negative terminal through the circuit to the 
positive terminal but the convention for the current, I, is that it flows from the positive 
terminal to the negative one (i.e., the arrow points the opposite way from how the elec-
trons move).

-  B. Franklin defined current as the flow of positive charges.
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- Note subscripts denote assumed Voltage drop between terminal a and b (i.e.,Va Vb> ) 
(i.e., terminal a is at a higher potential energy than terminal b)

a b

+ -

Iab
a

b

+-
Vba=-Vab

Iba=-Iab

≡
Vab

- If the assumed voltage drop turns out to be in the wrong direction then the Voltage will 
be negative when we solve for it. (i.e., swapping the subscript order is implies multiply-
ing by -1) 

- As long as we are consistent in how we label things the math will work out right.

- Equivalent holds for assumed Current directions

Vab Vba–=

Iab Iba–=
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• Generic Active Circuit Element (Produces Power)

+ -
Vs

Is

- Note the convention is that current flows from the negative terminal out the positive ter-
minal in active elements.

- Active elements (within this course) will always be labelled with respect to either the 
direction of their current flow or the voltage across them.

0.3. Interconnection of Circuit Elements (Wires)

- Wires connect electrical elements to form circuits

- Assume ideal wires (i.e., no parasitic resistances, inductances, or capacitances due to 
the wires - in high speed (i.e., microwave) circuits this assumption is invalid and cannot 
be used - theory of waveguides in 4th year ECE)
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- Certain remote sensing applications with very long wires this assumption is also invalid 
(MECH - e.g. tethered underwater vehicles)

- May have multiple power sources in a circuit as well as multiple passive elements 
which consume power (from the principle of Conservation of energy the net power sup-
plied to a given circuit must equal the net power consumed).

- Nodes are where the wires intersect (or where wires intersect with elements)

1 2 3

4
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- A node splits into branches to connect other circuit elements (as long as the wire(s) do 
not cross through another circuit element they are still part of the same node)

All one node

- If two wires are not connected then this is show as,

- Otherwise it is always assumed that the wires connect.

- Path - An ordered transversal from node to node. (i.e., in the circuit above (node 1, node 
2, node 3) is a path in the circuit 

- Loop (closed path) - a path which ends at the same node where it began. (i.e.,in the cir-
cuit above (node 1, node 2, node 4, node 1) is a loop.) 
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0.4. Basic Passive Elements (Consume Power)

- Resistor Symbol (Chapter 2)

- Capacitor (Chapter 6)

or

- Inductor (Chapter 6)

0.5. Power Sources (Supply Power)

- Voltage Sources (Independent)

+-V or V or +-v(t)
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- Current Sources (Independent)

I or i(t)

- Dependant Current and Voltage Sources (i.e., value is a function of another parame-
ter(s) (current or voltage) in the circuit)

I +-V

- Transistors are examples of dependent current sources (covered in Elec 330 and 380).

0.6. Other Elements

- Switch (connects or disconnects parts of a circuit)
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- Switch opening at t 0=

t 0=

- Switch closing at t 3.5s=

t 3.5s=

- Ground (defined as V 0= )
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• Example of a circuit using these elements (and one which you will be able to analyze by the end 
of the course)

+-

t 1.1s=

+-

5mF

4Ω

7Ω

4H

5V

3Is 2V–

Is v t( ) 3 4πt 35°+( )sin=

+ -V

Elec 250 focusses on circuit analysis.
Later courses build on this core for circuit synthesis 

(i.e., how to design circuits that solve specific problems).
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Real World Example:

• Simple Analog Amplifier Schematic:

- Unfortunately, most interesting circuits required material from 3rd and 4th year to 
understand how they work

- But, this understanding builds on the framework put in place in Elec 250.
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Chapter 1
Circuit Variables and Elements

1.1 Electric Current

• Electric current is due to the flow of electric charges

- measure of charge is the Coulomb (unit C)

- q , Q  is the symbol for charge

- one electron has a charge of -1.6021x10-19C

- the movement of charge over time is current, I , or i  for time varying current 

- Units Amperes (A)

- By convention, current is defined as the flow of positive charges over time

- Formally,

i dq
dt
------=
S.W. Neville Page 20



Elec 250: Linear Circuits I Chapter 1 5/4/08
Ex. 1.1 If a charge of flowing into an element is given by 

q t( ) 10 3– 1 e 5t––( )C=

Then the current through the element is given by

i t( ) dq
dt
------ 5 10 3– e 5t– A×= =

- Given current we can also find the total charge which passes through the device through 
integration.

qtotal i td
t1

t2

∫=

Ex. 1.2 The current flowing in a wire is 10A. What is the total charge flowing through 
the wire between the times t 3s=  and t 9s=

qtotal 10 td
3

9

∫ 60C= =
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• Current Flow

- current flow in a wire is given by its amplitude and direction

I1 5A= I2 10A–=

 (both must be specified)

1.2 Voltage

• Work must be done to move an electric charge from one location to another

- The amount of work to move 1 positive unit of charge (+1 C) is defined as voltage (V)

- Energy is supplied to move the charge - hence, we say that the charge has gained 
energy.

+

-

V

a

b
q
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- When charge q moves from point b to a, then an amount of work (W) must be done on 
the charge q.

- Energy gained by the charge must be supplied by a means external to the circuit (i.e. a 
current source or voltage source - for example a battery)

Vab Va Vb– W
q
----- V= = =

and,

Vba Vab– V–= =

Ex. 1.3 The voltage across a passive element is Vab 15V= . How much work must be 

done to move a charge of q 10 10– C=  from point a to b and vice versa?

Wab q Vab× 15 10 10–× 1.5 10 9– J×= = =

Wba q Vba× 15– 10 10–× 1.5– 10 9– J×= = =

- When q moves from a to b energy is lost due to moving the charge through the 
(passive) element.
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1.3 Energy and Power

• Assume a positive charge moves through an element from its negative end to its positive end.

- According to our definition of voltage, the charge gains energy

- The element gives energy to the charge, which carries it to the rest of the circuit

- We say that an element generates or supplies energy to the circuit if the current leaves 
its positive end.

• Assume a positive charge moves through an element from its positive end to its negative end

- According to our definition of voltage, the charge losses energy

- The element gains energy from the charge, taking it from the rest of the circuit
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- We say that the element absorbs or consumes energy from the circuit if the current 
enters its positive end.

V

I +

-

V

I

-

+

V

I +

-

V

I -

+

consumed consumed produced produced

- The energy (w) absorbed by an element is given by

w qV=

- Measured in Joules (J)

- Power (p) consumed by the element equals the rate of change of energy over time

p dw
dt
------- vdq

dt
------ iv= = =
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- We can also obtain the energy consumed (over an interval t1 t2,[ ] ) by an element if we 
know the power absorbed by integrating the above equation.

Δw w t2( ) w t1( )–=

p td
t1

t2

∫ iv td
t1

t2

∫= =

Ex. 1.4 Find the power consumed by each of the elements

10V

2A +

-

5V

-5A

-

+

4V

3A +

-

-4V

3A

-

+

(a) (b) (c) (d)
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Pa 2 10×– 20W–= =

Pb 5–( ) 5× 25W–= =

Pc 3 4× 12W= =

Pd 3 4–( )×– 12W= =

Ex. 1.5 The power absorbed by an element is given by

p t( ) 5W 0 t 10s<≤
0 t 10>⎩

⎨
⎧

=

- Find the function for the energy absorbed by the element

- For t 0<  w t( ) p τ( ) τd
∞–

0

∫ 0( ) τd
∞–

0

∫ 0 J= = =

- For 0 t 10s≤ ≤  w t( ) w 0( ) p τ( ) τd
0

t

∫+ 0 5( ) τd
0

t

∫+ 5t J= = =

- For t 10s>  w t( ) w 10( ) p τ( ) τd
10

t

∫+ w 10( ) 50 J= = =
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1.4 Passive and Active Elements

• Elements which we will study are divided into 2 classes: passive and active

- Passive Element: an element which cannot deliver more energy to the circuit than what 
has been supplied to it by the circuit. (i.e. Resistors, Inductors, Capacitors)

- Active Element: an element which delivers more energy to the circuit than what the cir-
cuit supplies to it. (i.e. voltage sources, current sources)

- By the conventions for current flow, it follows that for an element to be a passive ele-
ment it must satisfy

w t( ) iv τ 0≥d
0

t

∫=  

- Assuming that w 0( ) 0J=  

- This is a reasonable assumption since for electric circuits we can always assume 
that no power supplies were connected to a circuit prior to some initial time t0  
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Ex. 1.6 The power absorbed by an element is given by

2

-2

p(t)

t(s)4 5 873

- The total energy absorbed by the element is the area under the curve, hence

w 2 3×
2

------------ 2 1×
2

------------ 2 1×
2

------------– 2 2 2 1×
2

------------–×–+ 2 J–= =

- The total energy is negative, hence the element is active over the interval 0 8,[ ]

1.5 Power Sources

• There are two types of power sources (supplies): voltage sources and current sources

- Batteries are examples of constant, or dc (direct current), voltage sources
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- Household electric power outlets are examples of alternating, or ac (alternating cur-
rent), voltage sources

- For an ideal voltage source the voltage is independent of the current through the voltage 
source

Output Voltage V

V

Output Current I

- For real voltage sources the output voltage will decay as the output current is increased 
due to parasitic resistances and other limiting effects, hence, this ideal assumption will 
not hold for real voltage sources.

- The circuit symbol(s) for voltage sources are 

+
-V or V
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• Transistors are examples of current sources (transistors are the basis of computer circuits and 
operational amplifiers)

- Current sources can also be dc or ac

- For an ideal current source its current is independent of the voltage across the current 
source

Output Voltage V

I

Output Current I

- For real current sources the output current will decay as the output voltage is increased 
due to parasitic resistances and other limiting effects, hence, this ideal assumption will 
not hold for real current sources.

- The circuit symbol for a current source is

I
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1.6 Dependent Sources

• There are also voltage and current sources whose output depends on the value(s) of other circuit 
parameters (such as a voltage or current elsewhere in the circuit)

- These are called dependent or controlled sources 

- An operational amplifier is such a source

- The circuit symbols for these sources are

I +-V

- Dependent sources will always have a label which specifies their functional depen-
dency (in terms of other circuit parameters).
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Assignment #1

Refer to Elec 250 course web site for assigned problems.

Due 1 week from today @ 5pm
(in Elec 250 Assignment drop box on 3rd floor EOW)
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Chapter 2
Resistive Circuits

2.1 Resistors

• A resistor is the most basic circuit element (next to wires) where the voltage across it is related to 
the current flowing through it by Ohm’s Law

V IR=

where R 0≥  is the resistance, which is measured in ohms (Ω)

• Ohm’s Law can also be written in terms of conductance, G 1
R
---= , which has units of siemens (S) 

(or sometimes referred to as mho( Ω))

I GV=

• The circuit symbol for a resistor is 

+

-

V

I

S.W. Neville Page 34



Elec 250: Linear Circuits I Chapter 2 5/4/08
- The current always enters the positive lead of a resistor, hence, resistors always absorb 
energy (passive elements)

- The power consumed by a resistor is

p VI IR( )I I2R V2

R
------ GV2  W (Watts)= = = = =

Ex. 2.1 Design an electric heater that generates 1kW when the applied voltage is 120 V. 
How must should the resistance of the heating element be and how much current 
will flow through it?

p V2

R
------=

1000 1202

R
-----------=

R 14 400,
1000

------------------ 14.4Ω= =

I V
R
--- 120

14.4
---------- 8.33A= = =
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2.2 Wires, shorts, and open circuits

• Wires which connect circuit elements together have a small but non-zero resistance (R 0≈ ). It is 
assumed that these parasitic resistances are much smaller than that of the actual circuit elements 
hence they can be neglected (note: for high frequency circuits this is not the case (i.e. microwave 
circuits))

- Within this course the resistance due to the wires can be neglected and assumed to be 
zero.

2.2.1 Short Circuit

• A short-circuit occurs when the resistance to the current flow along a given path is zero. 

- Large current flows when R 0→  even for a small voltage drop due to 

Ishort-circuit
V
R
---

R 0→
lim ∞= =

- Example of a short-circuit is when the positive and negative leads of a voltage source 
are directly connected by a wire. This usually results in damaging the voltage source 
due to the large current which flows during the short-circuit.
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2.2.2 Open-Circuit

• An open-circuit occurs when the resistance to the current flow along a given path is very large 
(i.e. R ∞→ ). 

- A very small current flows when R ∞→  even for a large voltage drops since

Iopen-circuit
V
R
---

R ∞→
lim 0= =

Example of an open-circuit is a battery which is unconnected to a circuit. The battery 
maintains its charge because in the open-circuit no current flows.

2.2.3 Ideal Switch

• The ideal switch is an open-circuit in the “open” (or off) state and a closed circuit in the “closed” 
(or on) state

+ -V

I

- The resistance from an ideal switch is nonlinear and is given by

R on( ) 0=  and R off( ) ∞=
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2.3 Kirchhoff’s Current Law (KCL)

• Based on the conservation of charge - at all times, the sum of charges entering a node must 
exactly equal the sum of charges leaving the node (i.e. a node must always have a net zero 
charge on it)

- Formally we can state this as

Ii
i entering{ }∈

∑ Ij
j leaving{ }∈

∑=

The sum of currents entering a node equals the sum of currents leaving the node

- Or, if we assume a sign convention that currents entering a node are positive and cur-
rents leaving a node are negative then

Ii
i entering{ }∈

∑ Ij
j leaving{ }∈

∑– 0=

Ik
k∀
∑ 0=

- The algebraic sum of currents entering any node is zero.

- Note: we could have reverse our sign convention and assumed a current leaving the 
node is positive and entering a node is negative and arrived at the same result.
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- Which convention we choose is arbitrary. We must keep the same convention through-
out the circuit we are analyzing.

Ex. 2.2 Four currents enter/leave the node as shown below.

I1 I4

I3

I2

 

From KCL we can write 

I1 I2 I3 I4+ +=

or moving all terms to the left-hand side of the equation

I1 I2– I3– I4– 0=

• KCL applies to any closed boundary within a circuit - even if that boundary encloses several 
nodes. (i.e. the sum of charges entering any closed boundary equals the sum of charges leaving 
the closed boundary due to the conservation of charge)
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Ex. 2.3 In the portion of the circuit shown below the application of KCL to the closed 
boundary (shown by the dotted line) gives

I6I3
I8

I1

I1 I3 I6 I8–+ + 0=

Ex. 2.4 Find the unknown currents for the given circuit

I2

I1

2A
4A6A

Solution:
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Ex. 2.5 Find the unknown currents in the following circuit

I1 I2 I6

I3I5

1A

1A

4A

5A

3A

2A

I4

Solution:
S.W. Neville Page 41



Elec 250: Linear Circuits I Chapter 2 5/4/08
Ex. 2.6 Find I, V and R for the following circuit

R

I

V
+

-
5A

1A
4Ω

Solution:

2.4 Kirchhoff’s Voltage Law (KVL)

• Kirchhoff’s voltage law is related to the conservation of energy which states that the sum of 
work done along a closed path must equal zero
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- Formally we can state this as

Vi
i rise{ }∈
∑ Vj

j drop{ }∈
∑=

The sum of voltage rises around a loop equals the sum of voltage drops around the 
same loop

- Or, using our convention that voltage is positive when we go from a lower to a higher 
potential (from - to +) and negative when we go from a higher potential to a lower one 
(+ to -) while traversing an element (from the definition of voltage)

Vi
i rise{ }∈
∑ Vj

j drop{ }∈
∑– 0=

Vk
k closed path{ }∈∀

∑ 0=

The algebraic sum of voltages around any closed path (loop) is zero.

- Note: we could have reverse our sign convention.Which convention we choose is abri-
trary. But, we must keep the same convention throughout the circuit we are analyzing.
S.W. Neville Page 43



Elec 250: Linear Circuits I Chapter 2 5/4/08
Ex. 2.7 Apply KVL to the following circuit

+-

V3

V2

V4

V1

+

-

+-

+-

- Beginning with the voltage source and moving along the closed path in the direction 
specified by the arrow we have

V1 V2 V3– V4–+ 0=

Ex. 2.8 If in the above example if V1 5V= , V2 3V–=  and V4 6V=  then find V3 .

- From applying KVL we have 

5 3–( ) V3– 6–+ 0=

V3 4V=
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Ex. 2.9 Given the circuit shown below what is the voltage and current through the 
“hanging” 10Ω resistor? 

+-

8Ω

8Ω

10Ω

5V5A

a b+ -V

I

Solution:
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2.5 Series Resistors

• Two resistors are said to be connected in series if they share one node and the same current 
flows through them.

I1 I2

I3
I1 I2

R1 R2R1 R2

Resistors in Series Resistors NOT in Series

• Given two resistors in series we can ask the question: What is their equivalent resistance?

- We can use KVL to answer this question

+ -

V2V
+

-
+-

I
V1

R1
R2 V +-

I
Rs

(a) (b)
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- Applying KVL to circuit (a) we have

V– V1 V2+ + 0=

- Applying Ohm’s law to each resistor

V IR1 IR2+=

I V
R1 R2+
------------------=

- Applying Ohm’s law to the circuit (b) we have

V IRs=

I V
Rs
-----=

- If the current and voltage to both circuits are identical then for the circuits to be 
equivalent we must have 

Rs R1 R2+=

Resistances sum when they are connected in series.
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- The above case can be generalized to the case of n series-connected resistors. In that 
case the equivalent series resistance is given by

Rs Ri
i 1=

n

∑=

2.5.4 Voltage Division

• Given the series-connected resistors we can also ask what is the voltage across each of the resis-
tors. From circuit (a) above and the discussion which followed we have that

V1 IR1
R1

R1 R2+
------------------V= =

V2 IR2
R2

R1 R2+
------------------V= =

- The voltage across each resistor is the same fraction of the source voltage as the 
given resistor is of the total series-connected resistance.

- Series resistors therefore perform voltage division.
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Ex. 2.10 What is the value of R in the circuit below?

1.5V20V
+

-
+-

10Ω

R

- We can apply the voltage division formula from above

1.5V R
R 10+
---------------- 20V( )=

1.5R 15+ 20R=

R 0.81Ω=

- Note: whenever we calculate for R it must always be positive - if it isn’t then we’ve 
made a math mistake in the calculations
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Ex. 2.11 Design a potential divider such that the output voltage is 3V when the input 
voltage is 10V and the current in the circuit is 10mA.

3V10V
+

-
+-

R1

R2

10mA

Solution:
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Ex. 2.12 For the following circuit, given that V1/V=0.125 and the power delivered by the 
source is 8mW, find the values of R, V, V1, and I.

V +-

V1

R
I

+ -
4kΩ 2kΩ 8kΩ

Solution:
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2.6 Parallel Resistors

• Two resistors are connected in parallel if they are both tied to the same two nodes such that they 
both have the same voltage across them.

+ -

V

R1

R2 + -

V

R1

R2

Resistors in parallel Resistors NOT in parallel

- We can ask, what is the equivalent circuit of two resistors in parallel?

R1 R2

I1 I2+

-

V I Rp

+

-

V I

(a) (b)
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- Applying KCL and Ohm’s law to circuit (a) we have

I I1 I2+=

I V
R1
------ V

R2
------+ G1V G2V+= =

V I
G1 G2+
--------------------=

- Applying Ohm’s law to circuit (b) we have

V IRp
I

Gp
------= =

- We say that circuits (a) and (b) are equivalent when the source current generates the 
same voltage V in both circuits. This occurs when

GP G1 G2+=

- or in terms of resistances

Rp
R1R2

R1 R2+
------------------=
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• For n resistors in parallel these results can be generalized to give

Gp Gi
i 1=

n

∑=

Ex. 2.13 An amplifier is connected to a 12Ω load, it is required to reduce that load to 8Ω 
using another resistor in parallel. What is the value of the parallel resistor?

8 R 12×
R 12+
----------------=

R 24Ω=

2.6.5 Current Division

• The currents through each of the resistors in circuit (a) above are given by

I1 VG1
G1

G1 G2+
--------------------I= =

I2 VG2
G2

G1 G2+
--------------------I= =
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- In terms of resistances these equations become

I1
R2

R1 R2+
------------------I=

I2
R1

R1 R2+
------------------I=

- Notice that the current through each resistor is proportional to the value of the con-
ductance. It can be easily verified that the sum of these two currents is I.

• The above result can be generalized to n parallel-connected resistors

Ii
Gi
Gp
------I        1 i n≤ ≤,=

where GP  is given by

Gp Gi
i 1=

n

∑=

- Parallel resistors therefore perform current division.
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Ex. 2.14 What is the value of the load resistor R such that the value of the voltage across 
it is 1.5V?

5Ω R10A

+

-

1.5V

Solution:
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Ex. 2.15 Find V and I in the circuit below using series and parallel resistor simplification 
techniques.

+

-

V

I

10V

5Ω 2Ω

10Ω

a

b

10Ω

5Ω

8Ω+
-

Solution:
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Assignment #2

Refer to Elec 250 course web site for assigned problems.

Due one week from today @ 5pm in the Elec 250 Assignment drop box.
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Chapter 3
Network Theorems

3.1 Linearity

• Most of the engineering systems which we deal with are linear systems. An electric circuit is lin-
ear if its circuit variables (currents through the elements and voltages across them) are linear 
functions of power sources that cause them.

Vs V+-

I
Is

-

+

Ra

Rb
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- Using Ohm’s Law, KVL and KCL from the previous chapter we have that

Va Vs V–=  (KVL around first loop)

Ia
Va
Ra
------

Vs V–
Ra

---------------= =  (Ohm’s law at Ra)

V IRb=  (Ohm’s law at Rb)

I Ia Is+=  (KCL at node connecting Ra and Rb)

- So we can write an equation for I  just in terms of the two sources 

I
Vs IRb–

Ra
-------------------- Is+=

I 1
Ra Rb+
------------------ Vs

Ra
Ra Rb+
------------------ Is+=

I K1Vs K2Is+=

where K1  is a constant with dimensions of conductance and K2  is a dimensionless con-
stant.
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- Similarly we can write the voltage V in terms of just the two sources

V 1
Ra Rb+
------------------ Vs

Ra
Ra Rb+
------------------ Is+ Rb=

V
Rb

Ra Rb+
------------------ Vs

RaRb
Ra Rb+
------------------ Is+=

V K3Vs K4Is+=

where K3  is a dimensionless constant and K4  is a constant with dimensions of resis-
tance.

• Hence, in the above circuit the circuit parameters are linear functions of the power sources 

- By linear circuits we mean all such circuits in which all the circuit parameters are linear 
functions of the power sources.

• Linear circuits (and more generally linear systems) have two important properties which can be 
used to simplify their analysis: proportionality and superposition

- All the circuits we will deal with in this course will be linear circuits.
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3.1.1 Proportionality

• The principle of proportionality states that within a linear circuit, if the value of a power supply 
is multiplied by a factor of a  then all of the resulting circuit parameters are multiplied by the 
same factor a .

Ex. 3.1 In the following circuit the value of V1  is given by V1
R1

R1 R2+
------------------Vs= . What is the 

value of V1  if Vs  is changed to Vs' aVs= ?

+-Vs

Is

R1

R2
V1 V2

+ - +
-

V1'
R1

R1 R2+
------------------Vs'

R1
R1 R2+
------------------ aVs( ) aV1= = =
S.W. Neville Page 62



Elec 250: Linear Circuits I Chapter 3 5/4/08
Ex. 3.2 Assume both source are doubled in value what is the resulting value of V?

Vs V+-

I
Is

-

+

Ra

Rb

- From previously we have that without the doubling of the sources

V
Rb

Ra Rb+
------------------ Vs

RaRb
Ra Rb+
------------------ Is+=

- Hence, by proportionality if we now double the value of both sources

V'
Rb

Ra Rb+
------------------ 2Vs( )

RaRb
Ra Rb+
------------------ 2Is( )+ 2V= =

3.1.2 Superposition

• The super position principle is stated as
The value of a circuit variable is the sum of the values of that variable that are pro-

duced by each of the power sources acting alone.
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- This means that we can simplify our analysis by looking at how each power supply acts 
individually on the circuit and then summing the results to get the total effect of all the 
power supplies on the circuit.

- To look at how each power source acts alone we must disable the other power sources

- To disable voltage sources we replace them with short-circuits.

- To disable current sources we replace them with open-circuits.

Ex. 3.3 Use superposition to solve for the I in the following circuit

Vs +- Is

4Ω2Ω

I

4Ω

- First step is to decompose the circuit into a circuit with the voltage source acting 
alone and one with the current source acting alone.
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- For the current source acting alone we have (replace voltage source by short-cir-
cuit)

Is

4Ω2Ω

I

4Ω

I' 4
4 2+
------------Is

2
3
---Is= =  (current divider)

- For the voltage source acting alone we have (replace current source by open-cir-
cuit)

Vs +- Is

4Ω2Ω

I

4Ω

 

I''
Vs

2 4+
------------

Vs
6
-----= =  (Ohm’s law)
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- Combining the two sources we have

I I' I''+ 2
3
---Is

1
6
---Vs+= =

Ex. 3.4 Find V and I using superposition

12V +- 2A

4Ω2Ω

I

4Ω
V

+-

+

-
8V

Solution:
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3.2 Thevenin’s Theorem

• In many situations, we are interested in finding a certain node voltage or a certain branch current 
in a circuit. If the circuit is complex, then we would like a means of simplifying the circuit to just 
those terms we are interested in. Thevenin’s theorem allows us to simplify the circuit to just two 
elements.

- Thevenin’s theorem states:
Any linear circuit can be represented at a given pair of nodes by an equivalent cir-

cuit consisting of a single voltage source in series with a single resistor.

Ex. 3.5 In the following circuit, Thevenin’s theorem can be used to replace the circuit on 
the left of the 6Ω load resistor with the circuit shown in (b)

15V +- VT
+-

I

6Ω

RT
I

6Ω10Ω

5Ω 15Ω

(a) (b)

A

B

A

B

- Circuit (a) can be replaced by circuit (b) where VT  is the Thevenin voltage and RT  
is the Thevenin resistance.
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- The value of VT  is found by replacing the load resistor (6Ω) with an open circuit 
and calculating the open circuit voltage Voc .

15V +- 10Ω

5Ω 15Ω A

B

+

-

Voc

Voc
10

10 5+
---------------15V 10V= =

VT Voc 10V= =
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- The value of RT  is found by replacing the load resistor with a short-circuit and cal-
culating the short-circuit current Isc .

15V +-
Isc

5Ω 15Ω A

B

10Ω

Isc
15V( )

5 10//15+
------------------------- 10

10 15+
------------------⎝ ⎠
⎛ ⎞ 0.545A= =  where //  means “in parallel” (i.e. R1//R2

1
1

R1
------ 1

R2
------+

-------------------= )

RT
Voc
Isc
-------- 10V

0.545A
----------------- 18.3Ω= = =

Ex. 3.6 Find the Thevenin equivalent circuit between terminals a and b

5V +-

I 5Ω 15Ω a

b

10Ω +
- 5I
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Solution:

3.3 Norton’s Theorem

• Norton’s theorem also allows us to simplify a circuit to just two elements, but this time in terms 
of a current source and a parallel resistor instead of the voltage source and series resistor given 
by Thevenin’s theorem.

- Norton’s theorem states
Any linear circuit can be represented at a given pair of nodes by an equivalent cir-

cuit consisting of a single current source in parallel with a single resistor.
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Ex. 3.7 In the following circuit, Norton’s theorem can be used to replace the circuit on 
the left of the 6Ω load resistor with the circuit shown in (b)

15V +- IN

I

6ΩRN

I

6Ω10Ω

5Ω 15Ω

(a) (b)

A

B

A

B

- To solve for IT and RN we find the open-circuit voltage Voc  and the short-circuit 
current Isc  (as we did in the Thevenin’s theorem) 

- From the previous section we have for this circuit that

Voc
10

5 10+
--------------- 15V( ) 10V= =

Isc
10

10 15+
------------------ 15V

5 10// 15( )+
------------------------------⎝ ⎠
⎛ ⎞ 0.545A= =

RT
Voc
Isc
-------- 18.3Ω= =
S.W. Neville Page 71



Elec 250: Linear Circuits I Chapter 3 5/4/08
- For Norton’s equivalent circuit (b) we have that

IN Isc=  and RN RT=

Ex. 3.8 Find Norton’s equivalent circuit at the 10Ω load resistor

15V +- 10Ω

5Ω 15Ω

10A

Solution:
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3.4 Source Transformation

• From the previous two sections we have seen the ability to transform any linear circuit into 
either its Thevenin or Norton equivalents.

- Obviously, we can always move between Norton and Thevenin equivalents

IN
RLRN

I

VT
+- RL

RT
I +

-
V

Thevenin’s Equivalent Circuit Norton’s Equivalent Circuit

- Applying KVL to Thevenin’s equivalent circuit 

V VT RTI–=

- The current at the load resistor is

I
VT V–

RT
----------------

VT
RT
------ V

RT
------–= =
S.W. Neville Page 73



Elec 250: Linear Circuits I Chapter 3 5/4/08
- Applying KCL to Norton’s equivalent circuit gives

I IN
V
RT
------–=

- Combining the above results for the two equations for I  we have that

VT INRT=

• Using this result we have a means of transforming a voltage source in series with a resistor to a 
current source in parallel with the resistor and vice versa

Vs/R RVs
+-

R

R IsR
+-

R

Is

- Note the relationship between the direction of the polarity of the voltage sources and the 
direction of the current in the current sources.
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- We can use source transformations to simplify circuits prior to solving them if there are 
sources which meet the requirements shown above.

Ex. 3.9 Solve for the voltage across the load resistor for the following circuit.

+-
15V

3kΩ

6kΩ 2mA

3kΩ

4kΩ
RL

Solution:
S.W. Neville Page 75



Elec 250: Linear Circuits I Chapter 3 5/4/08
3.5 Maximum Power Transfer

• Sometimes we want to find the maximum power that can be delivered to a load from a given cir-
cuit. Norton and Thevenin equivalent circuits can help us to answer that question (remember that 
any linear circuit can be placed into its Norton or Thevenin equivalent)

- Powering stereo speakers would be an obvious case were we would like to achieve 
maximum power.

- Consider the following a circuit were the circuit driving the load has been replaced by 
its Thevenin equivalent. 

VT
+- RL

RT
I +

-
V

- Assume that the load resistor can be varied with the objective of getting the maximum 
power we can out of the circuit (i.e. we will match the load resistor to the circuit to max-
imize the power output across the load resistor)
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- Applying KVL to the circuit we get

VT I RT RL+( )=

I
VT

RT RL+
-------------------=

- From Chapter 1 we have that

P I2RL
VT

2RL

RT RL+( )2
--------------------------= =

- We want to maximize P  which will occur at the value of RT  for which dP
dRT
--------- 0=

dP
dRL
--------- VT

2 RT RL–
RT RL+( )3

-------------------------- 0= =

- Therefore maximum power will be delivered to the load when 

RL RT=
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- At this value of RL  the output current and voltage will be 

Vmax
VT
2

------=

Imax
VT

2RT
---------=

- And the maximum power from the circuit is 

Pmax
VT

2

4RT
---------=

- In terms of the Norton equivalent circuit the maximum power will be when RL RT=  
and the load voltage, load current, and maximum power will be given by

Vmax
INRT

2
-----------=

Imax
IN
2
-----=

Pmax
IN

2 RT
4

------------=
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3.6 Wye-Delta (Y-D) Transformations

• The three resistors shown in circuits (a) and (b) below cannot be reduced to a single resistor 
since none of them is in series or in parallel. 

1

2 3

R1

R2 R3

R31

R23

R12

(a) (b)

1

2
3

- Circuit (a) is termed a Wye (Y) configuration

- Circuit (b) is termed a Delta (Δ) configuration

- Sometimes a circuit can be simplified by converting between these two configurations - 
where such a conversion preserves the voltages and currents seen by the circuit con-
nected to nodes 1, 2, and 3.
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3.6.3 Wye to Delta Transformation

• By using KCL and KVL for the Y and Δ connected circuits and assuming that all of the circuits 
parameters (currents and voltages) connected to the 3 leads in both circuits are identical we can 
find the transformation to convert a Y circuit to a Δ circuit 

- after fairly lengthy algebra we will arrive at

R12
R1R2 R2R3 R3R1+ +

R3
--------------------------------------------------=

R23
R1R2 R2R3 R3R1+ +

R1
--------------------------------------------------=

R31
R1R2 R2R3 R3R1+ +

R2
--------------------------------------------------=

- If it is assumed that R1 R2 R3 RY= = =  and R12 R23 R31 RΔ= = =  then we have that

RΔ
3RY

2

RY
--------- 3RY= =
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3.6.4 Delta to Wye Transformation

• To transform a D connection to a Y connection we can use the following formulas

R1
R12R31

R12 R23 R31+ +
-------------------------------------=

R2
R23R12

R12 R23 R31+ +
-------------------------------------=

R3
R23R31

R12 R23 R31+ +
-------------------------------------=

- If it is assumed that R1 R2 R3 RY= = =  and R12 R23 R31 RΔ= = =  then we have that

RY
RΔ

3RΔ
2

---------- 1
3
---RΔ= =
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Ex. 3.10 Assume all the resistances are equal to 6Ω. Find the equivalent resistance 
between terminals A and B.

A

B

Solution:
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Ex. 3.11 Find the current entering V1 by replacing the Δ connected resistors with a Y 
connection (Assuming V1 10V= , V2 5V= )

+-
+-V1 V2

5Ω 6Ω

6Ω 6Ω

Solution:

+-
+-V1 V2

5Ω 6Ω

6Ω 6Ω

1 2

3

+-+-V1 V2

5Ω 2Ω 2Ω

2Ω

1 2

3
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Assignment #3

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 4
Node Voltage Analysis

4.1 Motivation

• In the proceeding two chapters we have seen KVL, KCL and Ohm’s law and learned how to 
apply them to solve for circuit parameters

- our current method of solving the problems though is slow, fairly tedious, and error 
prone.

- we would like a more systematic method of solving for the circuit parameters which is 
less ad hoc.

- As we have seen, we tend to end up with the need to solve a system of simultaneous 
equations -> matrix algebra.

- Is there a way we can be more systematic about writing these equations?

- Nodal analysis is one such approach
S.W. Neville Page 85



Elec 250: Linear Circuits I Chapter 4 5/4/08
4.2 Node Voltage

• A node in a circuit is a point connecting two or more circuit elements (as defined in the Introduc-
tion)

- We can choose any one of the nodes within the circuit as the reference node (i.e. we 
ground this node such that its voltage is 0V)

- If the circuit already has a ground element then we use that as the reference node

+-
+
-1

2

3

4

5

- The circuit above has 5 nodes, of which node 5 has been made the reference node (note: 
the choice of which node to make the reference node is arbitrary, but a good choice can 
simplify the circuit equations)

- Node voltage - the voltage of the given node relative to the reference node, using the 
convention that the reference node is at 0V.
S.W. Neville Page 86



Elec 250: Linear Circuits I Chapter 4 5/4/08
- In the above circuit, V35  is therefore the voltage difference between node 3 and node 5.

- Generally, for voltage differences which include the reference node we drop the refer-
ence node from the subscript.

V35 V3 V5– V3 0( )– V3= = =

Ex. 4.1 Find the voltages across all of the elements given the node voltages: V1 3V= , 
V2 5V= , V3 2V–= , V4 4V= , and node 5 is the reference node.

1 2 3 4

5

Solution:
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4.3 Nodal Analysis

• For a circuit containing n nodes we can obtain n-1 nodal equations by applying KCL at each 
node.

- We can then solve these equations via matrix algebra

- Once we know the node voltages we can easily compute any other circuit parameter we 
wish to know

4.3.1 Circuit with only current sources

• Nodal analysis is easiest to understand for circuits with only current sources.

Ex. 4.2 Solve for the node voltages in the following circuit

Ia Ib

R2

R1 R3

- Step 1: Label the nodes.
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- Step 2: Assign the reference node. Generally, it helps to assign the reference node 
to the node connected to the most elements (i.e. node 5 in Ex. 4.1)

- Step 3: Write the KCL equation at each of the nodes. We need to assume a sign 
convention to be able to do this.

Convention: Currents entering a node are assumed to be negative and currents 
leaving a node are assumed to be positive.

- The convention is arbitrary. We could choose the opposite convention. But we 
must be consistent for all the equations we write for the given circuit.

Ia Ib

R2

R1 R3

1 2

- At node 1 we have,

I– a I1 I12+ + 0=
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- In terms of node voltages the currents can be written as

I– a
V1
R1
------

V12
R2
--------+ + 0=

I– a
V1
R1
------

V1 V2–
R2

------------------+ + 0=

I– a G1V1 G2 V1 V2–( )+ + 0=

- Note the above equation has 3 terms (one for each of the branches in node 1) and is 
written in terms of the current source, the node voltages, and the conductances.

- For node 2 we have,

G2 V2 V1–( ) G3V3 Ib+ + 0=

- We now have 2 equations in two unknown which we can solve using matrix alge-
bra

G1 G2+ G2–
G2– G1 G2+

V1

V2

Ia

Ib–
=
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- The above equations have been put into the form Av b=  where

A
G1 G2+ G2–

G2– G1 G2+
=

v
V1

V2

=

b
Ia

Ib–
=

- The solution to v  can be found by v A 1– b= .

- Within the course you are encouraged to use Matlab to solve the assigned problems 
(since hand solving matrix equations is tedious and very error prone)
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- Assuming values for Ia 5A= , R1 3Ω= , R2 4Ω= , R3 7Ω=  and Ib 2A–=  then in 
matlab the above solution can be found by typing

unix prompt% matlab
>> A = [1/3+1/4) -1/4; -1/4 1/4+1/7];
ans =

0.5882 -0.25
-0.25 0.3929

>> b = [5 2]’;
ans =

5
2

>> A\b
ans =

14.7857
14.5000

Ex. 4.3 Use nodal analysis to find the node voltages of the circuit below

1A

2Ω

5A

2A1Ω 4Ω
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Solution:

4.3.2 Node Equations from Inspection

• Obviously, we can directly write the nodal equations in matrix form provided that

- 1. The circuit in question has no voltage sources. Only current sources are allowed if we 
are to write the matrix equations directly.

- 2. There must be no dependent sources.

- If these conditions hold then

- The diagonal elements aii  of A  equal the sum of all conductances connected to 
node i.
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- The elements aij  equal the negative of the conductances connecting node i to node 
j.

- Element bi  of b  is the algebraic sum of all currents connecting to node i, where 
positive current is then the current enters the node.

Ex. 4.4 Find the node voltages by inspection for the following circuit

10A

4Ω

4A10Ω

3Ω

20Ω

2Ω

Solution:
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Ex. 4.5 Perform

3V2

2Ω

5A10Ω 20Ω

 nodal analysis on the circuit below

- Note the dependent source. This means the inspection method will not work so we 
must write out the equations and then put them into matrix form.

Solution:
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4.3.3 Node Analysis with voltage sources

• Nodal analysis is simplified when voltage sources are present since they either (a) directly give 
one of our node voltages, (b) allow us to write a simple equation for the voltage difference 
between two nodes.

- Case (a) occurs when the voltage source is connected to the reference node.

2Ω

2A

1 2

5V +- 1Ω

5A

- In this case we already are given one of the node voltages 

V1 5V=

- So we only have one of the node voltages left to solve for,
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- Write the node voltage equation at node 2 to get V2

5– 2 1
2
--- V2 V1–( )+ + 0=

V2 11V=

- We can now solve for any of the other circuit parameter which may be of interest.

Ex. 4.6 In the above circuit solve for the power produced by V1

Solution:
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- Case (b) occurs when the voltage source is connected to two non-reference nodes.

2Ω

2A

1 2
5V

+-

2Ω
4Ω

3

10A

I

- In this case we can also quickly write one of the voltage equations

V2 V1– 5=

V2 V1 5+=

- but the current I in the circuit posses a problem since it depends on the values of 
the other circuit elements. (i.e. it does not depend on the value of the voltage 
source which it flows through)

- We have quickly eliminated one variable (or found a simple expression for it) but 
we have gained another variable, I, which we need to solve for.

- There are two approaches to this new problem: a simple, slow approach, and the 
supernode method
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4.3.4 Simple, Slow Approach (for voltage sources not connected to the reference node)

• We need to assume a current entering the voltage source. It doesn’t matter which direction we 
choose for the current, but we need to include this current in our node voltage equations.

- We have 3 unknowns (V1 V2 V3, , ) so we will need 3 equations.

- From the voltage source connecting nodes 1 and 2 we have that

V2 V1 5+=  (Eq 1)

- From node 1 we have that

10– 1
2
--- V1 V2–( ) I+ + 0=

- From node 2 we have that

1
4
---V2

1
2
--- V2 V1–( ) 1

2
--- V2 V3–( ) I–+ + 0=

- If we combine the above two equations we can eliminate I

10– 1
2
--- V1 V2–( ) 1

4
---V2

1
2
--- V2 V1–( ) 1

2
--- V2 V3–( )+ + 0=+ +
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- Simplifying

1
2
--- 1

4
---+⎝ ⎠

⎛ ⎞V2
1
2
---V3– 10=  (Eq. 2)

- Now we need just 1 more equation which we can get by KCL for node 3

1
2
--- V3 V2–( ) 2+ 0=  (Eq. 3)

- With 3 equations in our 3 unknowns we can now apply matrix algebra to get the solu-
tion

1– 1 0
0 0.75 0.5–
0 0.5– 05

V1

V2

V3

5
10

2–

=
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Ex. 4.7 Write down the node equations for the circuit below and find the current enter-
ing the voltage source

2kΩ

2mA

5V

+-

2kΩ
10mA

I

4kΩ 4kΩ

Solution:
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Ex. 4.8 Find V  using nodal analysis

2A4Ω+- 4Ω

2Ω

2Ω

V10V
+

-

Solution:
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4.3.5 Supernode Method

• The above approach results in an extra circuit variable in the equations which we must cancel 
out.

- We know that KCL applies to any node that we define, including over closed bound-
aries (Chapter 2).

- So we can simplify the analysis by enclosing the voltage source within a closed bound-
ary and writing the KCL equation for this supernode.

Ex. 4.9 Applying supernode method

2A 4Ω

+-

4Ω

2Ω

10A

5Ω

5V

1 2 3
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- Write down the equation relating V1  and V2  (given by voltage source)

V2 V1– 5V=

- Write the KCL equation from the supernode formed by nodes 1 and 2 (just as we 
have done for the simple nodes before except we need to account for all currents 
crossing the supernodes boundary)

10– 2– 1
4
---V1

1
5
--- V2 V3–( )+ + 0=

- Write the KCL equation for node 3

1
4
---V3

1
5
--- V3 V2–( )+ 0=

- We now have directly obtained the 3 equations in 3 unknowns and can write the 
matrix equation

1– 1 0
0.25 0.5 0.2–

0 0.2– 0.45

V1

V2

V3

5
12
0

=
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Ex. 4.10 Find the current through the 5V source

5A

4Ω

+ -

2Ω

5Ω5V

+ -

3Ω 3A

4V

Solution:
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Ex. 4.11 Find the node voltages of the following circuit

2Ω

5Ω 5Ω 10Ω

1A

+-

V
+

-

3V

Solution:
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Assignment #4

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 5
Mesh Current Analysis

5.1 Motivation

• In the previous chapter we used KCL at each of the nodes to systematically generate the set of 
simultaneous node voltage equations (which we then solved with matrix algebra)

• In this chapter we use KVL around meshes (closed loops) to systematically generate a set of 
simultaneous mesh current equations.

5.2 Mesh Current

• A mesh is a closed path containing two or more circuit elements

• The mesh current is the current that flows around this closed path (mesh)

• If a branch is shared by two meshes, then the current in the branch is the algebraic sum of the 
two mesh currents.
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Ex. 5.1 The circuit below contain 2 meshes.

+
-

+
-

V1

V2R1

R2

R3

R4
I1 I2

• If we know the mesh currents then we can find all of the other circuit parameters

Ex. 5.2 For the given circuit find the current flowing through each of the elements if the 
mesh currents are I1 3A= , I2 5A= , and I3 7A=

I1 I2 I3
A

B

C

D

E

F

G

- Note that the current through shared branches is the algebraic combination of the mesh 
currents which the branch shares.
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Solution:

• For circuits containing n  meshes we have n  unknowns and we can generate n  simultaneous 
mesh equations based on applying KVL around each mesh.We can then solve these equations 
using matrix algebra.

5.3 Mesh Analysis

• Mesh analysis consists of applying KVL around each mesh in our circuit.
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- Consider the following circuit

+-V1
R2

I1

+ -

I2

R1

R3

- This circuit has two meshes and two mesh currents I1  and I2

- Applying KVL around the first mesh 

V1 R1I1– R2 I1 I2–( )– 0=

R1 R2+( )I1 R2I2– V1=

- Note we are following our convention 

- moving from the negative to positive terminals of a voltage source (in the direction 
of the assigned current flow) produces a voltage rise which we’ve defined as posi-
tive.

- moving from the positive to negative terminals of a resistor produces a voltage 
drop which we’ve defined as negative.
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- Note that the current through the shared branch (resistor R2 ) is the algebraic sum of the 
two mesh currents with the sign of the mesh currents based on the direction which they 
travel through the shared branch.

- I1  moves through the branch from top to bottom and since we are writing KVL for 
mesh 1 it is assumed to be positive.

- I2  moves through the shared branch in the opposite direction (from the bottom to 
the top), hence it produces a voltage on R2  which is in the opposite direction as the 
voltage across R2  caused by I1 . 

- Hence, the voltage drop across R2  is given by R2 I1 I2–( ) .

- Writing KVL for mesh 2 

R2 I2 I1–( )– V2– R3I2– 0=

R2I1– R2 R3+( )I2+ V2=
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- This gives us two simultaneous mesh equations which we can solve using matrix alge-
bra

R1 R2+ R2–

R2– R2 R3+

I1

I2

V1

V2

=

Ex. 5.3 Use mesh analysis to find the mesh currents for the circuit below

+-10V I1

+ -

I2

2Ω

I3

-5V

4Ω
2Ω

3Ω5Ω

7Ω

Solution:
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Ex. 5.4 Use mesh analysis to find the mesh currents for the circuit shown below

+-10V
I1

+-

2Ω

I3

4ΩI2

8Ω4Ω

3Ω

5Ω

2V

Solution:
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5.4 Mesh Equations by Inspection

• From the previous examples we can form the matrix A  and the vector b  from inspection accord-
ing to the following process

- The circuit should not have any current sources.

- The circuit should not have any dependent voltage or current sources.

- The diagonal elements aii  of A  equal the sum of all of the resistances around mesh i .

- The element aij  equals the negative of the resistance shared by meshes i  and j .

- Element bi  of b  is the algebraic sum of all of the voltages in mesh i , where positive 
voltage is when it is in the direction of the assumed mesh current.

• Note that the matrix A  will be symmetric due to the rule for assigning the elements aij . 

• Note that this process does NOT apply if there are current sources in the circuit.
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Ex. 5.5 Find the mesh currents in the following circuit by inspection.

+-110V I1 I3I2

7Ω

3Ω

20Ω +
- 130V10Ω

2Ω 4Ω

Solution:
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Ex. 5.6 Find the mesh currents in the circuit below by inspection.

I1

I3I2
+
-
10V

5Ω

5Ω3Ω

8Ω

Solution:

5.5 Mesh Analysis with Current Sources

• As in node voltage analysis with voltage sources, there are two cases which may be present in 
mesh current analysis with current sources
S.W. Neville Page 117



Elec 250: Linear Circuits I Chapter 5 5/4/08
- Each current source belongs to only one mesh. 

I1

I3I2
+
-5V

1Ω

2Ω3Ω

5A

2A

(a)

- At least one of the current sources belongs to two meshes.

+
-5V

2Ω

4Ω

2Ω
I2

I3I1
2A

10A

(b)
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- For circuit (a) (the case where the current sources belong to only one mesh)

- For the two current sources we can easily write the mesh equations

I1 5A–=

I3 2A–=

- This gives us two of the three mesh currents, so we just need to write a mesh equa-
tion for mesh 2

3 I2 I1–( ) 1 I2 I3–( )+ 5V=

4I2 15–( )– 2–( )– 5=

I2
12
4

------– 3A–= =

- So for a circuit where the current sources each belong to only one current mesh, we can 
trivially solve for those mesh currents.
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Ex. 5.7 Find the mesh currents for the circuit shown below. What is the voltage across 
the current source? What is the power delivered by each of the power sources?

+
-5V

3Ω

4Ω

2Ω
I2

I3I1 5Ω

5A

Solution:
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5.6 Solving for Current Sources Belonging to Two Meshes

• If the current source belongs to two meshes then we can immediately write an equation for the 
current source in terms of the two mesh currents. 

- From circuit (b) from above (reproduced below) we have that

+
-5V

2Ω

4Ω

2Ω
I2

I3
I1

2A

10A

(b)

+

-
V

I1 I3– 2A=

- However the voltage drop V  across the 2A current source is unknown and must be 
taken into account in order to apply KVL to mesh 1 and mesh 3.

- There are two methods of dealing with the voltage drop across the shared current 
source: 1) a simple but slow method or 2) the supermesh method.
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5.6.1 Simple but slow method

• To illustrate this method we will solve the circuit (b) above.

- The technique for handling this situation involves the following steps:
1. Assume a voltage drop V  across the current source that is shared by the two 

meshes. The direction of the voltage drop is not important. The magnitude of that 
voltage will be determined later by application of KVL

2. Write down an equation relating the shared current source to the two mesh cur-
rents.

I1 I3– 2=

3. Write KVL equations for meshes 1 and 3

5 2 I1 I2–( )– V– 0=

V 2 4+( )I3– 0=

4. Add these two equations to eliminate the voltage drop across the shared current 
source

5 2 I1 I2–( )– 2 4+( )I3– 0=

5. Write KVL for the rest of the meshes, which in this example is mesh 3

I2 10A–=
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6. Now we have a system of 3 equations in 3 unknowns, thus we can write the 
matrix equation

1 0 1–
2– 2 6–

0 1 0

I1

I2

I3

2
5–

10–

=

- After finding the values for all of the mesh currents, we can find the value of V  by 
applying KVL to either mesh 1 or mesh 3.

Ex. 5.8 Find the mesh currents and the voltages across the current sources for the fol-
lowing circuit.

+-

5V 5kΩ

4kΩ
2kΩ
I2

I1
2mA

+

-
V

4kΩ
10mA I4

I3

Solution:
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Ex. 5.9 Find the mesh currents for the following circuit.

+ -

10V

5kΩ

4kΩ

2kΩ
I2I1

2mA

+ -
VI4

3kΩ
I3 5mA+

-

I525V

Solution:
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5.6.2 Supermesh Method

• In the previous chapter we used supernodes to simplify the process of obtaining our node voltage 
equations when we had voltage sources

• We can use a similar approach to obtain all of the mesh equations directly.

- To do this we need to form a supermesh which includes the shared current source

- We then perform KVL around the supermesh - remember from Chapter 2 that KVL 
applied to any closed boundary (loop) so we can apply it to the supermesh which we 
have constructed

Ex. 5.10 Find the mesh currents using the supermesh method.

+ -
10V

2kΩ
I2I1

5kΩ

I3+
-

5V

3kΩ
5mA

Solution:
S.W. Neville Page 125



Elec 250: Linear Circuits I Chapter 5 5/4/08
1. Write down the equation relating the current source and the 2 mesh currents 
which share it

I2 I3– 5=

2. Write KVL for the supermesh formed by combining meshes 2 and 3

2I1 2I2– 5– 8I3– 0=

3. Write KVL for the remaining mesh (mesh 1)

10 2I1– 2I2+ 0=

4. We now have a system of 3 simultaneous equations in 3 unknowns and we can 
write the matrix equation

0 1 1–
2 2– 8–
2– 2 0

I1

I2

I3

5
5
10–

=

5. We can solve for the mesh currents as x A 1– b=
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Ex. 5.11 Find the voltage across the 5A current source using mesh analysis for the fol-
lowing circuit.

+ -

I2

5Ω

I3

4V

4Ω

I4

I1
2Ω

+ -

4Ω

5V

3A

5A

Solution:
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Ex. 5.12 Find the mesh currents in the following circuit.

5Ω 5Ω

1A

I

10Ω

2Ω
+-

3I

Solution:
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Ex. 5.13 Find the mesh currents in the following circuit.

2Ω

5A10Ω
5Ω +

-
V3V

Solution:
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Assignment #5

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 6
Energy Storage Elements

(Inductance and Capacitance)

6.1 Introduction

• To this point we have just looked at circuits containing resistors and power sources.

• There are two other important elements, which respectively store electrical and magnetic energy

- Capacitor - stores electrical energy.

- Inductor - stores magnetic energy.

• These two elements are essential for building useful circuits such as electric power supplies, 
computer memories, receiver tuners, and electrical signal filters.

6.2 Capacitors

• A capacitor is a two terminal device which is capable of storing electrical energy.
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- In general a capacitor is constructed by two plates separated by an insulating (dielectric) 
material.

Terminal Terminal

Conductive Plate

Dielectric Material

- The electrical energy stored in a capacitor results from the electric field located between 
the capacitor plates

- When a voltage is applied across the capacitor, equal but opposite electric charges 
appear on the capacitor plates in proportion to the voltage applied across it.

q Cv=

- where C  is the capacitance and is measured in farads (F).
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- The electrical symbol for a capacitor is

+
-

V
i

- The current through the capacitor is obtained by differentiating the above equation with 

respect to time (remember from Chapter 1 that i dq
dt
------= )

i Cdv
dt
------=

Ex. 6.1 If the voltage across a capacitor changes with time as 10tV
s
---  what is the current 

passing through the capacitor assuming C 4μF= ?

Solution:
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- According to the charge-voltage equation of a capacitor as the voltage v  increases with 
time, the charge on each of the capacitor plates also increases. 

- This is consistent with a current entering the positive lead of the capacitor as shown 
above.

- We can express v t( )  in terms of i t( )  by integration

v t( ) 1
C
---- i τd

∞–

τ

∫
1
C
---- i τd

∞–

0

∫ i τd
0

τ

∫+ v 0( ) 1
C
---- i τd

0

τ

∫+= = =

- where the initial voltage v 0( )  is related to the initial charge on the capacitor q 0( )  as 

v 0( ) q 0( )
C

-----------=

Ex. 6.2 If the current passing through a capacitor changes with time as i t( ) 10e 50t– mA= . 
What is the voltage across the capacitor assuming C 4μF=  and v 0( ) 2V=

Solution:
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Ex. 6.3 Find the expression for the current through the capacitor if the voltage across a 
capacitor has the waveform

v t( )

0 for t 0<

a 1 e
t
τ
--–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

for t 0≥
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Solution:

• Since the voltage across a capacitor is a function of the charges which have accumulated on its 
plates, the current flowing through a capacitor cannot change instantaneously even if there is a 
sudden change in the voltage across the capacitor (it will always take some time to dissipate the 
charges on the capacitor’s plates). 
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- Sudden large magnitude changes in the voltage across a capacitor will result in sharp 
current pluses through the capacitor.

- The figure below shown the current versus voltage plot for the case where C 0.2H= , 
a 5A= , and τ 30ms=  for the above example. Note that the sudden change of the volt-
age at t 0s=  results in a sharp pulse in the current.
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6.2.1 Energy Stored in a Capacitor

• The energy stored in a capacitor at time t  is given by

w t( ) iv τd
∞–

t

∫ Cv vd
τd

----- τd
∞–

t

∫ C v vd
∞–

t

∫= = =

- Thus we have 

w t( ) 1
2
---Cv2 t( )=

- where v ∞–( ) 0= .

- Since w t( ) 0≥  the capacitor is a passive element.

Ex. 6.4 The energy stored in a 2μF  capacitor is 15 mJ. Find the voltage across the 
capacitor and the stored charge.

Solution:
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6.2.2 Capacitors Connected in Series

• As in the case for resistors, we would like to know the equivalent capacitance of two capacitors 
which are connected in series.

- Consider the following circuit

+-v v2
v1

i C1

C2

+ -
+
-

- Applying KVL around the circuit gives

v v1 v2+=
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- Applying i Cdv
dt
------=  for capacitors, we get

v v1 0( ) 1
C1
------ i τd

0

t

∫+ v2 0( ) 1
C2
------ i τd

0

t

∫++=

v v1 0( ) v2 0( )+[ ] 1
C1
------ 1

C2
------+ i τd

0

t

∫+=

- Consider the following circuit

+-v vs

i

Cs
+
-

- Applying the current-voltage relationship for capacitors

v v 0( ) 1
Cs
----- i τd

0

t

∫+=
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- Hence, the two circuits above are equivalent (i.e. the voltage source supplies the same 
current to both circuits) when

1
Cs
----- 1

C1
------ 1

C2
------+=

v 0( ) v1 0( ) v2 0( )+=

- The two capacitors are replaced by a single capacitor whose value is Cs  and whose ini-
tial voltage equals the sum of the initial voltages of the series capacitors.

• The above results can be generalized for the case of n  series connected capacitors to give

1
Cs
----- 1

Cj
-----

j 1=

n

∑=

v 0( ) vj 0( )
j 1=

n

∑=

6.2.3 Capacitors in Parallel

• As in the case for resistors, we would like to know the equivalent capacitance of two capacitors 
which are connected in parallel.
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- Consider the following circuit

v

i C1 C2

i1 i2+

-

- Applying KCL at the top node gives

i i1 i2+=

- Applying the equation for the current through a capacitor

i C1
dv
dt
------ C2

dv
dt
------+=

- Consider the following circuit

vpCp
+
-

v

i

+

-
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- Applying the equation for the current through a capacitor

i Cp
dv
dt
------=

- The two circuits above are equivalent if

Cp C1 C2+=

- This result can be generalized to give the equivalent capacitance for a system of n  par-
allel capacitors 

Cp Cj
j 1=

n

∑=

Ex. 6.5 Determine the equivalent capacitance for the following circuit

1mF

500μF

1mF200μF

Solution:
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6.3 Inductors

• An inductor is a two terminal device which stores magnetic energy.

• An inductor is constructed from a length of wire that is tightly wound into a spiral, which some-
times has a magnetic material as its core.

• The circuit symbol for an inductor is

i

v+ -

• When current is passed though the inductor magnetic field lines are created in proportion to the 
magnitude of the applied current.

- The total magnetic flux surrounding the inductor is given by 

λ Li=

- where L is the inductance (measured in Henry (H)) and λ is the magnetic flux.

- Remember that passing a current through a wire generates a magnetic field, the coiled 
shape of an inductor causes it to store magnetic energy.
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• According to Faraday’s law, the voltage across the inductor is proportional to the rate of change 
of the magnetic lines of force surrounding the inductor, thus

v dλ
dt
------ Ldi

dt
-----= =

- Alternatively, given v  we can express i  though integration

i t( ) 1
L
--- v τd

∞–

t

∫
1
L
--- v τd

∞–

0

∫
1
L
--- v τd

0

t

∫+ i 0( ) 1
L
--- v τd

0

t

∫+= = =

- where i 0( )  is the initial current on the inductor.

Ex. 6.6 The current in a 1H inductor changes linearly from 0 mA to 1 mA in 1 μs. Find 
the resulting voltage? (this is called the “bucking voltage”)

Solution:
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Ex. 6.7 The voltage across a 1 mH inductors changes as v t( ) 120 100tcos= . Find the 
current which flows through it?

Solution:

Ex. 6.8 The current through an inductor has the waveform

i t( )

0 for t 0<

a 1 e
t
τ
--–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

for t 0≥
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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- Find an expression for the voltage across the inductor.

Solution:
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- The figure below shows the voltage and current waveforms for the case when 
L 0.2H= , a 5A= , and τ 30ms= . 

- Note that the sudden change in the current results in a sharp voltage pulse across the 
inductor
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- Given that a sudden change in the current through an inductor causes a change in the 
magnetic flux through the inductor, we can conclude that the current through an induc-
tor cannot change instantly since this would result in an infinite voltage pulse across the 
inductor.

6.3.1 Energy Stored in an Inductor

• The energy stored in an inductor ar time t  is given by

- thus we have that

w t( ) iv τd
∞–

t

∫ i L id
τd

----- τd
∞–

t

∫ L i id
∞–

t

∫
1
2
---Li2 t( )= = = =

- where the current i ∞–( ) 0= .

w t( ) 1
2
---Li2 t( )=

- Since w t( ) 0≥ , the inductor is a passive element

Ex. 6.9 Find the energy stored in a 1mH inductor if the voltage across the inductor is 
given by v t( ) 120 100tcos= ?

Solution:
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Ex. 6.10 A voltage v 10 50tVcos=  is applied across a 4mH inductor. Assume an initial 
state where the initial current in the inductor was 10A. (a) Obtain an expression 
for the current through the inductor. (b) Obtain an expression for the energy 
stored in the inductor. (c) At what times is the energy maximum?

Solution:
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6.3.2 Series Inductors

• Consider the following circuit composed of two inductors connected in series

+-v

i

v1
v2

+ -

L1

L2
+

-

- Applying KVL around the circuit gives

v v1 v2+=

- Applying the equation for the voltage across an inductor gives

v L1
di
dt
----- L2

di
dt
-----+=
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- Consider the equivalent circuit

+-v

i

Ls

- Applying the equation for the voltage across the inductor gives

v Ls
di
dt
-----=

- For the above two circuits to be equivalent then

Ls L1 L2+=

- This case can be generalized for n  inductors connected in series to given

Ls Lj
j 1=

n

∑=

6.3.3 Parallel Inductors

• As in the case for resistors, we would like to know the equivalent inductance of two inductors 
which are connected in parallel.
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- Consider the following circuit

v

i L1 L2

i1 i2+

-

- Applying KCL at the top node gives

i i1 i2+=

- Applying the equation for the current through a inductor

i i1 0( ) 1
L1
-----v τd

0

t

∫+ i2 0( ) 1
L2
-----v τd

0

t

∫++ i1 0( ) i2 0( )+[ ] 1
L1
----- 1

L2
-----+ v τd

0

t

∫+= =

- Consider the following circuit

Lp

v

i

+

-
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- Applying the equation for the current through a capacitor

i i 0( ) 1
Lp
----- v τd

0

t

∫+=

- The two circuits above are equivalent if

1
Lp
----- 1

L1
----- 1

L2
-----+=

i 0( ) i1 0( ) i2 0( )+=

- This result can be generalized to give the equivalent inductance for a system of n  paral-
lel inductors 

Lp
1
Lj
----

j 1=

n

∑=

i 0( ) ij 0( )
j 1=

n

∑=
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Ex. 6.11 Determine the equivalent inductance for the following circuit

20 mH

30 mH

10 mH

5 mH1 mH

10 mH

6.4 DC Behaviour of Capacitors and Inductors

• When the circuit is in dc steady state, the currents and voltages in all the circuit elements do not 
change with time, hence for every circuit element we have that

dv
dt
------ 0=

di
dt
----- 0=

- Thus for a capacitor we get

i Cdv
dt
------ C 0⋅ 0= = =
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- Thus the current in a capacitor is zero when the applied voltage across the capacitor 
does not change with time (dc steady state)

- A capacitor therefore acts as an open-circuit in dc steady state.

- For an inductor we get 

v Ldi
dt
----- L 0⋅ 0= = =

- Thus the voltage across an inductor is zero when the current through the inductor does 
not change with time (dc steady state)

- An inductor therefore acts as a closed-circuit in dc steady state.
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Ex. 6.12 For the circuit shown below find the voltages and currents in each circuit ele-
ment when the circuit is in dc steady state.

+-5V

2kΩ 10mH 3kΩ

5mA5mF
5mH

Solution:
S.W. Neville Page 156



Elec 250: Linear Circuits I Chapter 6 5/4/08
Assignment #6

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 7
First-Order RC and RL Circuits

7.1 Introduction

• Up to this point, we have looked only at circuits where there were no changes in the circuit dur-
ing its operation

- This is termed steady-state (i.e. the state of the system does not change)

- Consider the following circuit were the switch is opened at t 0s= .

+- V
0.25F

3Ω

5Ω50V
+

-

t 0s=

- We cannot solve this type of circuit using only the circuit theorems we have learned up 
to this point since these theorems implicitly assume that the circuits are in steady-state.
S.W. Neville Page 158



Elec 250: Linear Circuits I Chapter 7 5/4/08
• Steady-state circuit analysis is very important but a much larger class of useful circuits can be 
built if we allow the circuit to change during the course of its operation.

- For example, computer circuits are based on the operation of large numbers of switches 
(implemented through transistors) which change state as the computer operates. 

- Camera flashes work by charging a capacitor to the level required to produced the 
“flash” and then switching the circuit to discharge the capacitor through the flash bulb.

- Electronic devices with rechargeable batteries need to be able to switch from drawing 
power from the batteries to recharging the batteries based on whether or not the device 
is plugged into a power source. (Car batteries and alternators are another example of 
this situation)

- Wireless communication circuits (such as cell phones, and cellular base stations) can 
change their operation based on noise levels within the communications channel, envi-
ronmental temperature changes, etc.

• When we change a circuit during its operation transient behaviours are produced.

- The transients are caused by the disturbance of the steady-state circuit and exist until 
the circuit settles down to its new steady-state behaviour.

- The time that the circuit takes to settle down to this new steady-state is termed the time 
constant of the system and is denoted by τ  
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- Obviously, this time constant is of considerable interest to us as engineers when we 
design such circuits. 

• Within this chapter we are concerned only with first-order circuits.

- First-order means that the circuits have only one memory element.

- From Chapter 6 we learned that capacitors store electrical charge and inductors store 
magnetic flux. 

- This storing of charge or flux represents a memory within the circuit (i.e. something that 
persists over a period of time).

- The energy stored in these components cannot dissipate instantly.

- Hence, within this course, first-order circuits refer to circuits with only one storage ele-
ment (i.e. circuits which either have a single capacitor or inductor)

- So when we say “the circuit has only one storage element” this means that the cir-
cuit is either capacitive or inductive NOT that the numerical count of the inductors 
(or capacitors) in the circuit is necessarily equal to one. 

- Remember, that for linear circuits we can always apply Thevenin or Norton’s theo-
rem to reduced a circuit, relative to the chosen terminals A and B, to an indepen-
dent power source connecting to those terminals.
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• We analyze first-order circuits by focusing on the parameters of the system which do not change 
suddenly when the state changes 

- We know from Chapter 6 that the current through and inductor and the voltage across a 
capacitor cannot change suddenly. (i.e. the stored energy in these elements cannot be 
dissipated instantly).

- All the other circuit parameters can change instantly when the state of the circuit 
changes.

+- V
0.25F

3Ω

5Ω50V
+

-

t 0s=

- When the switch is opened, V changes instantly, but the voltage across the capaci-
tor does not (i.e. VC t=0+( ) VC t=0-( )= )

- We use this property of energy storage elements to solve for the transients in circuits 
which are not at steady-state.
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- These circuit parameters which do not change when the state of the circuit changes are 
called state variables.

Circuit Element State Variable

Voltage Source None
Current Source None

Resistor None
Capacitor V
Inductor I

7.2 Significance of State Variables

• We know that the current through an inductor and the voltage across a capacitor cannot change 
instantaneously

- This means if the circuit undergoes a sudden change (i.e. we switch in (or out) a voltage 
(or current) source, or we switch in (or out) other circuit elements) then VC t( )  and IL t( )  
must change in a continuous fashion (i.e. these signals cannot have discontinuities)

- So at the instant of change the only circuit variables which can be assumed not to 
have changed are the capacitor voltages and the inductor currents.
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- All other circuit variable have new values which we must determine without any refer-
ence to their past values. (i.e. they change discontinuously)

Circuit Element Voltage Across Element Current Through Element

Voltage source Constant Sudden change possible
Current source Sudden change possible Constant

Resistor Sudden change possible Sudden change possible
Capacitor Continuous function of time Sudden change possible
Inductor Sudden change possible Continuous function of time

- So our approach to solving these problems is:

1. Solve for the state variables in the initial state

2. Solve for the transient at the state change via the state variables (since they are 
the only circuit parameters which do not change at the instant of the state change)

3. Solve for the circuit in its new steady-state.
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7.3 RC Circuits

• Consider the circuit shown below. 

+- vC

R

Vs

+

-

t 0s=

- The voltage source was disconnected for some time t 0<  (which we assume was long 
enough for the circuit to be in steady-state)

- The only energy storage element in the circuit is the capacitor so the state variable will 
be the voltage across the capacitor (i.e. the only circuit parameter which will not change 
when the switch is closed).

- The capacitor may have an initial charge v 0( ) V0= . 

- For simplicity of the example will assume this initial charge is V0 0V= 0.
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- We can choose to study what happens when we close the switch by looking at any of the 
circuit parameters, but if we choose to focus on the state variable (the capacitor voltage) 
then the analysis is considerably easier (since it is continuous at the state change)

- If for example we had chosen to study the capacitor current, then we would need to find 
the initial value for this current which is quite difficult since it changes discontinuously.

- So solving for the above circuit (in terms of the capacitor voltage state variable):

- Current flows through the circuit due to the initial voltage on the capacitor 
v 0( ) V0=  and the energy supplied by the voltage source Vs

- We can write the I-V relationship for the capacitor (which gives us the current 
through the circuit)

i Cdv
dt
------=

- But we want an equation which is just in terms of the state variable v  so we need to 
eliminate i  from the above equation

- Applying KVL around the loop gives

Vs iR– v– 0=
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- Solving for i

i
Vs v–

R
--------------=

- Substituting this into our previous equation we get an DE equation which is just in 
terms of the state variable v

Vs v–
R

-------------- Cdv
dt
------=

- This is a first-order differential equation (DE) in one unknown v . 

- In order to solve this DE we would first like to put it into standard form (i.e. hav-
ing the coefficients of the highest order differential operator equal to 1, and placing 
the variables on the left hand side, in order of the differential operators, and the 
constants on the right hand side)

- dv
dt
------  is the highest order differential operator, so we can make its coefficient 1 by 

dividing the equation through by C

dv
dt
------ v

RC
--------+

Vs
RC
--------=

(DE in standard form) 
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- This is a first order DE and it has a solution of the form

v vf vn+=

- where vf  is the forced response (due to the power source) and vn  is the natural 
response (due to the initial charge on the capacitor)

- Hence, vf  and vn  must satisfy the following equations

dvf
dt
-------

vf
RC
--------+

Vs
RC
--------=  (nonhomogeneous DE)

dvn
dt

--------
vn
RC
--------+ 0=  (homogenous DE)

- We can observe that the forced response vf  satisfies the original DE while the natu-
ral response vn  only satisfies the left hand side of the original DE (i.e. its solution 
does not depend on the power source Vs ).
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7.3.1 The Forced Response

• To solve for the forced response, we first notice that the forced response will have the same time 
dependence as the power supply 

- So for a dc power supply we can try solution of vf A=  (i.e. assume that vf  is a constant)

- Substituting this trial value into

dvf
dt
-------

vf
RC
--------+

Vs
RC
--------=

- we get

0( ) A
RC
--------+

Vs
RC
--------=

A Vs=

- Hence, the forced response is simply

vf Vs=
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7.3.2 The Natural Response

• For the natural response we need to find a vn  which will solve the DE

dvn
dt

--------
vn
RC
--------+ 0=

- This DE requires that the value of vn  have the same form as its differential 
dvn
dt

--------

- A natural choice for the solution is a vn  of the form vn kest=  (where k  is a constant of 

dimension volts, and s  is a constant with dimensions of onds 1–sec )

- Substituting this trial solution into the DE. we get that

skest kest

RC
---------+ 0=

- Collecting terms

kest s 1
RC
--------+⎝ ⎠

⎛ ⎞ 0=
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- We reject the trivial solution k 0=  and since est 0≠  we can divide both sides 
through by kest  

- The only nontrivial solution therefore to this equation is when the bracketed term is 
zero

s 1
RC
--------+ 0=

- This equation is known as the characteristic equation for the circuit.

- This characteristic equation has a single root which occurs when

s 1
RC
--------–=

- This root tells us how fast the natural response decays to zero. The is termed at the time 
constant of the circuit.

- Traditionally, this decay constant is denoted by τ  and the solution for vn  is written in the 
form

vn ke
t
τ
--–

=

- where τ  has units of seconds and is given by τ RC= .
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- We still need to solve for k , but we can only do this once we have an equation for the 
total response of the circuit.

• Significance of the time constant:

- The expression for the natural response will always include a term of the form e
t
τ
--–
. 

- For large values of t  the natural response will decay to zero

e
t
τ
--–

t ∞→
lim 0=

- The time constant τ  determines how fast the circuit settles down to its equilibrium value 
(steady state value)

- For example,

- if τ 1s=  then the natural response decays to e 1– 36.788%=  of its starting value 
every second since we have that

vn 1( ) V0e
1
1
---–

V0 36.788%×= =
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- On the other hand, if τ 1ms=  then the natural response decay by 36.788% each 
millisecond.

7.3.3 The Total Response

• We can now write the total response in terms of our solutions for the natural and forced 
responses as,

v t( ) vn t( ) vf t( )+ ke
t
τ
--–

Vs+= =

- This is our solution to the differential equation

dv t( )
dt

------------ v t( )
RC
---------+

Vs
RC
--------=

- This solution is valid for all times t

- Thus we can use this total response to solve for k

- We know the initial conditions for the circuit 

- At t 0= , we are given that the initial charge on the capacitor is V0  
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- Substituting t 0=  into the above equation gives

V0 ke
0( )
τ

-------–
Vs+ k Vs+= =

- Solving for kwe have that

k V0 Vs–=

- We can now substitute this value for k  back into our equation for the total response to 
get

v t( ) V0 Vs–( )e
t
τ
--–

Vs+ Vs 1 e
t
τ
--–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

V0e
t
τ
--–

+= =

- Note that the voltage starts at its initial value and changes exponentially towards its 
final value with the time constant τ  which is given by the values of R  and C  only.

- If we evaluate v t( )  around t 0= , then for some small value ε  we can observe that

v t( )
V0 when t=0 ε+

V0 when t=0 ε–
⎩
⎪
⎨
⎪
⎧

=
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- Proving that sudden changes in the circuit will not result in sudden changes in the 
capacitor voltage

• After we have found the total response for the circuits state variable v t( ) , we can now solve for 
other circuit variables of interest.

- For example, the resistor voltage can be easily found as

vR t( ) i t( )R Cdv
dt
------ R× RC Vs V0–( )e

t
τ
--–

= = =

- This equation though is only valid for t 0+≥  since it assumes that the switch has 
been closed and that current can flow in the circuit.

- To find vR t( )  for t 0-≤  we need to look at the steady state circuit which existed 
before the switch was closed

- In this case, i t( ) 0=  for t 0-≤ , hence vR t( ) 0=  for t 0-≤
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- Hence, the complete expression for vR t( )  is

vR t( )
0 for t 0-≤

RC Vs V0–( )e
t
τ
--–

for t 0+≥⎩
⎪
⎨
⎪
⎧

=

- There is a discontinuous change in vR t( )  

- The fact that the state variables have no such discontinuities makes it much easier 
to solve for the circuit in terms of them first, then use those solutions to get the 
other circuit parameters of interest.

Ex. 7.1 Find the total response for the following circuit (assuming that v 0( ) 5V–= )

+- v3F

5Ω

10V
+

-
4Ω 20Ω

Solution:
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Ex. 7.2 Find the total response for the voltage v t( )  for the circuit shown below given 
that v 0( ) 0V= . Find i t( ) .

v
1

50
------F 15Ω1A

+

-

24Ω

6Ω

i

Solution:
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Ex. 7.3 The circuit shown below is in steady-state when t 0< . The switch flips as shown 
at t 0= . find how i  and v  change with time for t 0≥ .

20V

t 0s=

+- +- v
0.2F 10Ω+

-5Ω

15Ω

10V

Solution:
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7.4 RL Circuits

• The above work deals only with energy storage elements which are in the form of capacitors.

• We can also store energy in terms of the magnetic flux across an inductor.

- We know that the current through an inductor cannot change instantaneously

- Hence for RL circuit the state variable of interest is the inductor current

• Given the following circuit

+- L

R

Vs

t 0s=

v
+

-

i

- Current flows in this circuit due to the initial energy stored on the inductor, given by 
i 0( ) I0= , and due to the energy supplied by the voltage source Vs .
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- Since we know that the inductor current is the state variable we can begin by writing the 
I-V relationship for the inductor

v Ldi
dt
-----=

- We require a DE just in terms of the state variable, so we need an another expression for 
v  in terms of i

- We can write the KVL equation around the loop as 

Vs iR– v– 0=

- Note that this equation only “exists” once the switch has been closed.

- We can use this equation to substitute for v  in the inductor’s I-V relationship

Vs iR– Ldi
dt
-----– 0=

- This gives us a DE just in terms of the state variable i , but we need to express it in stan-
dard form

di
dt
----- iR

L
---+

Vs
L
-----=
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- This is a first-order DE and the solution to this equation will be of the form

i if in+=

- where if  is the forced response due to the voltage source and in  is the natural 
response due to the initial current through the inductor.

- As in the previous section, the forced and natural response need to solve the homoge-
nous and nonhomogeneous DEs given by

dif
dt
------ if

R
L
---+

Vs
L
-----=

din
dt
------- in

R
L
---+ 0=

7.4.1 The Forced Response

• The forced response has the same time dependency as the power supply, so for a dc power sup-
ply, we try a constant value for if A=
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- Substituting this value into the nonhomogeneous DE gives

0( ) AR
L
---+

Vs
L
-----=

A
Vs
R
-----=

- which gives the forced response simply as 

if
Vs
R
-----=

7.4.2 The Natural Response

• For the natural response we attempt a trial solution of the form 

in kest=

- Since it needs to solve the homogenous DE of 
din
dt
------- in

R
L
---+ 0=

- Substituting this trial solution in the DE gives

skest kest R
L
---⎝ ⎠
⎛ ⎞+ 0=
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- Simplifying by collecting like terms

kest s R
L
---+⎝ ⎠

⎛ ⎞ 0=

- The only non-trivial solution to the equation is when

s R
L
---+ 0=

- This equation is the characteristic equation for the RL circuit

- The solution to this equation is given by

s R
L
---–=

- Thus the solution for the natural response is 

in ke
R
L
---t–

ke
t
τ
--–

= =

- where τ L
R
---=  is the time constant of the RL circuit.

- As with the RC circuit we must use the total response of the circuit to solve for k .
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7.4.3 The Total Response

• Combining the above result we have a solution of the form

i t( )
Vs
R
----- ke

t
τ
--–

+=

- This solution applies at all times, hence we can solve for k  by evaluating this equation 
at t 0=  (where we know the initial conditions)

i 0( )
Vs
R
----- ke

0( )
τ

-------–
+ I0= =

- Hence, we can solve for k  as 

k I0
Vs
R
-----–=

- Thus our complete solution for i t( )  is

i t( )
Vs
R
----- I0

Vs
R
-----–⎝ ⎠

⎛ ⎞ e
t
τ
--–

+=

i t( )
Vs
R
----- 1 e

t
τ
--–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

I0e
t
τ
--–

+=
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- Note that the current starts at its initial value and changes exponentially towards its final 
value with a time constant τ  that depends only on the values of R  and L .

Ex. 7.4 The circuit below was in steady-state prior to the switch being opened at t 0= . 
Find the values of i , iR , and v  for t 0≥ .

1A
2H 20Ω

t 0s=

i 2Ω
1Ω 10Ω

v+ - iR

Solution:
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7.5 Short-Cut method for First-Order Circuits

• First-order RC and RL circuits lend themselves to a simple technique for finding the time-behav-
iour of any of their circuit parameters according to the following steps

1. Make sure that the circuit does not have any dependent current or voltage sources

2. Find the Thevenin (or Norton) equivalent circuit seen by the capacitor or induc-
tor.

3. Find the forced, or steady-state, response by studying the circuit under dc or ac 
conditions, depending on the type of the power supply connected to the circuit. 
For a dc source, the capacitor is replaced by an open circuit while an inductor is 
replaced by a short-circuit. The relevant state variable is then evaluated from this 
simplified circuit.

4. Compute the circuits time constant as

τ RTC=  for RC circuits

τ L
RT
------=  for RL circuits 
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5. Write the forced response as 

xf VT=  for RC circuits

xf
VT
RT
------ IN= =  for RL circuits

6. Write the natural response as

xn ke
t
τ
--–

=

7. Write the total response as 

x xf xn+=

8. Solve for the constant k  from the initial condition as

x 0( ) xf k+=

k x 0( ) xf–=

9. Write the total response as 

x t( ) xf x 0( ) xf–[ ]e
t
τ
--–

+ xf 1 e
t
τ
--–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

x 0( )e
t
τ
--–

+= =
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10. Use the solution obtained for the state variable to solve for any of the remaining 
circuit parameters of interest. 

Ex. 7.5 For the circuit below find the values for v  and i  for t 0≥ , given that the current 
in the inductor was i 0-( ) 3A–=  when t 0< .

10V 12Ω

2Ht 0s=
i2Ω

8Ωv+-
+

-

Solution:
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7.6 Case when Dependent Sources are Present

• When dependent sources are present we are unable to use the short-cut method to quickly arrive 
at the total response.

- We have to use our circuit theorems (KVL, KCL, Norton, or Thevenin equivalent cir-
cuits, etc.) to solve such problems as the following examples illustrate.

Ex. 7.6 Find v  for t 0≥  if v 0( ) 3V= .

6Ω

3Ωv
0.5F

+

-
+
-2i

i

Solution:
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Ex. 7.7 Find v  for t 0≥  if v 0( ) 3V=  assuming the circuit is in steady-state for t 0<

4Ω 2Ω

v
0.5F

+

-
+
-2v

i

t 0s=

8V+
-

Solution:
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Ex. 7.8 Find v  for t 0≥  assuming the circuit is in steady-state for t 0< .

10Ω 10Ω

v
2H

+

-
+
-0.5v

i

t 0s=

10V+
-

Solution:
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Assignment #7

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 8
Second-Order RC and RL Circuits

8.1 Introduction

• In the previous Chapter, we considered circuits which have only one energy storage element. 

- These circuits produce first-order differential equations which we learned to solve.

• In this Chapter, we consider circuits containing two energy storage elements (i.e. an inductor and 
a capacitor, two inductors, or two capacitors).

- These circuits will produce second-order differential equations which we will need to 
solve.

• As before, we will analyze these circuits by looking at the circuit parameters which do not 
change instantly when the state of the circuit changes

- These are called the state variables

- We know from before that for inductors their current is a state variable, and for capaci-
tors their voltage is a state variable.
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8.2 Series RLC Circuit

• Consider the RLC circuit below

+- V 0.5F

3Ω

5V +

-

t 0s=

1H

i

- For time t 0<  the voltage source was not connected (since the switch was open)

- But at time t 0=  the switch closed, and the voltage source became connected to the cir-
cuit

- At some arbitrarily small time before the switch closed (i.e. at t 0 ε–=  for some small 
ε ) we are told that the inductor had an initial current i 0( ) 1A=  and the capacitor had an 
initial voltage across it of v 0( ) 2V= .

- The exact values for these initial inductor current and capacitor voltage are for illustra-
tion. The state variables will be in some initial state though (either at zero, if the circuit 
has been in an un-powered steady-state for a long time, or at some non-zero constant 
value if the circuit has some energy stored in it.)
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- When the switch is closed the state of the circuit is disturbed and we would like to know 
how it transitions to its new equilibrium (steady) state and what that steady-state will 
be.

- To determine this we focus our analysis on the state variables i  and v .

- Since both i  and v  are state variables we can develop a differential equation 
describing the circuit’s transient behaviour from either of them

- Assume we begin by looking at the state variable v

- Writing KVL around the loop gives

5 3i– di
dt
-----– v– 0=

- This is an equation in terms of both state variable i  and v

- But we want a DE in terms of only one of the state variables (and we have stated 
above that we will choose to write the DE equation in terms of v )

- So we need another equation which relates i  and v , 
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- The I-V relationship for the capacitor gives

i Cdv
dt
------ 0.5dv

dt
------= =

- Substituting this equation in for i  in the DE above we obtain

5 3 0.5dv
dt
------⎝ ⎠

⎛ ⎞– d
dt
----- 0.5dv

dt
------⎝ ⎠

⎛ ⎞– v– 0=

5 1.5dv
dt
------– 0.5d2v

dt2
--------– v– 0=

- Placing in standard form (left-hand side ordered according to highest differential 
operator, then dividing through such that the highest differential operator has a 
coefficient of 1, and the right-hand side being just the constant term).

d2v
dt2
-------- 3dv

dt
------ 2v+ + 10=

- This is a second-order nonhomogeneous DE in v  and (as in the first-order DE case of 
Chapter 13) its solution can be written as the sum of two components

v vf vn+=
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- where vf  is the forced response, due to the power source(s) in the circuit, and vn  is the 
natural response, due to the initial energy stored within the circuit’s energy storage 
elements (i.e. the initial voltage on the capacitor, and the initial current through the 
inductor)

8.2.1 The Forced Response

• As in Chapter 13, we solve for the forced response by solving the nonhomogeneous DE given 
(for the above circuit) by

d2vf

dt2
--------- 3

dvf
dt
------- 2vf+ + 10=

- We can observe that the forced response vf  must satisfy the original DE.

- We need to solve this equation for vf

- We known that the forced response will have the same time dependence as the 
power supply

- For a dc power supply we can try a solution for vf  of

vf A=
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- i.e. the trial solution is where vf  equals a constant.

- Substituting this value in to the above DE gives

0( )2 3 0( ) 2A+ + 10=

- Simplifying

A 5V=

- Hence the forced response is given by

vf A 5V= =

8.2.2 The Natural Response

• The natural response if described by the homogenous DE where the forcing term is zero

d2vn

dt2
---------- 3

dvn
dt

-------- 2vn+ + 0=

- For a natural response we attempt a solution in the form of 

vn kest=
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- where k  is a constant with dimensions of volts and s  is a constant with dimensions of 
onds 1–sec .

- Substituting this trial equation into the homogenous DE

ks2est 3ksest 2kest+ + 0=

- Since we exclude the trivial solution of k 0= , and since est 0≠ , we can divide both 
sides through by kest

s2 3s 2+ + 0=

- This equation is called the characteristic equation for the circuit.

- This is a quadratic equation in s  and it has two roots

s 1–=  and s 2–=

- We assumed a solution of the form vn kest=  but since we have two roots we known that 
the actual form of the solution is 

vn k1e t– k2e 2t–+=

- We still need to find the values for k1  and k2  but we can only find those values once we 
have the total response.
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8.2.3 The Total Response

• We now have the total response for the example circuit of the form

v vf vn+=

v 5 k1e t– k2e 2t–+ +=

- This solution applies at all times. So we can use this equation in solving for k1  and k2  
by substituting the initial conditions at t 0=  into the above equation.

5 k1 k2+ + 2=

- or simplifying

k1 k2+ 3–=

- This is one equation in two unknowns so we need to find another independent equation 
relating k1  and k2

- We began our analysis with the two equations

5 3i– di
dt
-----– v– 0=  

i Cdv
dt
------ 0.5dv

dt
------= =
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- So, since we now have a solution for v  in the form of v 5 k1e t– k2e 2t–+ +=  we can 
use either of the above equations to generate another equation in terms of k1  and 
k2 .(note: these equations are valid for t 0≥ )

- The second equation is simpler so substituting in our solution for v

i t( ) 0.5 d
dt
----- k1e t– k2e 2t–+( )=

i t( ) 0.5 k1e t–– 2k2e 2t––( )=

- Substituting in t 0=

i 0( ) 0.5 k1– 2k2–( )=

- We know from the initial conditions that i 0( ) 1=  therefore

1 0.5 k1– 2k2–( )=

- Simplifying

k1 2k2+ 2–=
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- Now we have two equations in terms of just the two unknowns k1  and k2

1 1
1 2

k1

k2

3–
2–

=

- Solving we get that k1 4–=  and k2 1=  

• Substituting these values into our equation for the response we get that the total response for the 
circuit is given by

v t( ) 4e t–– e 2t– 5 V+ +=

- We can check that this value for v t( )  satisfies the original DE

d2v
dt2
-------- 3dv

dt
------ 2v+ + 10=

- From the equations above we have that dv
dt
------ 4e t– 2– e 2t–=  and d

2v
dt2
-------- 4e t–– 4e 2t–+=  

therefore substituting these values into the DE gives

4e t–– 4e 2t–+[ ] 3 4e t– 2– e 2t–[ ] 2 4e t–– e 2t– 5 V+ +[ ]+ + 10=
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- Simplifying and collecting exponential terms

8e t–– 12e t– 4e t––+( ) 4e 2t– 2– e 2t– 2e 2t–+( ) 10+ + 10=

10 10=

- Therefore v t( )  satisfies the DE describing the circuits operation.

8.3 The Roots of the Characteristic Equation

• We saw in the previous section that the second-order circuits DE produced a characteristic equa-
tion of the form

s2 bs c+ + 0=

- This is a standard second order quadratic equation in s  with a 1=  

- We know from algebra that this equation has two roots which are given by the quadratic 
formula as

s b– b2 4ac–±
2a

--------------------------------------=

- There are three possibilities for the two roots (note that there are always 2 roots)

1. The two roots are real and distinct (Overdamped circuit)
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2. The two roots are real and equal (Critically damped circuit)

3. The two roots are complex conjugates of each other (Underdamped circuit)

- (Note: complex roots to polynomial equations must always come in complex con-
jugate pairs.)

- The previous section covered the first case, the next two sections cover the latter two 
cases.

8.4 The Roots are Real and Equal

• Consider the following circuit

V 1F

2Ω
3A

+

-
1H

it 0s=

- At time t 0=  the switch closes and connects the current source to the circuit.
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- We need to find an equation for i t( )  at t 0≥  given the initial conditions v 0( ) 1V=  and 
i 0( ) 2A=

- Applying KCL at the top left node we get

3 dv
dt
------ i+=

- We are interested in the state variable i  so we need to eliminate v  from the above 
equation. To do this we need another equation relating i  and v .

- We can use the I-V relationship of the 1H inductor, given by v Ldi
dt
----- di

dt
-----= = , in the 

the KVL equation around the right loop to get

v 2i di
dt
-----+=

- Combining this equation with the one above and eliminating v  gives

d2i
dt2
------- 2di

dt
----- i++ 3=

- This is a second-order DE and its solution will be in the form

i if in+=
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- As before we solve this equation by solving for the forced and natural responses in 
turn.

8.4.1 The Forced Response

• The forced response must satisfy the nonhomogeneous DE 

d2if

dt2
-------- 2

dif
dt
------ if++ 3=

- The forced response must have the same time dependency as the power source.

- For dc circuits we try a solution of the form

if A=

- Substituting in to the DE we get

02 2 0( ) A+ + 3=

- Therefore the forced response is given by

if 3A=
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8.4.2 The Natural Response

• The natural response must satisfy the homogeneous DE

d2in

dt2
--------- 2

din
dt
------- in++ 0=

- As before we try the trial solution of in kest=

- Substituting this trial solution into the DE gives

ks2est 2ksest kest+ + 0=

- Since we reject the trivial solution of k 0=  and est 0≠  we can divide through by kest

s2 2s 1+ + 0=

- This is the characteristic equation for the circuit. It has two real equal root both given by

s 1–=

- The fact that the characteristic equation has two equal root means that the form of the 
solution cannot be 

in k1e t– k2e t–+ k1 k2+( )e t–= =
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- since this is a solution to a first-order differential equation

- Therefore we choose for the natural response a solution of the form

in k1e t– k2te t–+=

- We can check this solution works by substituting it into the DE

d2in

dt2
--------- 2

din
dt
------- in++ 0=

- where 
din
dt
------- k1e t–– k2e t– k2te t––+=  and 

d2in

dt2
---------- k1e t– k2e t–– k2e t–– k2te t–+=

k1e t– k2e t–– k2e t–– k2te t–+[ ] 2 k1e t–– k2e t– k2te t––+[ ] k1e t– k2te t–+ + + 0=

k1e t– 2 k1e t–( )– k1e t–+[ ] k2e t– k2e t––– 2 k2e t–( )+[ ] k2te t– 2 k2te t––( ) k2te t–+ +[ ]+ + 0=

0[ ] 0[ ] 0[ ]+ + 0=

- As before, we cannot solve for the values of k1  and k2  until we have the total response.
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8.4.3 The Total Response

• The total response can now be written as

i t( ) if t( ) in t( )+=

i t( ) 3 k1 k2t+( )e t–+=

- To find the values for k1  and k2  we need to known the values for i t( )  and di t( )
dt

-----------  at t 0=

- From the initial conditions we known that i 0( ) 2=  

- Substituting this value into our total response (at t 0= ) gives

2 3 k1+=

- Therefore 

k1 1–=

- The value of di t( )
dt

-----------  at t 0=  can be found by evaluating

v 2i di
dt
-----+=
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- at t 0=  and using the initial condition for the capacitor that v 0( ) 1V=

- This gives

v 0( ) 2i 0( ) di
dt
-----

t 0=
+=

1 2 2( ) k1 k2t+( )– e t– k2e t–+[ ]
t 0=

+=

1 4 k1– k2+=

- Simplifying

k1 k2– 3=

- Substituting k1 1–=  then given k2 4–=

- Therefore the total response for the circuit (which had two real equal roots for its char-
acteristic equation) is

i t( ) 3 1 4t+( )e t––=
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8.5 The Roots are Complex Conjugates

• Consider the circuit shown below

V 0.5F

1Ω

10V
+

-

2H

it 0s=

+- 4Ω

- To analyze this circuit we need a DE in terms of one of the state variables (i.e. i  or v )

- Applying KVL around the right loop gives

v 2di
dt
----- 4i+=

- This is a DE in terms of both state variables but we want a single equation in terms of 
just one of the state variable. 

- So we need to find another equation that relates v  and i  
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- Applying KCL to the top middle node gives

v 10–
1

-------------- 0.5dv
dt
------ i+ + 0=

- Substituting in for v  from the previous equation we have that

2di
dt
----- 4i+ 10–

1
------------------------------------- 0.5 d

dt
----- 2di

dt
----- 4i+ i+ + 0=

- Simplifying

2di
dt
----- 4i 10– d2i

dt2
------- 2di

dt
----- i+ + + + 0=

- Placing in standard form

d2i
dt2
------- 4di

dt
----- 5i+ + 10=

- We know this equation will have a solution of the form

i t( ) if t( ) in t( )+=
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8.5.1 The Forced Response

• The forced response must satisfy the nonhomogeneous DE

d2if

dt2
-------- 4

dif
dt
------ 5if+ + 10=

- Since the power supply is DC, we seek a solution of the form

if A=

- Substituting this into the nonhomogeneous DE we get

0( )2 4 0( ) 5A+ + 10=

A 2=

- Thus we have that

if t( ) 2A=

8.5.2 The Natural Response

• The natural response must satisfy the homogenous DE

d2in

dt2
--------- 4

din
dt
------- 5in+ + 0=
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- The characteristic equation for this homogeneous DE is given by

s2 4s 5+ + 0=

- The roots of this equation are

s 2– j±=

- Therefore we can write in  as 

in t( ) k1e 2– j+( )t k2e 2– j–( )t+=

in t( ) k1ejt k2e jt–+( )e 2t–=

in t( ) Re k1 t j tsin+cos[ ] k2 t( ) j– t( )sincos[ ]+( )e 2t–=

- Note: k1  and k2  will themselves be complex when we have complex conjugate 
roots. 

- in t( )  can be simplified to: 

in t( ) k1 t k2 tsin+cos( )e 2t–=

- The constants k1  and k2  can then be solved for by using the total response.
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- Clarification: 

- Where does the “k2 tsin “term given above come from?

- We have defined (in Chapter 7) that the time domain signals are the real part our 
complex phasor notation (i.e., v t( ) Re ωt φ+( ) j ωt φ+( )sin+cos[ ]= )

- So to get in t( )  we want to determine in t( ) Re k1ejt k2e jt–+( )[ ]e 2t–=

- Because we have complex conjugate roots (i.e., s2 s1
*= ), k1  and k2  will be com-

plex numbers themselves and, in fact, k2 k1
*=  (i.e., they will also be complex con-

jugates)

- Assume k1 a bj+=  then we can expand Re k1ejt k1
*e jt–+( )[ ]  as 

Re k1ejt k1
*e jt–+( )[ ] Re a bj+( ) t( )cos j t( )sin+[ ] a bj–( ) t( )cos j t( )sin–[ ]+{ }=  

- Simplifying and taking only the real terms,

Re k1ejt k1
*e jt–+( )[ ] a t( ) b t( )sin–cos[ ] a t( )cos b t( )sin–[ ]+ 2 a t( ) b t( )sin–cos[ ]= =
S.W. Neville Page 214



Elec 250: Linear Circuits I Chapter 8 5/4/08
- We can replace the unknown constants a  and b  with two arbitrary constants, which 
we will name k1  and k2 . (These are different than k1  and k2  used above - this is 
allowed since we do not know the actual values for the original k1  and k2 )

- We can also subsume the -’ve sign and the “2” into these new constants to simplify 
the resulting equation.

- This allows us to write 

in t( ) Re k1ejt k2e jt–+( )[ ]e 2t– k1 t( ) k2 t( )sin+cos[ ]e 2t–= =

- This is the form that is given above. 

- This approach obviously works for all cases when we get complex conjugate roots 
from our second order differential equation. 

8.5.3 The Total Response

• The total response has the form

i t( ) if t( ) in t( )+=

i t( ) 2 k1 t k2 tsin+cos( )e 2t–+=
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- To find k1  and k2  we need to find the values of i t( )  and di t( )
dt

-----------  when t 0=  (Since this this 

the time when the circuit changed states.)

- From the initial conditions we know that i 0( ) 2A= . Therefore substituting t 0=  into 
the above equation gives

i 0( ) 2 k1 0( ) k2 0( )sin+cos( )e 2 0( )–+ 4= =

k1 2A=

- We also derived in our analysis the expression v 2di
dt
----- 4i+=  which we can evaluate at 

t 0=  since we have the initial conditions for i 0( ) 4=  and v 0( ) 6= , and we have and 
expression for i t( )  which we can differentiate and evaluate at t 0=

v 0( ) 2di
dt
-----

t 0=
4i 0( )+=

6 2 d
dt
----- 2 k1 t k2 tsin+cos( )e 2t–+[ ]⎝ ⎠
⎛ ⎞

t 0=

4 4( )+=

5– 2e 2t– k1 t k2 tsin+cos( )– e 2t– k– 1 t k2 tcos+sin( )+[ ]=
t 0=

5– 2k1– k2+=
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- Substituting in the solution for k1  we get that

k2 1–=

- Therefore the total response is given by 

i t( ) 2 2 tcos tsin–( )e 2t– A+=

- We can now use this derived total response for the state variable i  to solve for any other 
circuit parameter of interest.

- For example if we now need to solve for v t( )  then we know from the circuit that

v t( ) 2di t( )
dt

----------- 4i t( )+=

- Hence,

v t( ) 2 d
dt
----- 2 2 tcos tsin–( )e 2t–+( ) 4 2 2 tcos tsin–( )e 2t–+( )+=

v t( ) 2 2e 2t– 2 tcos tsin–( )– e 2t– 2– t tcos–sin( )+[ ] 8 8 t 4 tsin–cos( )e 2t–+ +=

v t( ) 8 tcos– 4 tsin+ 8 t 4 t 2 t tcos–sin–sin–cos+[ ]e 2t– 8+=

v t( ) 2 t tcos–sin–( )e 2t– 8V+=
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- Note that this solution is valid for all t .

8.6 Parallel RLC Circuits

• Obviously, if we can construct series RLC circuits, then we can also construct parallel RLC cir-
cuits and like their series counterparts they will also give rise to second-order DE of the state 
variables.

- Consider the circuit shown below

V
1F

4A
+

- 4H

it 0s=

2Ω

- The circuit contains two energy storage elements and two state variables (the current 
through the inductor, and the voltage across the capacitor)

- The circuit also changes state at t 0=  when the switch is closed which causes the 4A 
current source to be connected to the circuit.
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- Prior to the switch being close the inductor has an initial current i 0( )  and the capacitor 
has an initial voltage v 0( ) . If the circuit is such that we cannot derive these initial values 
by assuming the circuit is in steady state for a long time before the switch is closed then 
they must be given. 

- Assume for this circuits that v 0( ) 0V=  and i 0( ) 0A= .

- As before we analyze the circuit by first analyzing the state variables (since they are the 
only circuit parameters which do not change when the state of the circuit changes)

- If we apply KCL at the node which i  leaves for t 0≥  then we obtain

4 v
2
--- i dv

dt
------+ +=

- This equation though is in terms of both the state variables i  and v . We want to find an 
DE in terms of just one of the state variable so we need to find another independent 
equation relating v  and i .

- Applying KVL to the right most loop we obtain

v 4di
dt
-----=
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- Substituting this equation into the one above we get that

4 2di
dt
----- i 4d2i

dt2
-------+ +=

- Putting this equation into standard form

d2i
dt2
------- 1

2
---di

dt
----- 1

4
---i+ + 1=

- This DE has a solution of the form

i t( ) if t( ) in t( )+=

8.6.1 The Forced Response

• The forced response must satisfy the nonhomogeneous DE

d2if

dt2
-------- 1

2
---

dif
dt
------ 1

4
---if+ + 1=

- Since we have a dc power source we try the solution

if A=
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- Substituting this solution into the DE above

1
4
---A 1=

- Hence

if 4A=

8.6.2 The Natural Response

• The natural response must satisfy the homogeneous DE

d2in

dt2
--------- 1

2
---

din
dt
------- 1

4
---in+ + 0=

- We attempt a trial solution of the form

in kest=

- Substituting this trial solution into the homogeneous DE gives

ks2est 0.5ksest 0.25kest+ + 0=

- Dividing through by kest  (since this term can never be zero)

s2 0.5s 0.25+ + 0=
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- This is the characteristic equation for the circuit and it has two complex conjugate roots 
located at

s 0.25– 0.5j±=

- Substituting these roots into our trial solution we get that

in k1e 0.25– 0.5j+( )t k2e 0.25– 0.5j–( )t+=

- Simplifying and expressing an in terms of sinusiods

in k1 0.5t( ) k2 0.5t( )sin+cos[ ]e 0.25t–=

- To solve for the constants k1  and k2  we need to compute the total response.

8.6.3 The Total Response

• We now have equations for the forced and natural responses for this circuit so we can write the 
total response as 

i t( ) if t( ) in t( )+=

i t( ) 4 k1 0.5t( )cos k2 0.5t( )sin+( )e 0.25t–+=

- This equation is valid for all t .
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- But we still need to solve for the constant k1  and k2

- We can do this by using the initial conditions to evaluate i t( )  and di t( )
dt

-----------  for t 0= , which 

is the time when the state change occurs. This will give us two independent equations in 
the two unknown k1  and k2 .

- At t 0=  the initial current is given as i 0( ) 0A=  substituting this value into the 
above equation for t 0=  gives

i 0( ) 4 k1 0.5 0( )( )cos k2 0.5 0( )( )sin+( )e 0.25 0( )–+ 0A= =

4 k1+ 0=

k1 4–=

- We need to find another equation for which we can evaluated di t( )
dt

-----------  at t 0=  and which 

is in terms of the other initial condition v 0( ) 0V= . 

- We began with the equation v 4di
dt
-----=  evaluating this at t 0=  gives

v 0( ) 4di
dt
-----

t 0=
0V= =
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- Substituting in our expression for i t( )  and differentiating gives

4 d
dt
----- 4 k1 0.5t( )cos k2 0.5t( )sin+( )e 0.25t–+( )[ ]

t 0=
0V=

0.25e 0.25t– k1 0.5t( )cos k2 0.5t( )sin+( )– e 0.25t– 0.5– k1 0.5t( )sin 0.5k2 0.5t( )cos+( )+[ ]
t 0=

0=

0.25k1– 0.5k2+ 0=

- Substituting in the value for k1  from above

- 0.25 4–( )– 0.5k2+ 0=

- k2 2–=

- Therefore the total response is given by

i t( ) 4 4– 0.5t( ) 2 0.5t( )sin–cos( )e 0.25t– A+=

8.7 Case when Dependent Sources are Present

• Transient analysis when dependent sources are present is not much different from the case when 
no dependent sources are present.
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- The only difference is that we need to remember to take the functional form of the 
dependency into account when we write our equations describing the circuit

- Other than that the analysis procedure proceeds as before.

Ex. 8.1 Consider the following circuit. Assume that at t 0=  the capacitor voltage was 
v 0( ) 1V=  and the inductor current was i 0( ) 2A= . Find the response of the cur-
rent through the 5-Ω resistor for t 0≥ .

3F

+t 0s=

5Ω+
-

-v
i

5V 2H
3v 2–

vR

+

-

Solution:

- We begin by identifying the two state variables i  and v
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- We can apply KCL at the node joining the capacitor, inductor, and the dependent source 
which gives

3dv
dt
------ 3v 2– i+=

- Simplifying

i 3dv
dt
------ 3v– 2+=

- This gives us one of our equations but it is in terms of both the state variables. We want 
an equation in terms of just one of the state variable.

- We know that the forced response will be do to the independent source so we want this 
second equation to also include the independent source.

- At t 0≥  we can apply KVL around the outside loop (remember that we need an 
equation which relates i  and v ) which gives

5 v– 2di
dt
-----– 0=

- Differentiating our previous expression for i  we have that

di
dt
----- d

dt
----- 3dv

dt
------ 3v– 2+ 3d2v

dt2
-------- 3dv

dt
------–= =
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- Substituting this into our KVL equation gives

5 v– 2 3d2v
dt2
-------- 3dv

dt
------–– 0=

6d2v
dt2
--------– 6dv

dt
------ v–+ 5=

- Placing in standard form

d2v
dt2
-------- dv

dt
------– v

6
---+ 5

6
---=

- We know that this equation has a solution of the form v vf vn+=  

- vf  must satisfy the nonhomogeneous DE therefore 

vf 5=

- vn  must satisfy the homogeneous DE which has the characteristic equation

s2 s– 1
6
---+ 0=
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- Remember that we obtain this characteristic equation by assuming a solution of the 
form vn kest=  and substituting it into the homogenous DE.

- The roots of this characteristic equation are

s
1– 1 4

6
---–±

2
------------------------------ 1

2
---– 1

2 3
----------±= =

- The characteristic equation therefore has two complex roots and we known that vn  
has the form

vn k1e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

k2e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

+=

- Now we can write the total response as v vf vn+=  which gives

v 5 k1e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

k2e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

+ +=

- We can now find the values for k1  and k2  by applying the initial conditions
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- We know that v 0( ) 1=  hence

v 0( ) 5 k1e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ 0( )

k2e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ 0( )

+ + 1= =

- Therefore we obtain the equation

5 k1 k2+ + 1=  

- Simplifying

k1 k2+ 4–=

- This gives us one equation in the two unknowns k1  and k2

- But we also know that i 0( ) 2A=  and that i t( ) 3dv t( )
dt

------------ 3v t( )– 2+=  hence

i 0( ) 3 d
dt
----- 5 k1e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

k2e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

+ + 3 5 k1e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

k2e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

+ +–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

t 0=

2+ 2= =
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- Simplifying

3 1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ k1 3 1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ k2 15– 3k1– 3k2–+ 0=

1
2
---– 1

2 3
---------- 1–+⎝ ⎠

⎛ ⎞ k1
1
2
---– 1

2 3
----------– 1–⎝ ⎠

⎛ ⎞ k2+ 5=

3
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ k1
3
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ k2+ 5=

- We now have two equations in two unknowns and we can solve for k1  and k2  as

1 1
3
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ 3
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞
k1

k2

4–
5

=

- The solution to which gives

k1 3.7321–=  

k2 0.2679–=

- Therefore the total response is given by 

v t( ) 5 3.7321e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

0.2679e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

V––=
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- Since we now have the solution for the state variable v t( )  it is straight forward to find 
the solution for the voltage across the 5-Ω resistor for t 0≥  using our linear circuit theo-
rems

- Applying KVL around the loop including the resistor, capacitor and inductor gives

vR v 2di
dt
-----+=

- From the work above we know 

v t( ) 5 3.7321e

1
2
---– 1

2 3
----------+⎝ ⎠

⎛ ⎞ t

0.2679e

1
2
---– 1

2 3
----------–⎝ ⎠

⎛ ⎞ t

V––=

- and that

di
dt
----- 3d2v

dt2
-------- 3dv

dt
------–=

- Hence, it is a simple matter of substitution (and a bit of math) to get vR t( )  as

vR t( ) 5 9.4642e 0.2113t–– 2.5354e 0.7887t–  V–=
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8.8 General Solution Steps (for first and second-order circuits)

• The overview, the following are the steps which are used to solve for circuits in which the state 
of the circuit changes during the circuits operation. Hence, we need to analyze the circuit’s tran-
sient behavior and determine the new state which the circuits settles to.

- Analysis Steps:

1. Reduce the circuit as much as possible (i.e. combine series and parallel circuit 
element as per the circuit theorems)

2. If the initial conditions are given Goto step 4.

3. Solve for the initial conditions of the state variables assuming the circuit is in 
steady-state prior to the state change.

4. Identify the state variables.

5. Develop a DE equation in terms of the state variables using KCL, KVL, etc.

6. If there is only one state variable then it is a first-order circuit. Use Thevenin or 
Norton’s theorems to simplify the circuit if possible. Use circuit theorems to con-
struct a DE, in terms of the circuit’s state variable, which describes the circuit’s 
operation. Goto step 9.
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7. If there are two state variables then it is a second-order circuits and you need to 
develop a second independent DE equation in terms of the two state variable 
(using KCL, KVL, etc.) (Note: choose equations which relate the two state vari-
ables and include the independent sources, since these give rise to the forced 
response).

8. In one of the differential equations solve for one of the state variables, substitute 
this solution into the other DE to get a second order DE which is just in terms of 
the chosen state variable. 

9. Place the DE in standard form.

10. Determine the forced response through a trial solution of the same time depen-
dence as the power source (i.e. for a dc power source try a trial solution of vf A=  
or if A= ). Substitute this trial solution into the nonhomogeneous DE to deter-
mine vf  or if .

11. For the natural response. Write the characteristic equation of the homogeneous 
DE. (obtained by assuming a natural response of the form kest  and substituting 
this trial solution into the homogeneous DE)

12. Solve for the roots of the characteristic equation
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13. If it is a first order DE there is only one root and the natural response has the form 
vn kest=  or in kest= . Goto Step 18.

14. If it is a second-order DE then there are two roots and three possible cases for the 
roots.(where the second-order DE is in terms of a capacitor voltage or inductor 
current).

15. If the roots are real and unequal the natural response is of the form 

vn k1e
s1t

k2e
s2t

+=  or in k1e
s1t

k2e
s2t

+=  where s1  and s2  are the roots of the char-
acteristic equation. 

16. If the roots are real and equal the natural response is of the form 
vn k1est k2test+=  or in k1est k2test+= . 

17. If the roots are complex conjugates the natural response is of the form 
vn k1 tcos k2 tsin+( )eRe s[ ]t=  or in k1 tcos k2 tsin+( )eRe s[ ]t= where s a bj±=  are 
the complex conjugate roots of the characteristic equation. 

18. Write the total response as v t( ) vf t( ) vn t( )+=  or i t( ) if t( ) in t( )+=  using the solu-
tions to the forced and natural responses found above.
S.W. Neville Page 234



Elec 250: Linear Circuits I Chapter 8 5/4/08
19. This total response is valid for all t  for the state variable, so use the initial condi-
tions to determine the values of k1  and k2  (or just k  in the case of a first-order cir-
cuit). For second-order circuits this will require generating two equations in the 
two unknowns k1  and k2 . This is straight forward though since the initial condi-
tions for both state variable are known. One equation will come from the solution 
to the DE by substituting in one of the initial conditions. The other equation will 
come from substituting the other initial condition into one of the previously 
derived circuit equations (note: in doing this one may need to the value of the 
derivative of the state variable evaluated at the time of the state change (i.e. 
dv t( )

dt
------------

t 0=
 or di t( )

dt
-----------

t 0=
))

20. Solve for the other circuit parameters of interest in terms of the solution which 
was obtained for the state variable through application of standard linear circuit 
theorems.
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Assignment #8

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 9
Phasors

9.1 Introduction

• To this point we have only dealt with circuits which are in dc steady state.

• We would like to extend our results and theorems so that they can be used for circuits which are 
excited by sinusoidal power sources.

- We can use complex analysis (phasors) to simplify this process when the circuit’s 
power sources have a single frequency ω .

- Frequency domain analysis is the study of circuits with power source frequencies 
other than dc (i.e when ω 0> ).

9.2 Sinusoidal Waveforms

• Assume that we have a voltage source which is given by

v t( ) V ωt φ+( )cos=
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- A plot of this waveform is shown below

- We say that the voltage waveform is expressed in standard form when it is written in 
the form shown above.

- To use phasors we must always put the power sources in standard form.
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- This waveform has 3 parameters

1. V: the amplitude (volts)

2. ω : the angular frequency (radians/sec)

3. φ : the phase (radians or degrees)

Ex. 9.1 Find the parameters of the given current waveform

i t( ) 10 100t 30°+( ) Acos=

Solution:
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Ex. 9.2 Find the current value in the above example at t 3s=

Solution:

Ex. 9.3 Express the waveform v t( ) 4 100t 90°+( )sin=  in standard form.

Solution:
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9.3 Sinusoidal Waveform Period and Frequency

• The waveform v t( ) V ωt φ+( )cos=  repeats itself at regular time intervals T , which we call the 
period of the waveform.

- T  is given from the equation

ωT 2π=

T 2π
ω
------=  (sec)

- The frequency of this waveform is the inverse of its period

f 1
T
--- ω

2π
------= =  (Hz)

- Alternatively we can relate the frequency and the angular frequency by

ω 2πf  rad/s=

9.4 Complex Numbers

• A complex number z  can be represented in rectangular form (also known as Cartesian form) 
as

z x jy+=
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- where j 1–=  and both x  and y  are real numbers denoting the real and imaginary parts 
of z  respectively. 

- It follows that j2 1–=  (as electrical engineers we use j  instead of i , which is use in 
mathematics, because i  is already used to denote current)

- z  can be represented in the complex plane as follows

y

x

Im

Re

r x2 y2+=

θ

- The real and imaginary parts can be extracted from z  using the real (Re ) and imaginary 
(Im ) functions

y Im z( )=

x Re z( )=
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- We can represent z  in polar form as 

z r θ∠=

- where the magnitude r  and the angle θ  are given by

r x2 y2+=

θ tan 1– y
x
--=

- Alternately give a complex number in its polar form we can express it in its rectangular 
form as 

r θ∠ r θcos jr θsin+=

- The conjugate of a complex number z  is denoted by z∗  and is obtained by replacing j  
with j–  (this is equivalent to mirroring the complex number about the real axis). 

z a jb+=

z∗ a jb–=

9.5 Euler’s Formula

• There is one more way which we can represent a complex number which is Euler’s form

rejθ r θcos jr θsin+=
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- This formula relates the polar form to the exponential function.

Ex. 9.4 Illustration of the validity of Euler’s Formula

- Square both sides of the above equation

ejθ( )2 r θcos jr θsin+( )2=

- Expanding the right hand side

ej2θ θ θ j2 θ θcossin+2sin–
2

cos=

- Simplifying through trigonometric identities

ej2θ 2θcos j 2θsin+=

- This results confirms that Euler’s formula produces the correct result

Ex. 9.5 Express the complex number z 3 j4–=  in polar and Euler’s form

Solution:
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• Euler’s formula also allows us to easily prove the counter-intuitive identity 

1
j
--- j–=

- We can prove this result of follows

j 90° j 90°sin+cos 0( ) j 1( )+= =

- By writing the complex number in Euler’s form we have that

j ej90°=

- This allows us to write,

1
j
--- 1

ej90°
---------- e j90°–= =

- Placing e j90°–  back into rectangular form we have that

1
j
--- e j90°– 90°cos j 90– °( )sin+ 0( ) j 1–( )+ j–= = = =

- which proves the identity  
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9.6 Phasors

• What is a phasor? and Why do we need phasors?

• From Chapter 6 we learned that

- The current through a capacitor is given by i Cdv
dt
------=

- The voltage across a capacitor is given by v 1
C
---- i τd

∞–

t

∫=

- The current through an inductor is given by i L v τd
∞–

t

∫=

- The voltage across an inductor is given by v Ldi
dt
-----=

• We would like a notation which will allow us to avoid having to deal with complicated equations 
involving differentials and integrals. We would like simple equations like we had when we were 
just dealing with resistive circuits.
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• We would also like to deal with sinusoidal power sources. Integration and differentiation across 
these functions is easy (sine to cosine and vice versa) but it is messy

- we need to make sure we track the necessary sign changes 

- and we would need to do integration and differentiation by parts to track the effects of 
the sine and cosine functions’ arguments.

• Phasors can help us solve these problems (and make our solutions easier).

- Phasors are based on the following observation

Representing a sinusoidal waveform as an exponential function allows us to 
express I-V relationships for inductors and capacitors as if they are simple resis-

tors with complex resistance.

- Using Euler’s form we can represent sinusiods as exponentials. 

- This is nice since exponential functions are the only functions which do not change 
form with respect to integration and differentiation operators.

• What is a Phasor?

- Starting with a sinusoidal voltage expressed in standard form

v t( ) V ωt φ+( )cos=
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- The above equation can be viewed as the real part of a complex sinusiod

v t( ) VRe ωt φ+( )cos j ωt φ+( )sin+[ ]=

- where Re .[ ]  is a function which returns the real part of a complex number (i.e. 
Re a jb–[ ] a= )

- Now we have the voltage source described in a form where we can use Euler’s formula

v t( ) VRe ej ωt φ+( )[ ]=

- Since our signals are always actually real we can drop the Re .[ ]  part

v t( ) Vej ωt φ+( )=

- Under the assumption that when we write this we know that we are only referring to the 
real part of the complex number which v t( )  now describes.

- Now we can use the rules of exponentiation to separate out the part due to the sinusiods 
frequency ω  and the part due to its phase φ

v t( ) Vejωt ejφ×=
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- This allows us to group the two terms which do not involve time together

v t( ) Vejωt=

V Vejφ=

- V  is a complex number which is called the voltage phasor.

- Since the voltage phasor is a complex number we can represent it in any of or three 
equivalent forms 

- Euler’s Form: V Vejφ=

- Rectangular Form: V V φcos j φsin+( )=

- Polar Form: V V φ∠=
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- Graphically the phasor V  can be represented as follows

V

φ

Re

Im

- Note that the phasor is only the representation of the non-time dependent portion of the 
sinusiod. 

- Relative to the complete waveform we have that 
v t( ) V ωt φ+( )sin Vejφ[ ]ejωt Vejωt= = =  or graphically

V

ωt+φ

Re

Im
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- This shows that the magnitude of the vector remains constant but the angle the vec-
tor V  makes with the x-axis changes with time.

- Vector V  rotates in a counter clockwise direction as time progresses.

- The angular frequency of rotation equals the angular frequency ω  of the voltage 
waveform

- The x-component of the vector equals the amplitude of v t( )  at as a function of t  
and is given by 

v t( ) V ωt φ+( )cos=

- This corresponds to the projection of the complex vector V  onto the x-axis.

- This is the value which we would actually measure on a real circuit using a multi-
meter.

- The complex part of the vector allows the sinusoidal power source to be expressed 
in Euler’s formula which allows us to only need to do integration and differentia-
tion across exponential functions when we solve for our circuit parameters.

Ex. 9.6 Suppose we have a sinusoidal current source expressed in standard form as

i t( ) 140 377t 40°+( )cos=
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- What are the parameters of that source and what is the phasor associated with it?

Solution:

Ex. 9.7 Suppose we have a sinusoidal voltage source expressed as

v t( ) 10 50t 30°–( )sin=

- What are the parameters of that source and what is the phasor associated with it?

Solution:
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Ex. 9.8 A sinusoidal voltage waveform has f 60Hz=  and a voltage phasor of 
V 4 30°V∠= . Find the time-dependent expression for this waveform.

Solution:

9.7 Phasor Current-Voltage Law for Resistors

• Assume a sinusoidal current is passing through a resistor R. 

v

i
+ -

- The current is assumed to be expressed as 

i t( ) I ωt φ+( )cos=
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- The current phasor is 

I Iejφ=

- The voltage across the resistor is determined by Ohm’s Law

v t( ) i t( )R=

- Substituting our expression in for i t( )  from above we get that

v t( ) IR ωt φ+( )cos=

- The phasor for this sinusoidal voltage waveform is 

V IRejφ=

- But we can notice that Iejφ  is just the current phasor given above. Therefore we can 
write the voltage phasor in terms of the resistance and current phasor as

V IR=

- But this is nothing more than applying Ohm’s law using phasor notation. 

- Alternatively we can also write

I GV=

- So Ohm’s law holds under phasor notation.
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- From this result we can plot the voltage waveform which results when a sinusoidal cur-
rent is passed through a resistor
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- Notice that both the current and voltage waveforms are in phase (i.e. there is no phase 
shift between the waveforms caused by passing through the resistor.) 

- In terms of the voltage and current phasors this can be graphically shown as the fact that 
the two vectors are at the same phase angle

V

φ

Re

Im

I

9.8 Phasor Current-Voltage Law for Capacitors

• Assume a sinusoidal voltage across a capacitor C. 

v

i
+ -

- The voltage is assumed to be expressed as 

v t( ) V ωt φ+( )cos=
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- The current phasor is 

V Vejφ=

- The voltage across the capacitor is determined by the expression

i t( ) Cdv t( )
dt

------------=

- Substituting our expression in for v t( ) from above we get that

i t( ) ωCV– ωt φ+( )sin=

- To express this waveform in standard form we must first take the negative sign into the 
expression

i t( ) ωCV ωt φ 180°+ +( )sin=

- Now we must convert the sine to a cosine using θsin θ 90°–( )cos=

i t( ) ωCV ωt φ 180° 90°–+ +( )cos=

- Simplifying we are now in the standard form

i t( ) ωCV ωt φ 90°+ +( )cos=

- The phasor for this sinusoidal current waveform is 

I ωCVej φ 90°+( ) jωCVejφ= =
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- Since

ej90° 90° j 90°sin+( )cos j= =

- But we can notice that Vejφ  is just the voltage phasor given above. Therefore we can 
write the current phasor in terms of the capacitance, angular frequency, and voltage pha-
sor as

I jωCV=

- Alternatively we can also write

V I
jωC
---------- j I

ωC
--------–= =

- which is the current voltage law for a capacitor using phasor notation.

- Notice that the I-V law for the capacitor, when written in phasor notation, does not 
involve integration or differentiation.

- Notice also that the I-V relationship for the capacitor now look similar to Ohm’s law for 
a resistor except now we have a complex proportionality constant.
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- From this result we can plot the current waveform which results when a sinusoidal volt-
age is passed through a capacitor
S.W. Neville Page 259



Elec 250: Linear Circuits I Chapter 9 5/4/08
- Notice that the current and voltage waveforms are now out of phase (i.e. the is a phase 
shift between the waveforms caused by the capacitor.) 

- We say that the current phasor leads the voltage phasor by 90°

• In terms of the voltage and current phasors this can be graphically shown as the fact that the cur-
rent phasor is at a phase angle φ 90°+  to the current phasor.

V

φ

Re

Im

I

φ 90°–

9.9 Phasor Current-Voltage Law for Inductors

• Assume a sinusoidal current across an inductor L. 

v

i
+ -
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- The current is assumed to be expressed as 

i t( ) I ωt φ+( )cos=

- The current phasor is 

I Iejφ=

- The voltage across the inductor is determined by the expression

v t( ) Ldi t( )
dt

-----------=

- Substituting our expression in for i t( )  from above we get that

v t( ) ωLI– ωt φ+( )sin=

- To express this waveform in standard form we must first take the negative sign into the 
expression

v t( ) ωLI ωt φ 180°+ +( )sin=

- Now we must convert the sine to a cosine using θsin θ 90°–( )cos=

v t( ) ωLI ωt φ 180° 90°–+ +( )cos=

- Simplifying we are now in the standard form

v t( ) ωLI ωt φ 90°+ +( )cos=
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- The phasor for this sinusoidal current waveform is 

V ωLIej φ 90°+( ) jωLIejφ= =

- Since

ej90° 90° j 90°sin+( )cos j= =

- But we can notice that Iejφ  is just the voltage phasor given above. Therefore we can 
write the current phasor in terms of the capacitance, angular frequency, and voltage pha-
sor as

V jωLI=

- Alternatively we can also write

I V
jωL
--------- j V

ωL
-------–= =

- which is the current voltage law for a inductor using phasor notation.

- Notice that the I-V law for the inductor, when written in phasor notation, does not 
involve integration or differentiation.

- Notice also that the I-V relationship for the inductor now look similar to Ohm’s law for 
a resistor except now we have a complex proportionality constant.
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- From this result we can plot the voltage waveform which results when a sinusoidal cur-
rent is passed through a inductor
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- Notice that the current and voltage waveforms are now out of phase (i.e. the is a phase 
shift between the waveforms caused by the inductor.) 

- We say that the current phasor lags the voltage phasor by 90°  (since 
j– e 90°– 90– °( ) j 90°–( )sin+cos= = )

• In terms of the voltage and current phasors this can be graphically shown as the fact that the cur-
rent phasor is at a phase angle φ 90°–  to the current phasor.

V
φ

Re

Im

Iφ 90°+

9.10 Impedance

• When a sinusoidal voltage or current source is connected to two or more elements in a circuit, 
the current and voltage at the terminals of the source can be described in general by

v t( ) V ωt φv+( )cos=

i t( ) I ωt φi+( )cos=
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• All the circuit variable will have the same frequency ω  but each circuit variable will have its 
own amplitude and phase angle

• The phasors for an element’s current and voltage will be given by

V V φv∠=

I I φi∠=

• The impedance seen by the source is defined as the ration of the voltage phasor to the current 
phasor

Z V
I
----=

- Using the phasor expressions above for the voltage and current we can write

Z
V φv∠
I φi∠
------------- V

I
--- φv φi–( )∠= =

• The circuit symbol for impedance is 

V

I
+ -
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- The current always enters the impedance at the positive end, following our convention 
for passive elements.

• IMPORTANT NOTE

Impedance is a complex number.

It is not a phasor. 

It does not correspond to a time-domain waveform. 

It is just the ratio of two complex numbers.

• Since impedance is a complex number we can express it in polar as well as in rectangular forms

Z Z φ∠=

Z R jX+=

- where R  is the resistance and X  is the reactance and are given by

R Z φcos=

X Z φsin=

- Both R  and X  are measured in ohms, as is the impedance Z
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- Since Z  is a complex number we can represent it in the complex plane

Z

φ

Re

Im

X

R

- The components of Z  are related to each other as

Z R2 X2+=

φ X
R
---

1–
tan=

R Z φcos=

X Z φsin=

Ex. 9.9 What are the impedances of a resistor, an inductor, and a capacitor?

Solution:
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Ex. 9.10 Given a voltage source V 10 30°∠=  supplies a current I 5 60°∠= . What is the 
impedance seen by the source and is the element capacitive or inductive?

Solution:

9.11 Admittance

• The reciprocal of impedance is admittance

Y 1
Z
---=
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• Admittance, like impedance, is a complex number and can be expressed in polar, rectangular, 
and Euler’s forms

Y Y φ∠=

Y Yejφ=

Y G jB+=

- where G  is the conductance and B  is the susceptance.

- Both G  and B  are measured in Siemens, as is the admittance Y

- Admittance, like impedance, is a complex number and NOT a phasor and it does NOT 
correspond to a time-dependent waveform.

- We can represent Y  is the complex plane

Y

φ

Re

Im

B

G
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- where each of the components of Y  are related to each other as

Y G2 B2+=

φ B
G
----

1–
tan=

G Z φcos=

B Z φsin=

Ex. 9.11 What are the admittance of a resistor, an inductor, and a capacitor?

Solution:
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Ex. 9.12 Given a voltage source V 5 20°∠=  supplies a current I 10 40°–∠= . What is 
the admittance seen by the source and is the element capacitive or inductive?

Solution:

• The summary of the current voltage laws in the time and frequency domains for our three type of 
elements is

Element Resistor Capacitor Inductor

Impedance R j
ωC
--------– jωL

Admittance G jωC j
ωL
-------–
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9.12 Kirchhoff’s’ Laws for Phasors

• Now that we have the phasor notation for sinusoidal source waveforms and have Ohm’s law for 
complex numbers, we would like to know if our circuit theorem developed in the previous chap-
ters still hold and can be applied to solve for circuit parameters in the complex domain.

• Kirchhoff’s Voltage Law still holds when phasors are used.

- KVL states that the sum of voltage drops around a closed loop is zero

v1 v2 … vn+ + + vi
i 1=

n

∑ 0= =

- When all the voltages are sinusoidal and have the same frequency ω , the above equa-
tion becomes

V1e
j ωt φ1+( )

V2e
j ωt φ2+( )

… Vne
j ωt φn+( )

+ + + Vie
j ωt φi+( )

i 1=

n

∑ 0= =

- By dividing by the common term ejωt  we get

V1 V2 … Vn+ + + Vi
i 1=

n

∑ 0= =

- where Vi Vi φi i;∠ 1 2 … n, , ,= =  are the phasors of the voltages around the loops.
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- Thus KVL holds for phasors 

• A similar argument holds for KCL for currents entering a node.

- When n  currents enter a node we have

i1 i2 … in+ + + ii
i 1=

n

∑ 0= =

- When all the currents are sinusoidal and have the same frequency ω , the above equation 
becomes

I1e
j ωt φ1+( )

I2e
j ωt φ2+( )

… Ine
j ωt φn+( )

+ + + Iie
j ωt φi+( )

i 1=

n

∑ 0= =

- By dividing by the common term ejωt  we get

I1 I2 … In+ + + Ii
i 1=

n

∑ 0= =

- where Ii Ii φi i;∠ 1 2 … n, , ,= =  are the phasors of the voltages around the loops.

- Thus KCL also holds for phasors 
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9.13 Series Impedance

• Given two impedances in series we can ask the question: What is their equivalent resistance?

- We can use KVL to answer this question

+ -

V2V
+

-
+-

I
V1

Z1
Z2 V +-

I
Zs

(a) (b)

- Applying KVL to circuit (a) we have

V– V1 V2+ + 0=

- Applying the complex version of Ohm’s law to each impedance

V IZ1 IZ2+=

I V
Z1 Z2+
------------------=
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- Applying the complex version of Ohm’s law to the circuit (b) we have

V IZs=

I V
Zs
-----=

- If the current and voltage in both circuits are identical then for the circuits to be 
equivalent we must have

Zs Z1 Z2+=

Impedances sum when they are connected in series.

- The above case can be generalized to the case of n series-connected impedances. In that 
case the equivalent series impedance is given by

Zs Zi
i 1=

n

∑=
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Ex. 9.13 A current source of i t( ) 5 250t 30°–( )cos=  is connected to a series connection 
of R 10Ω=  and C 2mF= . Find the voltage across each circuit element.

Solution:

9.13.1 Voltage Division

• Given the series-connected impedances we can also ask what is the voltage across each of the 
impedances. From circuit (a) above and the discussion which followed we have that

V1 IZ1
Z1

Z1 Z2+
------------------V= =

V2 IZ2
Z2

Z1 Z2+
------------------V= =
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- where the current is given by I V
Z1 Z2+
------------------=  as solved for above.

- Series impedances therefore perform voltage division.

Ex. 9.14 Find i  in the in the circuit below?

1/10F10sin5t V +-

5Ω i

Solution:
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Ex. 9.15 A voltage source is connected to three series impedences.Given that 
V 100 30°∠= , Z1 3 30°∠= , Z2 5 30– °∠= , and Z3 6 15°∠= . Find the current 
which flows through the circuit and that the sum V1 V2 V3+ +  equals the applied 
voltage V .

Solution:
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9.14 Parallel Impedances

• We can ask, what is the equivalent circuit of two impedances in parallel?

Z1 Z2

I1 I2+

-

V I Zp

+

-

V I

(a) (b)

- Applying KCL and Ohm’s law to circuit (a) we have

I I1 I2+=

I V
Z1
----- V

Z2
-----+ Y1V Y2V+= =

V I
Y1 Y2+
------------------=

- Applying Ohm’s law to circuit (b) we have

V IZp
I

Yp
-----= =
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- Circuits (a) and (b) are equivalent when

YP Y1 Y2+=

- or in terms of impedances

Zp
Z1Z2

Z1 Z2+
------------------=

• For n impedances in parallel these results can be generalized to give

Yp Yi
i 1=

n

∑=

Zp
1

Yi
i 1=

n

∑

------------------- 1
Y1 Y2 … Yn+ + +
------------------------------------------ 1

1
Z1
----- 1

Z2
----- … 1

Zn
-----+ + +

-------------------------------------------= = =
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Ex. 9.16 A voltage source of v t( ) 5 250t 30°–( )cos=  is connected to a parallel connec-
tion of R 10Ω=  and C 2000μF= . Find the current flowing in each circuit ele-
ment.

Solution:
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Ex. 9.17 For the circuit shown below find the equivalent impedance and the total current 
which flows through in the voltage source

+-4 45° V∠ j2Ω

5Ω

j8Ω

j– 7Ω 10Ω

Solution:
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9.14.2 Current Division

• The currents through each of the resistors in circuit (a) above are given by

I1 VY1
Y1

Y1 Y2+
------------------I= =

I2 VY2
Y2

Y1 Y2+
------------------I= =

- In terms of impedances these equations become

I1
Z2

Z1 Z2+
------------------I=

I2
Z1

Z1 Z2+
------------------I=

• The above result can be generalized to n parallel-connected impedances

Ii
Yi
Yp
-----I        1 i n≤ ≤,=
S.W. Neville Page 283



Elec 250: Linear Circuits I Chapter 9 5/4/08
where YP  is given by

Yp Yi
i 1=

n

∑=

- Parallel impenitences therefore perform current division.

Ex. 9.18 In the circuit shown below the voltage drop across the inductor is V 30V= . 
What is the value of the current source?

5Ω

j8Ω

j– 7Ω

10Ω
j– 7Ω

I +

-
V

Solution:
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9.15 Phasor Circuits

• Using phasors we can analyze circuits containing resistors, capacitors, and inductors, with sinu-
soidal power sources.

- Phasors allow us to treat each of these elements as just complex impedances

- This greatly simplifies our analysis

• To do this though we must first convert all of the circuit element to their equivalent complex 
impedances and convert all of the power sources to their phasor notation.

Ex. 9.19 Solve for the current i  in the following circuit

i

+-5sin5t V

5Ω 0.1H

1/10F

Solution:
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- Step 1: Convert the circuit to its phasor equivalent form

i

+-

5Ω

5 90°∠

j0.5Ω

-j2Ω

ω 5 rad/s=

- where the phasor for the voltage source is found by first placing the source in stan-
dard form

v t( ) 5 5tsin 5 5t 90°–( )cos 5 90°–∠[ ]ej5t= = =

ω 5 rad/s=

φ 90°–=

- were the equivalent impedances are found by

ZL jωL j 0.1H( ) 5 rad/s( ) j0.5Ω= = =

ZC
j

ωC
--------– j

5 rad/s( ) 1
10
------F⎝ ⎠
⎛ ⎞

-------------------------------------– j2Ω–= = =
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- Once, we have all the complex impedances we can simplify the circuit by using 
our theorems for series and parallel impedance equivalents 

Zs ZR ZL ZC+ + 5 j0.5 j2–+ 5 j1.5 Ω–= = =

- We can now solve for iusing the complex form of Ohm’s Law

I V
Zs
----- 5 90°–∠

5 j1.5 Ω–
-------------------------= =

- Note that to solve this equation we need to put the numerator’s and denominator’s 
complex numbers in the same form.

- Given it is division it is easiest if we put the denominator into polar form

I V
Zs
----- 5 90°–∠

5 j1.5 Ω–
------------------------- 5 90°–∠

5.22 16.70°–∠
---------------------------------- 0.9578 90°– 16.70°–( )–( )∠ 0.9578 73.3008°–∠= = = = =

- Now we have a phasor value for I , but we were asked to get the time domain func-
tion for i  so we need to convert from the phasor back to the time domain function

i t( ) 0.9578 5t 73.3008°–( ) Acos=
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Ex. 9.20 Find the voltage across each element in the circuit shown below

+-

4Ω 0.5H

1/5F 2H5 2t 35°+( )cos

Solution:
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Ex. 9.21 Determine the voltage vAB  in the circuit below

4Ω

2H

1/6F

4H
3 3t 45°+( )sin A B
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Assignment #9

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 10
AC Analysis Using Phasors

10.1 Introduction

• We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and 
Norton equivalent circuits, Superposition, etc.) to be able to solve for circuit parameters in pha-
sor circuits.

• In this chapter we will show that all of these theorems hold, we just need to convert the circuit 
we are given to its phasor equivalent, and then use the complex domain versions of these theo-
rems to solve for the circuit parameters we are interested in.

- We need to remember though, that if we are asked for a time domain circuit parameter, 
then once we have the phasor solution we must convert the phasor back into its time 
domain equivalent.

10.2 Superposition

• We know from Chapter 3 that superposition is a property of ALL linear circuits.

- Changing the circuit notation from time domain to phasor domain does not change the 
linearity of the circuit. 
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- Therefore, superposition continues to hold for phasor circuits.

Ex. 10.1 Find the current through the voltage source assuming Is 5 25– °A∠= , 
Vs 3 45°V∠=  and ω 4 rad/s=

10Ω

1/4F

Is

Vs+-

1H

0.5H0.25H

 

Solution:
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10.3 Thevenin’s Theorem

• From Chapter 3 we had that Thevenin’s theorem states 

Any linear circuit can be represented at a given pair of nodes by an equivalent cir-
cuit consisting of a single voltage source and in series with a single resistor.

• Phasor equivalents circuits of linear circuits are still linear circuits so Thevenin’s theorem holds.

- But we need to write Thevenin’s theorem in its complex form

Any linear circuit can be represented at a given pair of nodes by an equivalent cir-
cuit consisting of a single voltage source in series with a single impedance.

• Where 

- VT Voc=  is the Thevenin voltage

- Isc  is the short-circuit current

- and ZT
Voc
Isc
--------=  is the Thevenin impedance.
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• So everything is the same as before except that we are expressing the voltages and currents in 
terms of phasors and we now have complex impedances (instead of just the resistances we had in 
Chapter 3).

• The application of Thevenin’s theorem has not changed. 

Ex. 10.2 Given the circuit below find its Thevenin equivalent with respect to nodes A and 
B.

+-
70.7 45°∠

100 15°∠

30 30°∠

10 15– °∠ A

B

RL

Solution:
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Ex. 10.3 Given the following circuit find it Thevenin equivalent at the load inductor

10Ω

LL+-

0.5H

0.25H

4Ω10 8t 25°+( )cos

Solution:
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10.4 Norton’s Theorem

• From Chapter 3 we had that Norton’s theorem states 

Any linear circuit can be represented at a given pair of nodes by an equivalent cir-
cuit consisting of a single current source in parallel with a single resistor.

• Phasor equivalents circuits of linear circuits are still linear circuits so Norton’s theorem holds.

- But we do need to write Norton’s theorem in its complex form

- The complex form of Norton’s theorem states that 

Any linear circuit can be represented at a given pair of nodes by an equivalent cir-
cuit consisting of a single current source in parallel with a single impedance.

• Where 

- IN Isc=  is the Norton current

- Voc VT=  is the open-circuit voltage

- and ZN
Voc
Isc
-------- ZT= =  is the Norton impedance.
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• So everything is the same as before except that we are expressing the voltages and currents in 
terms of phasors and we now have complex impedances (instead of just the resistances we had in 
Chapter 3).

• The application of Norton’s theorem has not changed. 

Ex. 10.4 Given the circuit below find its Norton equivalent with respect to nodes A and 
B.

1/4F2H

A

B

6 4t 15°–( )cos+- 4Ω

0.5H

4 4t( )sin

Solution:
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10.5 Nodal Analysis

• Nodal analysis is just a systematic way of applying KCL to a circuit, based on the assumption 
that the law of conservation of charge holds (i.e. charge cannot accumulate at a node, hence sum 
of currents entering a node must equal the sum of currents leaving the node)

• Converting a circuit to complex impedances and phasor notation for the power sources does not 
change this assumption that the law of conservation of charge holds.

• Therefore, nodal analysis applies to phasor circuits
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Ex. 10.5 Find the node voltages for the following circuit

1/4F

2H

+ -

4Ω

4 2t 30°+( )cos

1/2F

3H+
-

2Ω

2t 35°–( )sin

i

2i 3+

Solution:
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10.6 Mesh Analysis

• Mesh analysis is just a systematic way of applying KVL to a circuit, based on the assumption 
that the law of conservation of energy holds (i.e. the energy gained around a closed loop must be 
zero hence the energy gained around a loop must equal the energy lost around the same loop)

• Converting a circuit to complex impedances and phasor notation for the power sources does not 
change this assumption that the law of conservation of energy holds.

• Therefore, mesh analysis applies to phasor circuits
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Ex. 10.6 Solve for the mesh currents in the following circuit and give the time domain 
voltage across the load capacitor assuming ω 3 rad/s= .

1/6F

3H

+
-

+-

+

-
vL

2vL

3H

3H

1/9F1/3F

2Ω 4Ω

3Ω

6 10°–∠

Solution:
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10.7 Sources with Different Frequencies

• How do we solve when circuits contain power sources at different frequencies?

- Remember that phasor notation assumes that the frequency ω  is constant throughout the 
circuit

- But we also have linear circuits so we can use superposition to separate out the power 
sources at different frequencies.

- We can then use phasor analysis to solve each of these new circuits

- Once we have the phasor solutions we can convert them back to time domain 

- We can now combine the time domain solution to get the overall solution for the origi-
nal circuit.

- If the power sources are at different frequencies then we MUST solve for their effects 
independently (via superposition) and then combine the time domain results to get the 
complete circuit solution.

- This is because phasors are defined for only singular frequencies. Hence, phasor analy-
sis can only deal with one of the frequencies (sources) at a time.
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Ex. 10.7 Solve for the voltage across the load resistor in the following circuit.

1/2F

3H

+- vL

6H

-+

1/6F
4Ω

2Ω
3 6t 10°–( )sin

2 2t 30°+( )cos

Solution:
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Assignment #10

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 11
AC Power

Sections 10.1 - 10.7 (Text)

11.1 Introduction

• In Chapter 1 we studied power consumption in the DC case.

• This chapter studies power consumption in the case of ac conditions (i.e. where the circuits are 
excited by sinusoidal power sources)

• The quantity of interest is the average power and how it can be obtained through knowing pha-
sor voltages and currents in the circuit.

11.2 RMS Value

• Assume a periodic current passes through a resistor

i t( ) Im ωt φ+( )cos=

- We want to know the equivalent dc current (Irms ) that delivers the same amount of aver-
age power in the resistor

- This equivalent dc current is called the effective value of the periodic current
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- From calculus we know that the average value of a function over an interval a b,[ ]  is 
given by 

favg
1

b a–
------------ f x( ) xd

a

b

∫=

- Mathematically, we can write can therefore write the average power consumed by the 
resistor over one period of the sinusiod as

P RIrms
2 1

T
--- Ri2 t( ) td

0

T

∫= =

- Thus the effective current Irms  is found from the equation

Irms
1
T
--- i2 t( ) td

0

T

∫=

- rms  in the subscript is an abbreviation for “root mean square”
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- An easy way to remember the formula for finding an effective value of a periodic func-
tion is from the rms  abbreviation which implies we must do the following steps

1. Find the square of the given function or waveform (“square”)

2. Find the average value of the squared waveform (“mean”)

3. Find the square root of the average value (“root”)

- Hence, 

RMS root of the mean of the square≡

- RMS values can be obtained for any periodic waveform 

- In this course we mainly deal with sinusoidal waveforms so in this chapter we will 
focus on how to compute rms  values for sinusoidal functions,

Ex. 11.1 Find the Irms  if the current waveform is

i Im ωt φ+( )cos=
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- By substituting our function for i  into the equation for Irms  given above we have 
that and performing the integration over one period of the sinusiod,

Irms
1
T
--- Im ωt φ+( )cos[ ]2 td

φ

T φ+( )

∫=

- Since we are concerned with one complete period we can shift the current by φ  and 
drop φ  from the above equation,

Irms
ωIm

2

2π
--------- ωt( )2cos td

0

2π
ω
------

∫
Im

2
-------= =

- Therefore the average power consumed by a resistor when a current 
i Im ωt φ+( )cos=  flows through it is given by

P
Im
2

2
-----R Irms

2 R= =

- Keep in mind that for ac circuits we are interested in the average power, P , not the 
instantaneous power, p . 
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- rms  values give us the equivalent dc current which would produce the same power 
consumption (i.e. they give us the average power consumption over one period of 
the sinusoidal waveform).

Ex. 11.2 Find the rms value of the current waveform

i t( ) 10 ωt( )sin=

Solution:

- Note that the period is T π
ω
----=  for the above signal

- apply the formula from above

I2
rms

1
T
--- 10 ωt( )sin( )2 td

0

T
∫=

I2
rms

ω
π
---- 100 ωt( )2sin td

0

π
ω
----

∫
100ω

π
------------- 1

2
--- ωt( ) ωt( ) 1

2
---ωt+cossin– 1

ω
----

0

π
ω
----

= =

I2
rms

100ω
π

------------- π
2
---⎝ ⎠
⎛ ⎞ 1

ω
----⎝ ⎠
⎛ ⎞ 50 A2= =
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- If our power source is expressed as a phasor then we can easily express its rms value in 
phasor notation as follows,

I Im φi∠=

Irms
Im

2
------- φi∠=

V Vm φv∠=

Vrms
Vm

2
------- φv∠=
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Ex. 11.3 What is the rms value of the sinusoidal voltage waveform

v t( ) 10 100t 60°+( )cos=

Solution:

Ex. 11.4 Given an rms phasor voltage Vrms 100ej30°V= , write its corresponding time-
domain waveform if the angular frequency is ω 100 rad/s= .

Solution:
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Ex. 11.5 What is the rms value of the sawtooth waveform given below

i

3

0 0.5 1 1.5 t

Solution:
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11.3 Average Power

• Consider an impedance in which the current through it is i  and the voltage across it is v . 

- The instantaneous power consumed by the impedance is given by

p vi=

- We are interested in the power consumed by the impedance when the voltage and cur-
rent are sinusoidal.

- Assume we have

v Vm ωt φv+( )cos=

i Im ωt φi+( )cos=

- From Chapter 7 we know that these correspond to the two phasors

V Vme
jφv=

I Ime
jφi=

- The instantaneous power p  in this case is given by

p Vm ωt φv+( )cos[ ] Im ωt φi+( )cos[ ] VmIm ωt φv+( ) ωt φi+( )coscos= =
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- But we have the trigonometric identity that

α βcoscos 1
2
--- α β+( )cos α β–( )cos+[ ]=

- Thus we have 

p 1
2
---VmIm ωt φv+[ ] ωt φi+[ ]+( )cos ωt φv+[ ] ωt φi+[ ]–( )cos+[ ]=

p 1
2
---VmIm 2ωt φv+ φi+( )cos φv φi–( )cos+[ ]= . 

- Therefore, the instantaneous power consists of two terms

1. a DC term: 1
2
---VmIm φv φi–( )cos

2. an AC term: 1
2
---VmIm 2ωt φv+ φi+( )cos

- Since average power is defined over one period of the waveform then the AC term will 
be zero,

1
T
--- 1

2
---VmIm 2ωt φv+ φi+( )cos td

0

T

∫ 0=
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- So the average power is only a function of the DC component of the instantaneous 
power. 

- The average power consumed by the element (over one period of the sinusiod) is there-
fore given by,

P 1
2
---VmIm φv φi–( )cos VrmsIrms φ( )cos= =

- where 

Vrms
Vm

2
-------=

Irms
Im

2
-------=

- are the rms values of the voltage and current magnitudes respectively. (Note that these 
are NOT the rms phasors, which would be denoted Vrms  and Irms , but only the magni-
tudes of the respective phasors)

- and the phase angle φ  is given by

φ φv φi–=

- φ  is the phase difference between the voltage and current sources.
S.W. Neville Page 315



Elec 250: Linear Circuits I Chapter 11 5/4/08
- The rms voltage and current phasors can therefore be written as 

Vrms Vrmse
jφv=

Irms Irmse
jφi=

Ex. 11.6 The current and voltage time-domain waveforms for an elements are 
i t( ) 15 100t 80°+( ) mAsin=  and v t( ) 5 100t 60°+( ) Vcos= . Calculate the aver-
age power consumption in this element.

Solution:
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11.4 The Power Factor

• In the section above we found that the average power consumed by the impedance is given by

P VrmsIrms φv φi–( )cos VrmsIrms φ( )cos= =

- The term φcos φv φi–( )cos=  is called the power factor and is abbreviated pf.

- For passive loads the phase angle difference φv φi–  is always 90° φv φi–( ) 90°≤ ≤– .

- This assures that the real part of the power consumed is positive (i.e. that the element 
consuming the power is a passive element)

- Hence, the power factor is always positive (for passive elements) and will be in the 
range of 

0 pf 1≤≤

- In capacitive circuits the current leads the voltage and we have a leading power fac-
tor, φv φi– 0< .

- In inductive circuits the current lags the voltage and we have a lagging power factor, 
φv φi– 0>
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Ex. 11.7 Assume three elements which have currents and voltages as follows

Element RMS Phasor 
Voltage (V)

RMS Phasor 
Current (A)

Element A 15e15° 5e15°

Element B 10e45° 2e105°

Element C 2e20° 15e 70– °

. 

Find the power factor in each element and the power consumed.

Solution:
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11.5 Complex (Apparent) Power

• In Section 11.3 we derived an expression for the power consumed in an element as 

P VrmsIrms φv φi–( )cos VrmsIrms φ( )cos= =

- where φ φv φi–=

- Note that the average power is a real number.

• We can write the average power as the real part of a complex number

P VrmsIrmsRe φ j φsin+cos[ ] Re S[ ]= =  

- where S  is interpreted as the complex power, or apparent power.

S VrmsIrms φ( )cos jVrmsIrms φ( )sin+=

S P jQ+=

- where P  is the real or average power defined as 

P VrmsIrms φ Wattscos=

- and Q  is the imaginary or reactive power defined as 

Q VrmsIrms φ VARsin=
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- where Q  is measured volt-ampere reactive (VAR).

• The complex or apparent power S  is a complex number which may be expressed in Euler’s form

S VrmsIrmse
jφ=

- where S  is measured in volt-amperes (VA)

• For lagging power factor (inductive circuits), φ  is positive and Q  will be positive. 

• For leading power factor (capacitive circuits), φ  is negative and Q  will be negative. 

• Based on the above, 

- When we are given the rms voltage and current phasors

Vrms Vrmse
jφv=

Irms Irmse
jφi=

- the apparent power is given by 

S VrmsIrmse
j φv φi–( )

=
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- Note that this equation is an equation of the rms voltage and current magnitudes and 
their respective phase angles. 

- It is NOT written in terms of the rms voltage and current phasors.

- To write the apparent power in terms of the rms voltage and current phasors we must 
write

S VrmsIrms
* VrmsIrmse

j φv φi–( )
= =

- were Irms
*  is the conjugate of the rms current phasor Irms

* Irmse
jφi–

= .

- The conjugation is required in order to get the difference in phase angles φ φv φi–= .

- The above equation gives us a means of calculating the average power used by an ele-
ment in phasor notation.

Ex. 11.8 Determine the power consumed by a resistor R , and inductor L , and a capacitor 
C  when an rms voltage Vrms V ωtcos=  is applied across each element.

Solution:
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Ex. 11.9 Given a circuit with impedance Z 10 j10 Ω+=  and an applied rms voltage 
V 20 30°∠= , find the complex power consumed by the circuit.

Solution:

11.6 The Power Triangle

• The different components of the complex power S  form what is known as the power triangle, 
which is the representation of the apparent power in the complex plane.
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- The figure below shows the power triangle for an inductive circuit (Q 0>  so the circuit 
must be inductive)

Q (VAR)

P (W)

S (VA)

φ

Ex. 11.10 Assume an impedance of Z 3 4j  Ω+=  and an applied rms voltage 
V 120 30°∠= . Determine the power consumed by this impedance.

Solution:
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Ex. 11.11 An impedance consumes 500 W at a power factor of 0.707  leading. The applied 
voltage v 170 314t 15°+( )sin=  V. Determine the component values of the power 
and the impedance.

Solution:

11.7 Impedance and Power

• Assume an impedance Z  where a rms voltage V  is applied and gives rise to a rms current I  such 
that

Vrms Ve
jφv=

Irms Ie
jφi=
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- We can then write

Z V
I
----=

Z
2Vrms

2Irms
-------------------

Vrms
Irms
----------- V

I
---e

j φv φi–( ) V
I
---ejφ= = = =

- The figure below shows the representation of Z  in the complex plane where

R Z φcos Z φcos= =

X Z φsin Z φsin= =

Z

R

X
φ

- The power consumed by this impedance is given by 

S VI* VrmsIrmse
jφ= =
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- The power triangle for this impedance can be drawn in the complex plane as

Q (VAR)

P (W)

S (VA)

φ

- where 

P S φcos S φcos= =

Q S φsin S φsin= =

- Comparing the impedance triangle and the power triangle we can see that they are very 
similar.

- For an inductive impedance X  is positive and Q  is positive.

- For a capacitive impedance X  is negative and Q  is negative.
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• Using this realization, we can now express the power consumed by an impedance using the fol-
lowing relations

S VrmsIrms
* Vrms

2

Z*
---------------- Irms

2Z= = =

P Re S[ ] Vrms Irms
* φcos

Vrms
2

Z 2
----------------R Irms

2R= = = =

Q Im S[ ] Vrms Irms
* φsin

Vrms
2

Z 2
----------------X Irms

2X= = = =

- The above equations need not be memorized since they can always be quickly derived 
from 

V IZ=

S VrmsIrms
*=
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Ex. 11.12 A circuit has an applied voltage v t( ) 100 20t 15°+( )sin=  and a current 
i t( ) 2 20t 20°–( )sin= . Determine the impedance and power triangle.

Solution:
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Ex. 11.13 A voltage of v t( ) 99 6000t 30°+( )cos=  is applied across an impedance Z  such 
that the power consumed in P 940 W=  with a power factor of pf 0.707=  lead-
ing. Find the value of Z  and the value of it elements.

Solution:

11.8 Power Factor Correction

• It is desirable in industrial application to supply power to a load with a unity power factor. 

- In this case, the load appears to the power utility as a simple resistor.

- Therefore, the current supplied to the load will be reduced and the ohmic losses in the 
transmission lines will also be reduced.
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• Assume an rms voltage Vrms  is applied to a pure restive load (unity pf) and produces some rms 
current I1  in that load. 

- The power supplied to the load is given by

P VrmsI1 φv φi–( )cos VrmsI1 1( ) VrmsI1= = =

• Assume the same rms voltage Vrms  is applied to a load without a unity pf, which produces some 
current I2  in the load.

- The power supplied to the load in this case is given by

P VrmsI2 φv φi–( )cos=

• Comparing the two cases when the power consumed is equal we have that

VrmsI1 VrmsI2 φv φi–( )cos=

I2
I1
φv φi–( )cos

----------------------------- I1>=

- More current is drawn by the non-unity pf load for equal power consumption.

- This is the reason why power utilities penalize industrial customers that have loads with 
non-unity power factors.
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• How do we correct for non-unity power factors?

- Industry usually has inductive loads which produce lagging power factors

- A lagging power factor can be made a unity power factor by placing a capacitor in par-
allel with the load, where the value of the capacities is such that the load becomes 
purely resistive (i.e. Im Z[ ]  is made equal to 0).

- A leading power factor can be made purely resistive by placing an inductor in parallel 
with the load.

Ex. 11.14 An industrial load Z 5 10° Ω∠=  is supplied by an rms voltage V 100 30°∠=  at 
60 Hz. Find the capacitor value required to change the power factor to a unity pf 
and find the current supplied before and after the power factor correction.

Solution:
S.W. Neville Page 331



Elec 250: Linear Circuits I Chapter 11 5/4/08
Ex. 11.15 The power consumed in an impedance is 100 W at a power factor of 0.8 lagging. 
If the applied voltage is v t( ) 25 300t 45°+( ) Vsin= , determine the current flow-
ing in the impedance and the value of the impedance.

Solution:

11.9 Maximum Power Transfer

• In Chapter 3, we studied maximum power transfer for purely resistive circuits operating in DC 
conditions, we would like to perform a similar analysis for impedance circuits operating in AC 
conditions.
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- Consider the following Thevenin equivalent circuit (remember we can replace any lin-
ear circuit about its load with it Thevenin equivalent circuit about the load).

+
-

VT

ZT

Z

I
+

-

V

- Assume that we can vary the load impedance Z  to get the maximum power out of the 
circuit.

- Applying KVL to the circuit we get

VT I ZT Z+( )=

- Thus,

I
VT

ZT Z+( )
--------------------=
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- Applying voltage division across the load 

V
ZT

ZT Z+
---------------VT=

- From the above two equations the power delivered to the load is

S VI* VT
2Z

ZT Z+ 2
---------------------= =

- The real power consumed by the load is

P
VT

2R
ZT Z+ 2
---------------------=

- But the source and load impedances can be written as

ZT RT jXT+=

Z R jX+=

- Therefore the real power can be written as

P VT
2 R

RT R+( )2 X XT+( )2+
------------------------------------------------------=
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- The value of X  which maximizes P  is 

X X– T=

- since this causes the X XT+( )2  term in the denominator to become 0.

- and the real power becomes

P VT
2 R

RT R+( )2
-----------------------=

- The maximum value for P  is found by differentiating the above equation with respect to 
R

dP
dR
------- VT

2 RT R–

RT R+( )3
-----------------------=

- The maximum occurs when dP
dR
------- 0=  which occurs when

R RT=

- We now have the real and imaginary parts of Z  required for the maximum power trans-
fer.
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- The maximum power transfer to the load Z  in a Thevenin equivalent circuit is that the 
load impedance must be the complex conjugate of the Thevenin impedance.

Z ZT
* RT jXT–= =

- At this value the output voltage and current will be 

V' VT
ZT

*

2RT
---------=

I'
VT

2RT
---------=

- The maximum complex power delivered to the load will be

S' V'I'*
VT

2

4RT
2

-----------ZT
*= =

- And the maximum power available from the circuit is

P'
VT

2

4RT
-----------=
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- In terms of the Norton equivalent circuit IN  and ZT , the load current, voltage, and maxi-
mum power are given by

V'
IN ZT

2

2RT
-----------------=

I'
INZT
2RT
-----------=

P'
IN

2 ZT
2

4RT
----------------------=

Ex. 11.16 A voltage source of V 10 V rms=  has an internal impedance of Z 3 30° Ω∠=  
and drives a serially connected load impedance Z . What is the value of Z  which 
will maximize the power transfer and what is the value of that power?

Solution:
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Assignment #11

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 12
Series and Parallel Resonance

12.1 Introduction

• Resonance circuits are circuits which behave much differently for a narrow range of frequencies 
than they do across the broad range of all frequencies.

- The text derives resonance theorem via Laplace transform analysis and Bode plots.

- We will not cover those methods in class (but you will cover them in 3rd year)

• Resonance circuits are useful in many applications such as the extraction of signals from back-
ground noise.

- Of importance in resonance circuits is how selective the circuit is at filtering out noise 
which is very close to the circuits resonant frequency.

- A circuit is in resonance when the applied voltage V  and the resulting current I  are in 
phase.

- Thus, at resonance the equivalent impedance is purely resistive.
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12.2 Series Resonance

• The following shows a series RLC circuit. 

+- V

j 1
ωC
--------– jωL

R

- Assume that the input phasor voltage is

V V 0°∠=

- The impedance seen by the source is described by

Z R j ωL 1
ωC
--------–⎝ ⎠

⎛ ⎞+=

- which consists of a constant real part R  and an imaginary part ωL 1
ωC
--------–⎝ ⎠

⎛ ⎞  which varies 

with the frequency ω
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- At a particular frequency, denoted ω0 , the imaginary part vanishes completely

ω0L 1
ω0C
----------– 0=

- Thus,

ω0
1

LC
-------   rad/s=

- This frequency ω0  is called the resonance frequency of the series RLC circuit.

- The resonance frequency in Hertz is given by

ω 2πf=

f0
1

2π
------ 1

LC
------- Hz=

- In a series resonance circuit, the voltage that develops across the load resistor is usually 
the desired output voltage, and it is given by

VR V R
Z
---× VR

R j ωL 1
ωC
--------–⎝ ⎠

⎛ ⎞+
----------------------------------------= =
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- The figure below show the dependency of the magnitude of this output voltage on the 
operating frequency for the parameters V 10 0°∠= , L 1 H= , and C 1μF= , and two 
values of R: 100 and 500 Ω.
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- The resonance frequency is given by the equation f0
1

2π
------ 1

LC
------- Hz=  and does not depend 

on R. For this parameters used above we have that 

f0
1

2π
------ 1

LC
------- Hz 1

2π
------ 1

1( ) 1e 6–( )
----------------------- 159 Hz= = =

- Notice from the figure that the output voltage is maximum at the resonance frequency.

- At resonance (fo Hz159= ) we can write, 

Z R j 0( )+=

I V
R
----=

VR V=

- At resonance, the resistor current is in phase with the input voltage since the circuit 
appears to the source as a purely resistive circuit. 

- The resistor voltage will exactly equal the source voltage since at resonance the effects 
of the capacitor and inductor cancel each other out.
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12.2.1 Series Resonance Bandwidth and Quality Factor

• We saw in the figure above that as the resistance is changed in the series RLC circuit the sharp-
ness of the output voltage spike changes. 

- The sharpness of the resonant peak of the output voltage versus frequency is a useful 
measure of the frequency selectivity of the series RLC circuit.

- We define the bandwidth B  of the resonant circuit by the equation

B ω2 ω1–=

- where ω1  and ω2  are defined at the angular frequencies where the magnitude of the out-
put voltage (voltage across the resistor) has the value

V1 2,
V
2

-------=

- In filtering this is termed the point were the signal is “3dB down” since

20 V1 2,( )10log 20 V
2

-------⎝ ⎠
⎛ ⎞

10
log 20 1

2
-------⎝ ⎠
⎛ ⎞

10
log 20 V( )10log+ 3dB– 20 V( )10log+= = =
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- Given the above definitions for ω1  and ω2  we can derive their respective equations as 
follows,

- Using voltage division we can write

V
2

------- R
Z1 2,
------------- V×=

- Solving for the complex impedance Z1 2,

Z1 2, R2 X2+ 2R= =

- Which means that X R=  when ω ω1 or ω2=

- At the lower frequency ω1 , we have that XC XL>  and we can write

1
ω1C
---------- ω1L– R=

- At the higher frequency ω2 , we have that XL XC>  and we can write

ω2L 1
ω2C
----------– R=
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- Solving the above two equations for ω1  and ω2  respectively we have that

ω1
1

2L
------ R2 4 L

C
----+ R–⎝ ⎠

⎛ ⎞=

ω2
1

2L
------ R2 4 L

C
----+ R+⎝ ⎠

⎛ ⎞=

- From before we had that the bandwidth is defined as B ω2 ω1–=  therefore for a series 
RLC circuit the bandwidth is given by 

B 1
2L
------ R2 4 L

C
----+ R+⎝ ⎠

⎛ ⎞ 1
2L
------ R2 4 L

C
----+ R–⎝ ⎠

⎛ ⎞– R
L
--- rad/s= =

Ex. 12.1 Design a series RLC circuit such that its resonance frequency is 60 Hz, the reso-
nant bandwidth is 10 Hz, and R = 25 Ω.

Solution:
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Ex. 12.2 Design a series RLC resonant circuit such that its resonance frequency is 5kHz 
and the resonant bandwidth is 100 Hz.

Solution:

12.2.2 The Quality Factor

• An important parameter related to the resonance phenomena the quality factor Q  which is 
defined as the ration of the resonant frequency ω0  to the bandwidth B :

Q
ω0
B
------=
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- For series RLC circuits we know from above that B R
L
---=  therefore the quality factor can 

be written as 

Q
ω0
B
------

ω0L
R

----------= =

- We also know from above that ω0
1

LC
-------   rad/s=  therefore

Q 1
R
--- L

C
----=

- The quality factor is a measure of the sharpness of the resonance curve. 

- Highly selective filters have a very sharp resonance curve peak, showing that they only 
select frequencies which are very close to the resonance frequency.

- We can see from the equation above that the smaller R  is the higher the quality factor. 

- Higher values for Q , than are available through the passive circuit elements we study in 
this class, can be obtained by using active circuits which contain operational amplifiers 
or through using digital signal processing techniques.
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- The highest quality factor yet achieved was by Mossbauer during his Ph.D. work in 
Germany in the mid-sixties through processes related to the emission of gamma radia-
tion by radioactive nuclei.

- In general, the quality factor is defined by the ratio

Q 2π Energy stored in the system
Energy dissipated per cycle 
-------------------------------------------------------------------=

Ex. 12.3 Design a series RLC resonant circuit such that its resonant frequency is 500kHz 
and its quality factor is 100,

Solution:
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12.3 Parallel Resonance

• The following shows a parallel RLC circuit. 

 I j 1
ωC
--------–jωL R

- Assume that the input phasor current is

I I 0°∠=

- The admittance seen by the source is described by

Y G j ωC 1
ωL
-------–⎝ ⎠

⎛ ⎞+=

- which consists of a fixed real part G  and an imaginary part ωC 1
ωL
-------–⎝ ⎠

⎛ ⎞  which varies 

with the frequency ω
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- At a particular frequency, denoted ω0 , the imaginary part vanishes completely

ω0C 1
ω0L
----------– 0=

- Thus,

ω0
1

LC
-------   rad/s=

- This frequency ω0  is called the resonance frequency of the parallel RLC circuit.

- The resonance frequency in Hertz is given by

ω 2πf=

f0
1

2π
------ 1

LC
------- Hz=

- In a series resonance circuit, the voltage that develops across the load resistor is usually 
the desired output voltage, and it is given by

VR
I
Y
--- I

G j ωC 1
ωL
-------–⎝ ⎠

⎛ ⎞+
----------------------------------------= =
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- The figure below show the dependency of the magnitude of the output current on the 
operating frequency for the parameters I 10 0°∠= , L 1 H= , and C 1μF= , and two 
values of R: 1kΩ and 5kΩ.
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- The resonance frequency is given by the equation f0
1

2π
------ 1

LC
------- Hz=  and does not depend 

on R. 

- For the parameters used above we have that 

f0
1

2π
------ 1

LC
------- Hz 1

2π
------ 1

1( ) 1e 6–( )
----------------------- 159 Hz= = =

- Notice from the figure that the output current is maximum at the resonance frequency.

- At resonance (fo Hz159= ) we can write, 

Y G j 0( )+=

V IR=

IR I=

- At resonance, the voltage across the circuit is in phase with the input current since the 
circuit appears to the source as a purely resistive circuit. 

- The resistor current will exactly equal the source current since at resonance the effects 
of the capacitor and inductor cancel each other out.
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12.3.3 Parallel Resonance Bandwidth and Quality Factor

• We saw in the figure above that as the resistance is changed in the parallel RLC circuit the sharp-
ness of the output voltage spike changes. 

- The sharpness of the resonant peak of the output voltage versus frequency is a useful 
measure of the frequency selectivity of the series RLC circuit.

- As in the series case the bandwidth B  of the resonant circuit by the equation

B ω2 ω1–=

- where ω1  and ω2  are defined at the angular frequencies where the magnitude of the out-
put voltage (voltage across the resistor) has the value

I1 2,
I
2

-------=

- For the parallel RLC circuit ω1  and ω2  we can be derived as follows,

- Using current division we can write

I
2

------- G
Y1 2,
------------- I×=
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- Solving for the complex admittance Y1 2,

Y1 2, G2 B2+ 2G= =

- Which means that B G=  when ω ω1 or ω2=

- At the lower frequency ω1 , we have that BL BC>  and we can write

1
ω1L
---------- ω1C– G=

- At the higher frequency ω2 , we have that BC BL>  and we can write

ω2C 1
ω2L
----------– G=

- Solving the above two equations for ω1  and ω2  respectively we have that

ω1
1

2C
------- G2 4C

L
----+ G–⎝ ⎠

⎛ ⎞=

ω1
1

2C
------- G2 4C

L
----+ G+⎝ ⎠

⎛ ⎞=
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- From before we had that the bandwidth is defined as B ω2 ω1–=  therefore for a paral-
lel RLC circuit the bandwidth is given by 

B G
C
---- rad/s=

Ex. 12.4 Design a parallel RLC circuit such that its resonance frequency is 60 Hz, the res-
onant bandwidth is 10 Hz, and R = 25 Ω.

Solution:
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Ex. 12.5 Design a parallel RLC resonant circuit such that its resonance frequency is 
500kHz and the resonant bandwidth is 100 Hz.

Solution:

12.3.4 The Quality Factor

• As in the series case we have that the quality factor Q  is defined as the ration of the resonant fre-
quency ω0  to the bandwidth B :

Q
ω0
B
------=
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- For parallel RLC circuits we know from above that B G
C
----=  therefore the quality factor 

can be written as 

Q
ω0
B
------

ω0C
G

---------- ω0CR= = =

- We also know from above that ω0
1

LC
-------   rad/s=  therefore

Q R C
L
----=

Ex. 12.6 Design a parallel RLC resonant circuit such that its resonant frequency is 
500kHz and its quality factor is 100,

Solution:
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Table 16: 

Parameter Series RLC Parallel RLC

ω0  (rad/s) 1
LC

----------- 1
LC

-----------

B (rad/s) R
L
--- 1

RC
--------

Q 1
R
--- L

C
---- R C

L
----

Table summarizing the formulae for series and parallel RLC resonant circuits 
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Assignment #12

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 13
Mutual Inductance

13.1 Introduction

• We are all familiar with the ac-to-dc converters that power out printers, scanners, computers, ste-
reo’s, etc. 

- These devices require a transformer for their operation.

- Transformers are also used in the transmission of electrical power across the power 
grid. 

- Electromagnetic coupling is the basic phenomena responsible for transformer opera-
tion.

• In this chapter, we study the phenomena of magnetic coupling through mutual inductance, and 
then we discuss the principle of operation of an ideal transformer.

- Mesh (loop) analysis is the primary circuit theorem which we will use to solve for cir-
cuits containing mutual inductance.

- The nature of such circuits is not well suited to nodal analysis.
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13.2 Self Inductance

• Consider the inductor shown below, when the current I  passes through the inductor magnetic 
lines of force are produced.

I

L

- This is what gives the self inductance L  and we get the usual phasor equation

V jωLI=

- where ω  is the operating angular frequency of the current phasor.
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13.3 Mutual Inductance

• Assume that we have two inductors in close proximity as shown below

I1

L1

I2

L2

- When a sinusiods current I1  passes through the first inductor, a magnetic field is created 
around it, and part of this magnetic field cuts the coils of the second inductor.

- The voltage on inductor L1  is given by the same phasor equation as before

V1 jωL1I1=

- But, the same current I1  gives rise to a voltage on the second inductor, denoted V21 , 
given by 

V21 j± ωMI1=

- Where M  is the mutual inductance between the two inductors. 
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- The ±  sign arises because the direction of the induced voltage might be opposite to the 
assumed reference voltage.

- M  is measured in Henries just like the self inductance L .

• In general, when currents flow in two inductors at the same time, the total induced voltages in 
the two inductors are given by

V1 jωL1I1 jωMI2±=

V2 jωL2I2 jωMI1±=

- Each inductor will have two voltage components:

1. A component due to the self inductance.

2. A component due to the mutual inductance

- Note that the mutual inductance coefficient jωM  is the same for both voltage equations.
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Ex. 13.1 Assume two coupled inductors L1 1H=  and L2 4H=  with mutual coupling 
M 0.1H=  and an operating frequency f 100Hz= . What are the voltages devel-
oped across the inductors when: (a) I1 2 0° A∠=  and I2 3 30° A∠=  
(b)I1 5 60° A∠=  and the second inductor is open-circuited. Assume positive 
coupling between the inductors

Solution:

13.4 Coupling Coefficient

• The coupling coefficient k  is a measure of how much the magnetic flux of one inductor threads 
the coils of the other inductor.
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- k  is defined by

k M
L1L2

----------------=

- The coupling coefficient is a dimensionless constant and is bounded between

0 k 1≤ ≤

- When k 0= , we say that the two coils (inductors) are not coupled

- When k 1« , we say that the two coils are weakly coupled.

- When k 1≈ , we say that the two coils are strongly coupled.

- When k 1= , we say that we have an ideal transformer (Section 13.7).

Ex. 13.2 Determine the coupling coefficient for two coils L1 1H=  and L2 5H=  whose 
mutual inductance is M 2H= .

Solution:
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13.5 The Dot Convention

• Above we stated that when two inductors are coupled, the induced voltages are given by the 
equations,

V1 jωL1I1 jωMI2±=

V2 jωL2I2 jωMI1±=

• To know which sign to give the induced voltage due to the mutual coupling, we use a dot con-
vention in accordance with the following rules,

1. When both the currents in the two inductors enter the dotted terminals, the 
signs of the M  terms (mutual inductance) are the same as the signs of the L  
terms (self inductance)

2. When both current in the two inductors leave the dotted terminal. the signs 
of the M  terms are the same sign as the L  terms.

3. When one current enters the dotted terminal while the other leaves the dot-
ted terminal, the signs of the M  terms are opposite to the signs of the L  
terms.
S.W. Neville Page 367



Elec 250: Linear Circuits I Chapter 13 5/4/08
I1

L1

I2

L2

I1

L1

I2

L2

M & L
have same

sign

M & L
have same

sign

I1

L1

I2

L2

I1

L1

I2

L2

M & L
have opposite

sign

M & L

sign
have opposite

• There is an alternate way to phrase the dot convention which proves useful in some situation:

1. When a current enters the dotted terminal of an inductor, it induces a positive 
voltage on the dotted terminal of the coupled inductor.

2. When a current enters the undotted terminal of an inductor, it induces a positive 
voltage on the undotted terminal of the coupled inductor.
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Ex. 13.3 Find the equivalent inductances for the two circuits shown below.

+

-

V
I +

-

V
IL1

L2 L

(a) (b)

+

-

V
I +

-

V
IL1

L2 L

Solution:
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13.6 Coupled Circuits

• Consider the circuit shown below (where the double headed arrow denotes coupled inductors).

+-V I2 Z2

Z1

jωL1
jωL2

jωM

I1

- Taking the dot convention into account (I1  enters a dotted terminal and I2  enters a non-
dotted terminal so the mutual inductances will have the opposite sign of the self induc-
tances), the two loop equations are,

V I1 Z1 jωL1+( )– jωMI2+ 0=

I2 Z2 jωL2+( )– jωMI1+ 0=

- Placing in matrix form we have,

Z1 jωL1+ j– ωM
j– ωM Z2 jωL2+

I1

I2

V
0

=
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- We can now solve for the mesh currents using standard matrix algebra techniques.

Ex. 13.4 For the circuit below what is the value of the loop currents and what is the value 
of the mutual inductance?

+- I23j 2j

0.4j

I1

v t( ) 3 10t 10°–( )sin=

2 5j+

3 2– j

Solution:
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Ex. 13.5 Find the voltage V  for the circuit below, given the coupling coefficient k 0.8= .

+-

+

-

Vj4Ω–

3Ω

5Ω

j5Ω j10Ω

50 0°∠

Solution:
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Ex. 13.6 Find the unknown voltages in the circuit below.

I28jΩ j14Ω

5jΩ

I15 0∠ °A j2A–V1
V2

+

-

+

-

Solution:
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Ex. 13.7 Find the Thevenin and Norton equivalent circuits for the circuit shown below.

+-

I2

15j

300j

50j
I1

120 15°V∠

20Ω

ZLV1 V2

+

-

+

-

Solution:
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Ex. 13.8 Find the mesh currents in the circuit below.

+-

+

-

Vj4Ω–

3Ω j5Ω

j10Ω
50 0°∠

j3Ω

Solution:
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13.7 The Ideal Transformer

• The ideal transformer consists of two inductors that are tightly coupled with k 1= .

- The circuit symbol for an ideal transformer is

+

-

V1

I1
+

-

V2

I2
1:n

- The vertical lines between the inductors indicate that an iron core is used to confine the 
magnetic flux to the two coils, thus ensuring a very tight coupling.

- The ideal transformer is a two-port device with a primary input and a secondary output.

- The primary side is the side that connect to the power supply.
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- The secondary side is the side which connects to the load.

+-

I2I1

V ZL

1:n

VL

+

-

Primary Side Secondary Side

- A transformer is used to change the voltage, current, and impedance of the primary and 
secondary sides.

- The main parameter of a transformer is the turns ration n

- This is the ration between the number of secondary coil turns to primary coil turns

n Turns Ration Number of secondary turns
Number of primary turns

-----------------------------------------------------------------= =
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- In an ideal transformer the secondary to primary voltage ratio is 

V2
V1
------ n=

- The secondary to primary current ration is

I2
I1
---- 1

n
---=

- The above two equations are independent of the operating frequency or the load con-
nected the transformer, but they only hold for ideal transformers.

- We know from the previous Chapter that the complex power supplied by the source to 
the primary coil is given by

S1 V1I1
*=

- where it is assumed that V1  and I1  represent rms values.

- We also know that the complex power for the secondary coil will be given by

S2 V2I2
*=
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- Using the above equations relating the primary and secondary currents and voltages in 
ideal transformers we can relate the primary and secondary complex power equations.

S2 V2I2
* nV1

I1
*

n
---- S1= = =

- Thus the power delivered to the transformer’s primary coil exactly equals the 
power delivered by the transformer’s secondary coil to the load.

- The ideal transformer does not absorb any of the power delivered to it; it delivers 
all of the power to the load.

- Obviously, this is an ideal case and for real transformers some power will be lost 
within the transformer. 
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Ex. 13.9 Consider the ideal transformer circuit shown below. Find the secondary voltage, 
the current in the primary and secondary sides, and the power delivered by the 
source, and the power consumed by the load.

+-

I2I1

110V 50 30°Ω∠

1:10

VL

+

-

Solution:
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13.7.1 Reflected Impedance

• Consider the ideal transformer shown below

+-

I2I1

V1 ZL

1:n

V2

+

-

- We are interested in finding the equivalent impedance of the load as it appears to the 
source on the primary circuit.

- The impedance as seen by the primary side is called the reflected impedance and is 
given by 

Zr
V1
I1
------=

- Since we are dealing with an ideal transformer we can write

V1
1
n
---V2=

I1 nI2=
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- The reflected impedance can then be given in terms of the load impedance as

Zr
V1
I1
------ 1

n2
-----

V2
I2
------ 1

n2
-----ZL= = =

- Thus a load ZL  connected to a secondary side of an ideal transformer appears to the 

source as if it is an impedance of the value 1
n2
-----ZL .

- Hence, the circuit above, as seen from the primary source, is equivalent to the circuit 
shown below

+-

I1

V1
1
n2
-----ZL

- The reflected impedance will help us simplify transformer circuits by replacing the 
transformer and the load impedance by their equivalent reflected impedance.
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Ex. 13.10 Consider the circuit shown below. Find the primary and secondary voltages and 
currents, and the power delivered by the source and consumed in Z1  and Z2 .

+-

I2

I1
12 0°∠ Z2 100 j75Ω–=

1:5

V2

+

-

Z1 2 j10Ω+=

Solution:
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Ex. 13.11 Find the power consumed in the capacitor in the circuit shown below. Such a 
circuit can occur in practice when an unintentional capacitor is formed through 
an unintentional connecting of the primary and secondary circuits.

+-

I2I1

4 0°∠

1:2

V2

+

-
V1

+

-

I3 j8Ω–

2Ω

j5Ω
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Assignment #13

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 14
Balanced Three-Phase Circuits

14.1 Introduction

• Up to this point, we have looked at circuits which utilize ac or dc power sources, but we have not 
looked at the circuits which are used for power generation. 

• In power generation, the objective is to maximize the power produced from the generators by 
using the lightest and most compact generators.

- This is particularly, true for certain applications such as aviation power sources were 
weight and size must be minimized.

- A rotor with a single winding when placed within a fixed magnetic field and rotated 
about the rotor’s axis, produces a sinusiodal voltage waveform.

t
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- To generate more power from the same generator, three equally spaced windings can be 
placed around the rotor, were equally spaced is relative to the angular spacing (i.e. 120°  
apart)

- Each winding will then gives rise to a sinusiodal voltage waveform, but the three wave-
forms will be shifted in phase by 120°  with respect to each other.

ta
b

c a b c

14.2 Wye and Delta Connections

• In three-phase power generation systems we have three voltage generators corresponding to 
three windings a a'– , b b'– , and c c'– .

• These three windings could be connected together to form either a wye or a delta connection

14.2.1 Wye Connection

- The wye connection is when the leads a' , b' , and c'  are connected together to form a 
common neutral n .
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- In this case we have four wires coming out of the generator corresponding to the a, b, 
and c leads of the windings and the neutral lead n.

- Such a system is called a three-phase, four-wire system or a Y-connected three-
phase source.

a’

b’

c’

n

a

b

c

a

b

c

n

a’

b’

c’

n

a

b

c

a

b

c

n

+-

+-
+-

Actual Winding
Connections

Equivalent Voltage
Sources

Vcn
Van

Vbn

14.2.2 Delta Connection

• The delta connection is when the three windings are connected end to end to form a delta

- In this case we have three wires coming out of the generator corresponding to the a, b, 
and c leads of the windings.

- There is NO neutral wire in the delta connection
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- Such a system is called a three-phase, three-wire system or a Δ-connected three-
phase source.

a’

b’

c’

a

b

c

a

b

c

Actual Winding
Connections

Equivalent Voltage
Sources

a’

b’

c’

a

b

c

a

b

c

+
- +-

+ -

Vca

VabVbc

- Note that just having only three wires coming out of the generator is not enough to have 
a Δ-connected three-phase source. It is possible to have a wye-connected source 
where the neutral wire never comes out of the generator (i.e. a three-wire wye-con-
nected source).

14.3 Phase Voltage

• The voltage generated in each winding of a three-phase generator is called the phase voltage.

- This voltage represents the voltage difference in each of the windings (a-a’, b-b’, c-c’).

• Consider the case of a four-wire, three-phase wye-connected generator
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- For this generator the phase voltages can be written in polar form as (with Van  assumed 
to be the reference voltage - i.e. the phasor with 0 phase shift).

Van Vp 0°∠=

Vbn Vp 12– 0°∠=

Vcn Vp 120°∠=

- where Vp  is the rms phase voltage and the phases are displaced by 120° .

- The phasor Van  is the selected reference phasor

- Each of the phase voltages is delayed by 120°  because of the physical layout of the coils 
around the generator motor (i.e the coils are physically separated by 120°  so the phase 
voltages have a 120°  phase shift with respect to each other).

- The magnitudes of all of the phase voltages are equal since it is assumed that all of the 
coils have the same number of turns about the generate rotor.

- The set of phase voltages Van , Vbn , and Vcn  are said to be a balanced set because all of 
the phase voltages have the same amplitude Vp  and are equally displaced by 120° .
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- Graphically, the voltage phasors can be drawn in the complex plane as,

120°

120°

120° Van

Vcn

Vbn

- This ordering of phase voltages is called a positive sequence since the phasors are 
arranged clockwise in the order a, b, then c.

Ex. 14.1 A there-phase (3 φ– ) four-wire system has an rms phase voltage of 120V at 
60Hz. Write down the phasors for the phase voltages and write down their time 
domain representations.

Solution:
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14.4 Line Voltages

• Phase voltages give us the equivalent power source associated with each of the coils on the gen-
erator’s rotor.

• But, we can also ask what are the voltage differences between the generator’s output lines a, b 
and c.

- These voltage differences between the lines are termed the line voltages and are given 
as Vab , Vbc , and Vca .

- The expressions for the line voltages can be easily obtained from the expressions for the 
phase voltages.

- For example, if it is assumed that we have a we-connected generator then the line volt-
ages will be

Vab Van V– bn=

Vab Vp 0°∠ Vp 120–( )°∠–=

Vab 3Vp 30°∠=

Vab 3Vp 30°∠=
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- where VL  is the amplitude of the line voltage

- Similarly, the line voltages Vbc , and Vca . are given by

Vbc 3Vp 90°–∠ 3Vp 90°–∠= =

Vca 3Vp 150°∠ 3Vp 150°∠= =

- The amplitude of the line voltage VL is related to the amplitude of the phase voltage Vp  
by

VL 3Vp=

- Graphically, these line voltages can be drawn in the complex plane as

120°

120°120°

Vca

Vbc

Vab
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- Note that these line voltages also form a positive sequence and the reference phasor Vab  
is rotated 30°  above the real line (since the real line was the reference direction we 
chose for Van ).

- The relationship between the phase voltages and the line voltages in the complex plane 
can therefore be given by

Vca

Vbc

Vab

Van

Vcn

Vbn

Ex. 14.2 A three-phase (3 φ– ) four-wire system has a rms phase voltage of 120V at 60 
Hz. Write down the line voltage phasors and their time domain representations.

Solution:
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14.5 Wye-Load

• In three-phase systems the loads consist of three impedances, each impedance being connected 
to one of the lines.

- Each load impedance the three-phase systems is called a phase impedance.

- When the phase impedances are equal this is termed having a balanced load.

• Consider the following system in which a three-phase, four-wire wye-connected generator is 
connected to a wye-connected four-wye load

a’

b’

c’

n

a

b

c

a

b

c

n

+-

+-

+-

Vcn
Van

Vbn

Ia

Ic

Ib

Z

Z

Z
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- If we assume that each of the phase impedances is equal and is given by

Zp Zp θ∠=

- The we can obtain expressions for the line currents (the currents flowing out of the 
generators lines a, b and c) by applying KVL around each loop.

Ia
Van
Zp
---------

Vp 0°∠
Zp θ∠
----------------

VP
ZP
------ θ–∠ IL θ–∠= = = =

Ib
Vbn
Zp
---------

Vp 120– °∠
Zp θ∠

-------------------------- IL 120° θ––∠= = =

Ic
Vcn
Zp
--------

Vp 120°∠
Zp θ∠

---------------------- IL 120° θ–∠= = =

- where Vp  is the amplitude of the phase voltage, ZL  is the magnitude of the phase 
impedance, and 

IL
VP
Zp
---------=

- is the amplitude of the line current (assuming equal phase impedances and rms 
phase voltages).
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- We can also ask what are the phase currents (i.e. the currents which flow through each 
of the phase impedances)

- it is obvious, for a three-phase four-wire wye-connected generator connected to a 
four-wire balanced wye-connected load that the phase currents will equal the line 
currents.

IL Ip for Y-load=

- Using the result we obtained previously for a 3-phase 4-wire wye-connected sources we 
have that the line voltage and phase voltages are related by

VL 3Vp=

- So for a three-phase four-wire wye connected generator attached to a four-wire bal-
anced load we have that 

IL Ip=

VL 3Vp=

- We can also ask what is the total complex power consumed by the load.

S Sa Sb Sc+ +=
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- substituting in the phase currents and phase voltages we have that

S VanIa
* VbnIb

* VcnIc
*+ +=

S 3VpIp θ∠=

- or expressing the total power in terms of the line voltages and line currents.

S 3VLIL θ∠=

Ex. 14.3 A three-phase four-wire system has Vp 120V=  rms and feeds a balanced Y-load 
with Zp 3 4j Ω+= . Find the phase currents and voltage and the total power sup-
plied to the load.

Solution:
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Ex. 14.4 A three-phase four-wire system has a phase voltage of 120V rms connected to 
an unbalanced load of Za 8 4j Ω–= , Zb 9 20j Ω–= , and Zc 2j Ω= . Find the 
phase currents, line currents, and the total power consumed by the unbalanced 
load.

Solution:
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Ex. 14.5 A three-phase three-wire system has a phase voltage of 120V rms connected to 
an unbalanced load of Za 8 4j Ω–= , Zb 9 20j Ω–= , and Zc 2j Ω= . Find the 
phase currents, line currents, and the total power consumed by the unbalanced 
load. (In this case the neutral wire has been removed from the wye-connected 
generator)

Solution:
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14.6 Delta-Connected Load (Δ-Load)

• Consider the system shown below were a three-phase, three wire Δ-connected generator is con-
nected to a Δ-connected load consisting of three phase impedances.

a’

b’

c’

a

b

c

a

b

c

+
- +-

+ -

Vca

VabVbc

Z

ZZ

Ia

Ic

Ib

- As before, when the phase impendances are equal this is termed a balanced load.

Zp Zp θ∠=

- As before, there are line currents flowing in the lines leaving the generator and their 
are phase currents flowing through the phase impedances.

- Notice that for Δ-connected generator its line voltages and phase voltages will be 
equal.

VL Vp=
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- Hence, when the Δ-load is attached the phase voltages across the loads phase imped-
ances will be given by

Vab VL 30°∠=

Vbc VL 90°–∠=

Vca VL 150°∠=

- Applying Ohm’s law at each of the phase impedances gives the phase currents as

Iab
Vab
Zp
--------- Ip 30° θ–( )∠= =

Ibc
Vbc
Zp
-------- Ip 90°– θ–( )∠= =

Ica
Vca
Zp
-------- Ip 150° θ–( )∠= =

- where Ip
Vp
Zp
---------=  is the magnitude of the phase current through the each of the bal-

anced loads.
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- We can also ask what are the line currents in a Δ-connected load. (Note that in this case 
they will NOT equal the phase currents)

Ia Iab Iac– Ip 30° θ–( )∠ Ip 150° θ–( )∠– 3Ip θ–∠= = =

Ib 3Ip 120– ° θ–∠=

Ic 3Ip 120° θ–∠=

- Thus for a Δ-connected balanced load we can write

VL Vp=

IL 3IP=

- The total power consumed by the load is given by

S Sa Sb Sc+ +=

- substituting in the phase currents and phase voltages we have that

S VabIab
* VbcIbc

* VcaIca
*+ +=

S 3VpIp θ∠=

- or expressing the total power in terms of the line voltages and line currents.

S 3VLIL θ∠=
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Ex. 14.6 A three-phase, three-wire Δ-connected system has VL 240 V rms=  and feeds a 
load with Zp 3 j4 Ω+= . Find the phase and line currents and the total power 
supplied to the circuit.

Solution:
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Assignment #14

Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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Chapter 15
Operational Amplifiers

15.1 Introduction

• Up to this point, we have looked at circuits built from the very basic core circuit elements of 
resistors, inductors, capacitors, and independent and dependent power sources. 

• In general, there is a large group of commonly used circuits that are packaged into integrated cir-
cuits (IC’s) such that they can be easily used within a wider variety of circuit designs

- Examples of such IC’s are range from basic logic gates (i.e., AND, OR, NOT, NAND, 
NOR, XOR, etc.), timer circuits (i.e., the 555 timer IC’s), up to microcontrollers (i.e, 
68HC11, etc.), and complete superscalar microprocessors (i.e., dual-core Intel Xeon 
processors, etc.).

• Operational amplifiers are one extremely common type of IC which can be used to implement a 
number of useful analog circuits.

• Operational amplifiers are active devices - meaning that they provide power to the circuit, (i.e., 
they must be connected up to a power supply to work).

• Operational amplifiers are made up from the basic circuit elements we have already studied 
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- Specifically, an operational amplifier is comprised of the following combination of 
resistors with a dependent voltage source

+-

Ri Ro

v1

v2

+

-
vd

Avd

vo Avd A v2 v1–( )= =

- The value A  is termed the op amp’s open loop gain. 

- Ostensibly, an op amp output is an amplified version of the voltage differential across 
its two input terminals.

- The standard circuit symbol for an op amp is,

+
-

- Note that typically the power supplies to the op amp are not drawn but assumed.
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- A common physical packaging of an op amp is as an 8-pin IC package (i.e, more 
specifically, a 741 op amp),

1
2
3
4 5

6

8
7

Balance
Inverting Input

Noninverting Input
V-

V+

Output

Not Used

Balance

- Typical ranges for an op amp’s parameters are,

Parameter Typical Range Ideal Values

Open-loop gain, A 105 to 108 ∞

Input Resistance, Ri 105 to 1013 Ω ∞ Ω

Output Resistance, Ro 10 to 100 Ω 0 Ω

Supply Voltages, V_ , V+ ±5 to ±24 V
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- The standard graph relating vd  to vo  for an op amp is,

vo

V+

V_

vd0

- If we keep the op amp within its linear region then all of our linear circuit theorems 
apply.

- The areas outside of this linear region are termed the areas where the op amp is satu-
rated, (i.e.,when the limits are reached of its ability to provide power to the circuit)

- Within the context of this course we will assume op amps are in their linear regions 
unless otherwise stated.

- Obviously for real-world circuits, one must check to ensure that the circuit always stays 
within the op amps’ linear regions and none of the circuit’s op amps ever saturate.

• Op amps become really useful circuit elements when we introduce a feedback path from the out-
put terminal back to the inverting input terminal.
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- Once we have this feedback path, we can build a number of useful circuits to perform 
mathematical operations such as,

- Signal Inversion
- Summation
- Difference Amplifier
- Analog Signal Integrator
- Analog Signal Differentiator

- The high input impedance of op amps can be used to construct voltage followers which 
isolated one part of a circuit from another part of the circuit.

- This allows circuits to be cascaded together to form more complex circuits

- Because of the isolation obtained provided by the voltage followers each piece of 
these complex cascaded circuits can be analyzed individually since their internal 
operation does not affect the cascade sections which follow.
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Ex. 15.1 A 741 op amp below has an open loop gain of A 4.5 106×= , Ri 4 MΩ= , and 

Ro 25Ω= . Find the close-loop gain 
vo
vi
----- . Determine the current i  when vs 5V= .

+
-

20kΩ

10kΩ

i

vo

+

-
+
-vs

10kΩ

Solution:
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First, converting the circuit to the form we are more familiar with,

20kΩ

10kΩ

i

vo

+

-

+
-

4MΩ
25Ω

Avd+

-
vd

1
2

3

+
-5V

10kΩ

From nodal analysis we have that,

v1
20k
---------

v1 5–
4M

--------------
v1 v2–

10k
----------------+ + 0=

v2 v1–
10k

----------------
v2 v3–

25
----------------

v2
10k
---------+ + 0=

v3 Avd 4 500 000, ,( ) v1 5–( )= =

Solving for v2 ,

v2 vo 7.500002514= =
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Giving a gain of,

g
v0
vs
----- 7.500002514

5
------------------------------- 1.5000005028= = =

and a current of i 0.7500002514mA=

15.2 Ideal Op Amps

• The size of the typical parameter values for op amps makes solving the circuit questions fairly 
tedious and we have to be quite careful that we do not drop a zero somewhere.

- What happens if we simplify our analysis by just assuming that the op amp actually has 
its ideal values for its various parameters, (i.e., Ri ∞= , Ro 0= , and A ∞= )?

+-

v1

v2

+

-
vd

∞( )vd

vo

i1

i2

0∞
S.W. Neville Page 413



Elec 250: Linear Circuits I Chapter 15 5/4/08
- Because of the assumed infinite input resistance Ri ∞= , the two input terminal will 
look like an open circuit

- Hence,

i1 0=  and i2 0=

- It must then be the case that vd 0=  and, therefore, that

v1 v2=

- These two basic assumptions define an ideal op amp.
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Ex. 15.2 For the ideal op amp determine the gain 
vo
vs
-----  and the current i  when vs 5V=

+
-

20kΩ

10kΩ

i

+
-vs

vo

+

-
10kΩ

Solution:

- Since we are now assuming that vd 0= , we have that

vs
20k

10k 20k+
------------------------ vo g⇒

vo
vs
----- 1.5= = =

- Applying KCL at node O, 

io
v0

10k 20k+
------------------------

vo
10k
---------+=

- When vs 5V= , v0 7.5V=  and io 0.75mA= .
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- These answers are very close to the true answers (within 6 significant digits in this par-
ticular case)

- Hence, assuming that the op amp is an ideal op amp is adequate is most cases and sim-
plifies the analysis considerably.

15.3 Useful Op Amp Circuits

• Now that we have the basics we can build a number of mathematically useful circuits.

15.3.1 The Inverting Amplifier 

• The following circuit is an inverting amplifier 

- The output voltage is a scaled inverted version of the input voltage that is applied to the 
op amp’s inverting input

+
-

Ri

Rf

i

vo

+

-

+
-vs

i1

i2

1
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- Since i1 i2 0= = , 

vs v1–
Ri

---------------
v1 v0–

Rf
----------------=

- But, vd v2 v1– 0= =  and v2  is grounded, hence v1 0=  so,

vs
Ri
-----

v0–
Rf

--------=  or vo
Rf
Ri
-----– vs=

- The degree of amplification is controlled by the ratio of the input and output resis-
tors.
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15.3.2 The Non-Inverting Amplifier 

• The following circuit is a non-inverting amplifier

- The output voltage is a scaled non-inverted version of the input voltage that is applied 
to the op amp’s inverting input

+
-

Ri

Rf

i

vo

+

-
+
-vs

i1

i2

1

- Since, vd v2 v1– 0= = , we know that v1 vs=  and we know that i1 0=  so,

vs
Ri
-----

vs v0–
Rf

---------------+ 0=  or that vo 1
Rf
Ri
-----+⎝ ⎠

⎛ ⎞ vs=

- The degree of amplification is still controlled by the ratio of the input and output 
resistors, but this time there is no inversion of the input violate (or signal).
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15.3.3 The Summing Amplifier 

• The following circuit performs voltage summation

- The output voltage is a scaled inverted version of the sum of the input voltages

+
-

R1
Rf

i

vo

+

-+
-

v1 aR2

R3
v2

v3

+
-

+
-

- Since i1 i2 0= = , 

va v1–
R1

----------------
va v2–

R2
----------------

va v3–
R3

----------------+ +
va v0–

Rf
----------------=

- But, vd 0=  hence va 0=  so,

vo
Rf
R1
------v1

Rf
R2
------v2

Rf
R3
------v3+ +⎝ ⎠

⎛ ⎞–=
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- The degree of amplification of each input is controlled by the ratio of that input’s 
resistor and the output resistor.

- This provides a means of weighting the inputs.

15.3.4 The Difference Amplifier 

• The following circuit performs voltage summation

- The output voltage is a scaled inverted version of the sum of the input voltages

+
-

R1

R2

i

vo

+

-
+
-

R3
R4

v1

v2

+
-

va

vb

- We have that, 
va v1–

R1
----------------

va v0–
R2

----------------=  and that 
vb v2–

R3
----------------

vb
R4
------=
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- But, va vb– 0=  so, via substitution and simplification we get that,

vo

R2 1
R1
R2
------+⎝ ⎠

⎛ ⎞

R1 1
R3
R4
------+⎝ ⎠

⎛ ⎞
--------------------------- v2

R2
R1
------ v1–=

- So vo  is a scaled version of the difference between the two input signals.

- If R1 R2 R3 R4 R= = = =  then we get that,

vo v2 v1–=
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15.3.5 The Differentiator

• The following circuit performs voltage differentiation.

- The output voltage is a proportional to the time domain derivative of the input voltage.

+
-

R

iC

vo

+

-

vi +
-

va

vb

C

iR

- For this circuit we have that,

ic C
d vi va–( )

dt
-----------------------=

- and that 

iR
va vo–

R
----------------=
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- We also known that va vb 0= =

- So applying KCL at node a  and simplifying we get that,

vo C– R
dvi
dt
-------=

- In practice, differentiator circuits tend to be unstable because variations in vi  due to 
noise get amplified as vi  passes through the differentiator.

- This amplification of noise is common whenever differentials are taken of noisy 
signal. 

- Because of this effect, differentiator circuits are seldom used in practice.
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15.3.6 The Integrator

• The following circuit performs integration.

- The output voltage is proportional to a time domain integral of the input voltage.

+
-

R

iC

vo

+

-

vi +
-

va

vb

C

iR

- Now, we have that, iR
vi va–

R
---------------=  and that iC C

d va vo–( )
dt

------------------------=

- But, va vb 0= =  so, via substitution and simplification we get that,

dv0
dt

-------- 1
RC
--------vidt–=
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- Integrating both sides of this equation gives over τ 0 t,[ ]∈

vo t( ) vo 0( )– 1
RC
-------- vi τ( ) τd

0

t
∫–=

- If we ensure that the capacitor is fully discharged before we start the circuit then,

vo t( ) 1
RC
-------- vi τ( ) τd

0

t
∫–=

- This analog integration circuit is much more commonly used that its differentiation 
counter-part
Note that the only difference between these two circuits is where the capacitor is place.

- Also care must be taken to ensure that the amplifier does not saturate since vo t( )  
can never become larger than the power supplied to the operational amplifier itself.
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15.4 An Analog Computer

• With the above circuits we can perform a number of useful mathematical operations.

- Can we for example design an analog circuit which can solve,

d2v0 t( )

dt2
----------------- 4

dv0 t( )
dt

--------------- 3v0 t( )+ + 10 3t 40°–( )cos=

when vo 0( ) 2V=  and v0′ 0( ) 3V–=  (Note: We need 2 initial conditions if we are to 
uniquely solve a 2nd order differential equation)

Solution:

- We want v0 t( )  so we will need to perform two integrations

- Re-writing the DE in terms of 
d2v0 t( )

dt2
-----------------  we have that,

d2v0 t( )

dt2
----------------- 10 3t 40°–( ) 4–

dv0 t( )
dt

--------------- 3v0 t( )–cos=
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- Integrating both sides and pulling a minus sign out front gives,

dv0 t( )
dt

--------------- 10– 3t 40°–( ) 4
dv0 t( )

dt
--------------- 3v0 t( )+ +cos v0′ 0( )+0

t
∫–=

- We can build a circuit to do this summation by the circuit,

+
-

1MΩ

i

10– 3t 40°–( ) 4
dv0 t( )

dt
--------------- 3v0 t( )+ +cos

+

-

10– 3t 40°–( )cos

dv0 t( )
dt

---------------

v0 t( )

0.25MΩ

1 3⁄ MΩ

1MΩ
S.W. Neville Page 427



Elec 250: Linear Circuits I Chapter 15 5/4/08
- We can then do the integration by feeding this output into the circuit,

+
-

dvo
dt

--------
+

-

1μF

1MΩ

10– 3t 40°–( ) 4
dv0 t( )

dt
--------------- 3v0 t( )+ +cos

- This gives the combined circuit,

+
-

1MΩ
10– 3t 40°–( )cos

v0 t( )

0.25MΩ

1MΩ

+
-

dvo
dt

--------

1μF

1MΩ1 3⁄ MΩ
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- This circuit can actually be simplified as to a single op amp circuit as,

+
-

1MΩ
10– 3t 40°–( )cos

v0 t( )

0.25MΩ

dvo
dt

--------

1μF

1 3⁄ MΩ

- To satisfy the initial condition of v0′ 0( ) 3V–=  we can just add a DC power supply and 
a switch which open at t 0= ,

+
-

1MΩ
10– 3t 40°–( )cos

v0 t( )

0.25MΩ

dvo
dt

--------

1μF
1 3⁄ MΩ

t 0=3V
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- Now we can do the second integration with an op amp integration circuit and take care 
of the second initial condition (vo 0( ) 2V= ) in the same way,

dvo
dt

--------
+
-

1MΩ
v0– t( )

1μF

t 0=2V

- Combining these two circuits gives,

+
-

1MΩ
10– 3t 40°–( )cos

0.25MΩ

1μF
1 3⁄ MΩ

t 0=3V

+
-

1MΩ
v0– t( )

1μF

t 0=2V
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- Now all we need to do is to add a simple op amp inverter at the end to get v0 t( )  instead 
of v0– t( ) ,

+
-

1MΩ
10 3t 40°–( )cos

0.25MΩ

1μF
1 3⁄ MΩ

t 0=3V

+
-

1MΩ
1μF

t 0=2V

+
-

1MΩ

1MΩ

v0 t( )

+
-

- Prior to digital computers, engineers would build special purpose analog circuits to 
solve problems which were not easily solved by hand, (i.e., by slide rules).
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15.5 Cascaded Op Amp Circuits

• The high input impedance of op amps means that they can be cascaded in series without affect-
ing the operation of circuits earlier in the cascade.

- This allows the analysis of the circuit to proceed one stage at a time.

Stage 1 Stage 2 Stage 3
A1 A2 A3

+
-

+
-

+
-

+
-

v1 v2 A1v1= v3 A2v2= vo A3v3=

- We have already used this cascading property in the analog computer example above,

- Without it we would have had to re-analyze the behavior of the complete circuit 
each time we added a new stage.

• This leads the useful voltage follower op amp circuit where vo vi=

+
-

vi

vo

- The main purpose of this circuit is electrically isolated two stages of a circuit and elimi-
nate inter-stage loading (i.e., power being draw from one stage to service another 
stage’s power needs).
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Refer to Elec 250 course web site for assigned problems.

• Due 1 week from today @ 5pm in the Elec 250 Assignment Drop box.
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	Ex. 6.5 Determine the equivalent capacitance for the following circuit


	6.3 Inductors
	Ex. 6.6 The current in a 1H inductor changes linearly from 0 mA to 1 mA in 1 ms. Find the resulting voltage? (this is called the “bucking voltage”)
	Ex. 6.7 The voltage across a 1 mH inductors changes as . Find the current which flows through it?
	Ex. 6.8 The current through an inductor has the waveform
	6.3.1 Energy Stored in an Inductor
	Ex. 6.9 Find the energy stored in a 1mH inductor if the voltage across the inductor is given by ?
	Ex. 6.10 A voltage is applied across a 4mH inductor. Assume an initial state where the initial current in the inductor was 10A. (a) Obtain an expression for the current through the inductor. (b) Obtain an expression for the energy stored in the induc...

	6.3.2 Series Inductors
	6.3.3 Parallel Inductors
	Ex. 6.11 Determine the equivalent inductance for the following circuit


	6.4 DC Behaviour of Capacitors and Inductors
	Ex. 6.12 For the circuit shown below find the voltages and currents in each circuit element when the circuit is in dc steady state.
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	Chapter 7
	First-Order RC and RL Circuits
	7.1 Introduction
	7.2 Significance of State Variables
	7.3 RC Circuits
	7.3.1 The Forced Response
	7.3.2 The Natural Response
	7.3.3 The Total Response
	Ex. 7.1 Find the total response for the following circuit (assuming that )
	Ex. 7.2 Find the total response for the voltage for the circuit shown below given that . Find .
	Ex. 7.3 The circuit shown below is in steady-state when . The switch flips as shown at . find how and change with time for .


	7.4 RL Circuits
	7.4.1 The Forced Response
	7.4.2 The Natural Response
	7.4.3 The Total Response
	Ex. 7.4 The circuit below was in steady-state prior to the switch being opened at . Find the values of , , and for .


	7.5 Short-Cut method for First-Order Circuits
	Ex. 7.5 For the circuit below find the values for and for , given that the current in the inductor was when .

	7.6 Case when Dependent Sources are Present
	Ex. 7.6 Find for if .
	Ex. 7.7 Find for if assuming the circuit is in steady-state for
	Ex. 7.8 Find for assuming the circuit is in steady-state for .
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	Chapter 8
	Second-Order RC and RL Circuits
	8.1 Introduction
	8.2 Series RLC Circuit
	8.2.1 The Forced Response
	8.2.2 The Natural Response
	8.2.3 The Total Response

	8.3 The Roots of the Characteristic Equation
	8.4 The Roots are Real and Equal
	8.4.1 The Forced Response
	8.4.2 The Natural Response
	8.4.3 The Total Response

	8.5 The Roots are Complex Conjugates
	8.5.1 The Forced Response
	8.5.2 The Natural Response
	8.5.3 The Total Response

	8.6 Parallel RLC Circuits
	8.6.1 The Forced Response
	8.6.2 The Natural Response
	8.6.3 The Total Response

	8.7 Case when Dependent Sources are Present
	Ex. 8.1 Consider the following circuit. Assume that at the capacitor voltage was and the inductor current was . Find the response of the current through the 5-W resistor for .

	8.8 General Solution Steps (for first and second-order circuits)
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	Chapter 9
	Phasors
	9.1 Introduction
	9.2 Sinusoidal Waveforms
	Ex. 9.1 Find the parameters of the given current waveform
	Ex. 9.2 Find the current value in the above example at
	Ex. 9.3 Express the waveform in standard form.

	9.3 Sinusoidal Waveform Period and Frequency
	9.4 Complex Numbers
	9.5 Euler’s Formula
	Ex. 9.4 Illustration of the validity of Euler’s Formula
	Ex. 9.5 Express the complex number in polar and Euler’s form

	9.6 Phasors
	Ex. 9.6 Suppose we have a sinusoidal current source expressed in standard form as
	Ex. 9.7 Suppose we have a sinusoidal voltage source expressed as
	Ex. 9.8 A sinusoidal voltage waveform has and a voltage phasor of . Find the time-dependent expression for this waveform.

	9.7 Phasor Current-Voltage Law for Resistors
	9.8 Phasor Current-Voltage Law for Capacitors
	9.9 Phasor Current-Voltage Law for Inductors
	9.10 Impedance
	Ex. 9.9 What are the impedances of a resistor, an inductor, and a capacitor?
	Ex. 9.10 Given a voltage source supplies a current . What is the impedance seen by the source and is the element capacitive or inductive?

	9.11 Admittance
	Ex. 9.11 What are the admittance of a resistor, an inductor, and a capacitor?
	Ex. 9.12 Given a voltage source supplies a current . What is the admittance seen by the source and is the element capacitive or inductive?

	9.12 Kirchhoff’s’ Laws for Phasors
	9.13 Series Impedance
	Ex. 9.13 A current source of is connected to a series connection of and . Find the voltage across each circuit element.
	9.13.1 Voltage Division
	Ex. 9.14 Find in the in the circuit below?
	Ex. 9.15 A voltage source is connected to three series impedences.Given that , , , and . Find the current which flows through the circuit and that the sum equals the applied voltage .


	9.14 Parallel Impedances
	Ex. 9.16 A voltage source of is connected to a parallel connection of and . Find the current flowing in each circuit element.
	Ex. 9.17 For the circuit shown below find the equivalent impedance and the total current which flows through in the voltage source
	9.14.2 Current Division
	Ex. 9.18 In the circuit shown below the voltage drop across the inductor is . What is the value of the current source?


	9.15 Phasor Circuits
	Ex. 9.19 Solve for the current in the following circuit
	Ex. 9.20 Find the voltage across each element in the circuit shown below
	Ex. 9.21 Determine the voltage in the circuit below
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	Chapter 10
	AC Analysis Using Phasors
	10.1 Introduction
	10.2 Superposition
	Ex. 10.1 Find the current through the voltage source assuming , and

	10.3 Thevenin’s Theorem
	Ex. 10.2 Given the circuit below find its Thevenin equivalent with respect to nodes A and B.
	Ex. 10.3 Given the following circuit find it Thevenin equivalent at the load inductor

	10.4 Norton’s Theorem
	Ex. 10.4 Given the circuit below find its Norton equivalent with respect to nodes A and B.

	10.5 Nodal Analysis
	Ex. 10.5 Find the node voltages for the following circuit

	10.6 Mesh Analysis
	Ex. 10.6 Solve for the mesh currents in the following circuit and give the time domain voltage across the load capacitor assuming .

	10.7 Sources with Different Frequencies
	Ex. 10.7 Solve for the voltage across the load resistor in the following circuit.
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	Chapter 11
	AC Power
	Sections 10.1 - 10.7 (Text)
	11.1 Introduction
	11.2 RMS Value
	Ex. 11.1 Find the if the current waveform is
	Ex. 11.2 Find the rms value of the current waveform
	Ex. 11.3 What is the rms value of the sinusoidal voltage waveform
	Ex. 11.4 Given an rms phasor voltage , write its corresponding time- domain waveform if the angular frequency is .
	Ex. 11.5 What is the rms value of the sawtooth waveform given below

	11.3 Average Power
	Ex. 11.6 The current and voltage time-domain waveforms for an elements are and . Calculate the average power consumption in this element.

	11.4 The Power Factor
	Ex. 11.7 Assume three elements which have currents and voltages as follows.

	11.5 Complex (Apparent) Power
	Ex. 11.8 Determine the power consumed by a resistor , and inductor , and a capacitor when an rms voltage is applied across each element.
	Ex. 11.9 Given a circuit with impedance and an applied rms voltage , find the complex power consumed by the circuit.

	11.6 The Power Triangle
	Ex. 11.10 Assume an impedance of and an applied rms voltage . Determine the power consumed by this impedance.
	Ex. 11.11 An impedance consumes at a power factor of leading. The applied voltage V. Determine the component values of the power and the impedance.

	11.7 Impedance and Power
	Ex. 11.12 A circuit has an applied voltage and a current . Determine the impedance and power triangle.
	Ex. 11.13 A voltage of is applied across an impedance such that the power consumed in with a power factor of leading. Find the value of and the value of it elements.

	11.8 Power Factor Correction
	Ex. 11.14 An industrial load is supplied by an rms voltage at 60 Hz. Find the capacitor value required to change the power factor to a unity pf and find the current supplied before and after the power factor correction.
	Ex. 11.15 The power consumed in an impedance is 100 W at a power factor of 0.8 lagging. If the applied voltage is , determine the current flowing in the impedance and the value of the impedance.

	11.9 Maximum Power Transfer
	Ex. 11.16 A voltage source of has an internal impedance of and drives a serially connected load impedance . What is the value of which will maximize the power transfer and what is the value of that power?
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	Chapter 12
	Series and Parallel Resonance
	12.1 Introduction
	12.2 Series Resonance
	12.2.1 Series Resonance Bandwidth and Quality Factor
	Ex. 12.1 Design a series RLC circuit such that its resonance frequency is 60 Hz, the resonant bandwidth is 10 Hz, and R = 25 W.
	Ex. 12.2 Design a series RLC resonant circuit such that its resonance frequency is 5kHz and the resonant bandwidth is 100 Hz.

	12.2.2 The Quality Factor
	Ex. 12.3 Design a series RLC resonant circuit such that its resonant frequency is 500kHz and its quality factor is 100,


	12.3 Parallel Resonance
	12.3.3 Parallel Resonance Bandwidth and Quality Factor
	Ex. 12.4 Design a parallel RLC circuit such that its resonance frequency is 60 Hz, the resonant bandwidth is 10 Hz, and R = 25 W.
	Ex. 12.5 Design a parallel RLC resonant circuit such that its resonance frequency is 500kHz and the resonant bandwidth is 100 Hz.

	12.3.4 The Quality Factor
	Ex. 12.6 Design a parallel RLC resonant circuit such that its resonant frequency is 500kHz and its quality factor is 100,
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	Chapter 13
	Mutual Inductance
	13.1 Introduction
	13.2 Self Inductance
	13.3 Mutual Inductance
	Ex. 13.1 Assume two coupled inductors and with mutual coupling and an operating frequency . What are the voltages developed across the inductors when: (a) and (b) and the second inductor is open-circuited. Assume positive coupling between the inductors

	13.4 Coupling Coefficient
	Ex. 13.2 Determine the coupling coefficient for two coils and whose mutual inductance is .

	13.5 The Dot Convention
	Ex. 13.3 Find the equivalent inductances for the two circuits shown below.

	13.6 Coupled Circuits
	Ex. 13.4 For the circuit below what is the value of the loop currents and what is the value of the mutual inductance?
	Ex. 13.5 Find the voltage for the circuit below, given the coupling coefficient .
	Ex. 13.6 Find the unknown voltages in the circuit below.
	Ex. 13.7 Find the Thevenin and Norton equivalent circuits for the circuit shown below.
	Ex. 13.8 Find the mesh currents in the circuit below.

	13.7 The Ideal Transformer
	Ex. 13.9 Consider the ideal transformer circuit shown below. Find the secondary voltage, the current in the primary and secondary sides, and the power delivered by the source, and the power consumed by the load.
	13.7.1 Reflected Impedance
	Ex. 13.10 Consider the circuit shown below. Find the primary and secondary voltages and currents, and the power delivered by the source and consumed in and .
	Ex. 13.11 Find the power consumed in the capacitor in the circuit shown below. Such a circuit can occur in practice when an unintentional capacitor is formed through an unintentional connecting of the primary and secondary circuits.
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	Chapter 14
	Balanced Three-Phase Circuits
	14.1 Introduction
	14.2 Wye and Delta Connections
	14.2.1 Wye Connection
	14.2.2 Delta Connection

	14.3 Phase Voltage
	Ex. 14.1 A there-phase () four-wire system has an rms phase voltage of 120V at 60Hz. Write down the phasors for the phase voltages and write down their time domain representations.

	14.4 Line Voltages
	Ex. 14.2 A three-phase () four-wire system has a rms phase voltage of 120V at 60 Hz. Write down the line voltage phasors and their time domain representations.

	14.5 Wye-Load
	Ex. 14.3 A three-phase four-wire system has rms and feeds a balanced Y-load with . Find the phase currents and voltage and the total power supplied to the load.
	Ex. 14.4 A three-phase four-wire system has a phase voltage of 120V rms connected to an unbalanced load of , , and . Find the phase currents, line currents, and the total power consumed by the unbalanced load.
	Ex. 14.5 A three-phase three-wire system has a phase voltage of 120V rms connected to an unbalanced load of , , and . Find the phase currents, line currents, and the total power consumed by the unbalanced load. (In this case the neutral wire has been...

	14.6 Delta-Connected Load (D-Load)
	Ex. 14.6 A three-phase, three-wire D-connected system has and feeds a load with . Find the phase and line currents and the total power supplied to the circuit.
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	Chapter 15
	Operational Amplifiers
	15.1 Introduction
	Ex. 15.1 A 741 op amp below has an open loop gain of , , and . Find the close-loop gain . Determine the current when .

	15.2 Ideal Op Amps
	Ex. 15.2 For the ideal op amp determine the gain and the current when

	15.3 Useful Op Amp Circuits
	15.3.1 The Inverting Amplifier
	15.3.2 The Non-Inverting Amplifier
	15.3.3 The Summing Amplifier
	15.3.4 The Difference Amplifier
	15.3.5 The Differentiator
	15.3.6 The Integrator

	15.4 An Analog Computer
	15.5 Cascaded Op Amp Circuits
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