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ABSTRACT 
This paper presents a novel coevolutionary model which is used 
to create strong game (The Virus Game) playing strategies. We 
use two approaches to coevolve Artificial Neural Networks 
(ANN) which evaluate board positions of a two player zero-sum 
game (The Virus Game). The first approach uses the coevolution 
with initial population of random ANN and second approach is a 
novel coevolutionary model with initial population of ANN which 
are trained using gradient based adaptive learning methods 
(Backpropagation, RPROP and iRPROP). In our case, the results 
of coevolutionary experiments show that pre training of the 
population in coevolution is highly effective in creating stronger 
game playing strategies than coevolution with random population.  

Categories and Subject Descriptors 
I.1.2 [Artificial Intelligence]:  Learning, Connectionism and 
neural nets, Knowledge acquisition. 

I.1.5[Pattern Recognition]: Models, Neural nets. 

General Terms 
Algorithms, Performance, Design, and Experimentation. 

Keywords 
Coevolution, Gradient-based Learning, Artificial Neural 
Networks, Virus Game. 

1. INTRODUCTION 
In biology, coevolution is the mutual evolutionary influence 
between two species that become dependent on each other. Each 
species in a coevolutionary relationship exerts selective pressures 
on the other species.  Coevolution occurs if the traits of one 
species A have evolved due to the presence of a second species B 
and vice versa. This natural phenomenon has motivated AI 
researchers to apply coevolution in solving different types of 
problems where two or more entities are interacting with each 
other.  Coevolution is an unsupervised learning method that 
requires only relative measurement of phenotype performance, 
well-suited to the game-playing domain. 

The gradient-based learning methods: Backpropagation [11], 
Resilient backpropagation (RPROP) [10] and improved resilient 
backpropagation (iRPROP) [7] are supervised learning methods. 
They use a delta rule and can be applied to the problem of  

learning neural network weights to give a network which 
produces the desired outputs with minimised error. 

Games continue to be important domains for investigating 
problem solving techniques [9]. Games offer tremendous 
complexity in a computer manageable form and need 
sophisticated AI methods to play at expert level. Board games like 
Chess [3], checkers [6], Othello [15] and backgammon [14] have 
been used to explore new ideas in AI. We will survey this work 
late in this section. In this paper, we used the “Virus Game” as a 
testbed to explore coevolutionary ideas.  

The “Virus Game” [4][5] is a two-person perfect information 
board game of skill. The game is played on a square board. The 
player who always starts the game is the Black Player and the 
other player is the White Player. 

In the Virus Game, there are two kinds of moves available for 
each turn. The first kind of move is grow move or one step move.  
In this kind of move, a player moves a piece of his colour to an 
empty position adjacent to its current position. The positions are 
adjacent if their borders or corners are adjacent. The result of this 
move reproduces the moving piece and occupies both positions, 
the new position and the old position. The second kind of move is 
jump move or two step-move where a player moves a piece to an 
empty position which is two squares away from its current 
position via an empty square. The piece leaves the old position 
empty and occupies the new position. In either case, all opposing 
pieces adjacent to the new player’s piece change colour. Players 
alternate, moving only one piece per turn. The game ends when 
neither player can move. The player with the greatest number of 
pieces is the winner. The game is declared a draw if both players 
have the same number of pieces at game end. 

Competitive learning was initially explored by Samuel [13] to 
adjust the parameters of a deterministic evaluation function in a 
checkers playing computer program. Tesauro [14] used the 
temporal-difference learning approach to evolve a backgammon-
playing neural network. Tesauro’s TD-Gammon yields a 
computer playing backgammon program of world-champion 
strength. Coevolutionary competitive learning is explored for the 
Repeated Prisoner’s Dilemma (RPD) by Axelrod [2] and Miller 
[8]. Axelrod evolve RPD playing strategies using a fixed 
environment (i.e. using eight fixed opponents) while Miller 
coevolved the RPD strategies by playing each strategy against 
every other strategy and itself in a population. According to the 
results shown by Miller, the best evolved RPD playing strategies 



in his work performed well against strong strategies (like Tit-for-
Tat) taken from Axelrod’s work. Axelrod and Miller used Genetic 
Algorithms to evolve RPD playing strategies. Angeline and 
Pollack [1] used competitive coevolution with Tic Tac Toe as a 
testbed. They introduced a tournament competitive fitness 
function. Smith and Gray [12] introduced a competitive function 
where there are n/2 competitions per generation for a population 
of size n. Smith and Gray applied coevolution to Othello. The 
weights of a deterministic evaluation function are evolved using a 
co-adapted GA with explicit fitness sharing. The coevolved 
evaluation function may not be very strong but the approach is 
notable for the formation of stable niches (i.e. stable groups) 
during the evolutionary process. The individuals of each group in 
a generation have similar characteristics and the results show that 
the individuals in a group continuously evolve during the 
coevolutionary process.   

Anaconda [6] is a checkers playing neural network which is 
evolved using competitive coevolution.The authors have used 
Evolutionary Programming to coevolve the neural networks in a 
competitive environment and the strongest neural network, 
Anaconda, is rated at expert level according to a tournament 
conducted at website www.zone.com.  

This paper investigates the effectiveness of two coevolutionary 
approaches. In the first approach, initial populations, of varying 
sizes, containing random neural networks, are evolved against 10 
strong hand-crafted AI players. The weights of neural networks 
are evolved using a Genetic Algorithm. In the second 
coevolutionary approach, a large number of neural networks are 
trained using gradient based learning methods under the 
supervision of 10 fixed hand-crafted AI players. The trained 
neural networks are then coevolved against the same and different 
fixed opponents. Thus we are able to investigate whether pre-
training of the population is effective. 

2. EXPERIMENTAL DESIGN 
2.1 Neural Network Design 
The architecture of our neural networks is represented by I-H1-H2-
O where ‘I’ represents number of input units, ‘H1’ means the 
number of hidden neurons in first hidden layer, ‘H2’ represents 
total number of hidden neurons in second hidden layer and ‘O’ 
represents number of output neurons. The architecture 64-58-27-1 
(smallest among last three architectures) is used in all 
experiments.  

In the selected neural networks architecture, there are 64 input 
units where each input unit is associated with a square of board. A 
location-based input encoding scheme [14] is used where each 
input unit is associated with a square of board. If the 
corresponding square of an input unit has a black piece on the 
board then its value is assigned as '1’, if square is occupied with 
white piece the input value for this unit is ‘-1’ and value ‘0’ is 
used for empty square.  

 All hidden neurons have sigmoid [11] activation function. All 
weights are encoded by real numbers in the range [-0.5, 0.5]. The 
output neuron has linear activation function and gives a real 
number as the output of the neural network. 

2.2 Evolutionary Model 
A Genetic Algorithm (GA) is used to evolve the connection 
weights of a population of neural networks. A chromosome 
contains all connection weights of one neural network. The fitness 
of a chromosome is the total score of its corresponding neural 
network in playing two games, one as a black and other as white, 
with each of 10 fixed AI opponents. If a neural network wins a 
game against an opponent, its score is increased by 3; if the match 
is draw then score is increased by 1 and for loss there is no 
change in the score. Each neural network plays twenty games per 
generation and its total score after twenty games is used to 
measure its fitness. All games are run to 1-ply only to keep search 
times manageable. 

The Selection operator applies a rank selection method [17].  At 
the end of the tournament for a given generation, all 
chromosomes are arranged in a descending order according to 
fitness score. From the sorted list of N chromosomes, the top N/3 
chromosomes are selected for sexual reproduction. These selected 
chromosomes are paired to reproduce 2N/3 new chromosomes 
through a two-point crossover operation. The process of two-point 
crossover is used to reproduce two new chromosomes and 
Gaussian Mutation Operator [16] is applied to each new offspring. 

2.3 Gradient-based Learning 
Neural networks are trained under the supervision of 10 hand-
crafted AI players using gradient-based techniques: 
Backpropagation (BP), RPROP and iRPROP. In this case, 10 
different training sets are created where each training sets 
contains a large number of board positions and their evaluation 
values as determined by a hand-crafted AI player. Therefore, each 
neural network is trained to learn the evaluation function of a 
given hand-crafted AI player. Each neural network is trained 
using one training set. Four neural networks are trained using 
iRPROP, three are trained using RPROP and three are trained 
using BP, for each hand-crafted AI player. BP uses a learning rate 
of 0.01. The learning parameters for RPROP and iRPROP are set 
to η+=1.2, η-=0.50, ∆o=0.5, ∆min=0 and ∆max=50. 

2.4 Coevolutionary Model 
Our coevolutionary model uses two different approaches for 
generating the starting population. In the first approach, an initial 
population of neural networks with random weights is coevolved 
against ten fixed opponents. The coevolution of neural networks 
continues until at least one neural network in a given population 
beats all of the fixed opponents or there is no improvement in the 
scores of the best neural network for 10 consecutive generations. 
All games in this coevolutionary approach are played at 1-ply by 
both neural networks and fixed opponents. 

In the second approach an initial population of trained neural 
networks is used. These neural networks are selected from the 
pool of 100 pre-trained neural networks. If the population size is 
less than or equal to 10, all neural networks used are based on 
different hand-crafted AI players. If population size is greater 
than 10, these are selected randomly in such a way as to ensure 
that a neural network trained by each of the 10 hand-crafted AI 
player is in the starting population . Therefore two populations of 
size 20 would have 10 identical and 10 different neural networks 
in the initial population. The trained neural networks are 



coevolved against 10 fixed opponents. The stopping condition and 
ply depth is same as used in first approach.  

To assess the generality of approach, we also test against another 
10 hand-crafted AI players which are not used in pre-training or 
coevolution. 

3. RESULTS 
The results obtained from the randomly initialised neural 
networks are summarized in table 2 while the performance of the 
best of these coevolved neural networks against 10 hand-crafted 
AI players is shown in table 3. All experiments are run on 
Pentium IV 1.2 GHz using C#.Net running under Windows XP. 

Table 1 shows the results of coevolution with populations starting 
from randomly created neural networks. The column “Mean of 
Generation” represents average number of generations over 10 
runs and “mean CPU time” represents usage of average CPU time 
in seconds by a population during coevolutionary process over 10 
runs. 

We can see that small populations give much worse results than 
large ones. The difference between the performance of small and 
large populations is probably due to the number of parallel 
directions for exploring potential solutions in the search space. 
The experimental results also demonstrate that small populations 
use less CPU time than large populations, essentially since less 
neural network evolution are required. The average maximum 
scores with 0% and 20% crossover rates demonstrate that neural 
networks evolved using crossover generally have higher scores 
than those which do not. The crossover operation appears to help 
the evolutionary process to explore a more interesting region of 
the search space. The crossover operator speeds convergence, and 
the population converges to better solution than without 
crossover. The mean of min and mean values show that diverse 
populations are maintained. 

Table 1. Results from of coevolution with an initial population 
of randomly created neural networks.  

Pop 

Size 

Cross 

over 
Rate 

Mean 
of 

Max 

Mean 
of 

Min 

Mean 
of 

Mean 

Mean 
of 

Gen 

Mean 

CPU 

Time 

6 0% 3 0 2 11 9 

6 20% 18 0 9 10 13 

15 0% 9 0 1 10 28 

15 20% 6 0 1 11 40 

20 0% 12 0 5 11 53 

20 20% 30 0 3 6 57 

30 0% 30 0 16 11 61 

30 20% 60 0 34 6 72 

50 0% 21 0 22 11 132 

50 20% 60 0 35 5 72 

 

The results of the tournament played between the best evolved 
neural network from each population where coevolution was 
started from an initial population of randomly generated neural 
networks and ten hand-crafted AI players. All the best neural 
networks with 0% crossover rate have won games as black against 

all AI opponents but none is able to win when playing as white. 
The best-evolved neural networks of all populations (except 
population of size 15) with 20% crossover rate won all games 
when playing as black and white. Table 1 and these results 
provide clear evidence for the effectiveness of the crossover 
operator, and support the advantage of Black and White in the 
Virus game, at least for approaches using 1-ply search. 

Table 2 shows the mean of maximum, mean, and minimum scores 
of coevolved neural networks with a starting population of pre-
trained neural networks. The table also shows the mean number of 
generations and CPU time (in seconds) for each population with 
different crossover rates. Again we see that small populations 
perform more poorly than larger populations. If we compare the 
results of tables 1 and 2, it can be construed that starting from a 
population of pre trained neural networks gives better and more 
consistent performance (in terms of playing strength) than starting 
from a population of random neural networks. Large sized 
populations (started with initial population of pre trained neural 
networks) use a smaller number of generations but still require 
more CPU time during the coevolution of neural networks than 
small size populations. The values of mean of minimum and 
maximum scores show the diversity is maintained in the 
population. Note that CPU times in this case include the time 
need for learning of the initial population 

Table 2: Results from of coevolution with an initial population 
of pre-trained neural networks.  

Pop 

Size 

Cross
over 
Rate 

Mean 
of 
Max  

Mean 
of 
Min 

Mean 
of  

Mean 

Mean 

Of  

Gene 

Mean  

CPU  

Time 

6 0% 40 0 28 13 12 

6 20% 60 0 31 5 7 

15 0% 60 0 22 3 18 

15 20% 60 0 28 1 18 

20 0% 60 0 26 3 31 

20 20% 60 0 31 1 25 

30 0% 60 0 29 2 66 

30 20% 60 0 36 1 55 

50 0% 60 0 32 1 84 

50 20% 60 0 34 1 84 

 

Generally, we see from table 2 that coevolution with crossover 
needs fewer generations and less CPU time than without 
crossover 

The experimental results show that the populations of large size 
(starting from the initial population of pre trained neural 
networks) generally have at least one pre trained neural network 
which beats all the opponents before the start of coevolution when 
playing as black and white.  

 

 

 



Table 3. Summary of results from 10 runs of coevolution of 
pre-trained neural networks using 20 opponents. 

Pop 

Size 

Cross 

over 
Rate 

Mean 
of 
Max 

Mean 
of 
Min 

Mean 
of  

Mean 

Mean 
of 

Gen 

Mean  

CPU  

Time 

6 0% 80 0 66 12 102 

6 20% 120 60 73 4 96 

15 0% 120 0 45 2 48 

15 20% 120 0 52 1 48 

20 0% 120 0 45 2 48 

20 20% 120 0 55 1 78 

30 0% 120 0 59 1 102 

30 20% 120 0 70 1 132 

50 0% 120 0 87 1 168 

50 20% 120 0 95 1 210 

 

In order to further investigate the generality of populations 
starting from an initial population of pre trained neural networks, 
we introduced 10 more hand-crafted AI opponents which were 
not used in the training of the initial population. Table 3 gives the 
average results of coevolution with different populations starting 
from initial population of trained neural networks where neural 
networks play as black and white against 20 AI opponents in each 
generation which include the 10 previously unseen opponents. In 
this case, pre trained neural networks in larger populations were 
able to beat not only AI players used for initialisation but also the 
AI players which were unseen by them during the supervised 
training of initial population of pre trained neural networks. The 
results shown in tables 2 and 3 are quite similar. The results of 
these both tables with populations of small sizes show that 
coevolution with 20% crossover rate has better performance than 
coevolution with 0% crossover rate. The coevolution of 
populations of large size has same performance with both 
crossover rates (essentially since the initial populations were very 
strong). 

According to results at the start of coevolutionary process, in the 
populations of large size, there is at least one trained neural 
network, which beats all 10 opponents when playing as black and 
white against them.  

Tables 4 and 5 present the results for a tournament between the 
best player from each set of experiments starting with random 
initial weights, R6,0, R6,20, ..., R50,20, and the best player from each 
set of experiments starting with pre-trained networks, P6,0, P6,20, 
..., P50,20. Each of these players plays 19 games as black against 
each other player, and 19 games as white against each other 
player. Since every one of P6,0, P6,20, ..., P50,20 is ranked higher 
than every one of R6,0, R6,20, ..., R50,20 this provides very clear 
evidence for the superiority of pre-training, particularly since the 
training times for pre-trained networks were significantly smaller 
than for the random initial population. Within R6,0, R6,20, ..., R50,20 
and within P6,0, P6,20, ..., P50,20 we see significant variations in 
performance. It is clear that there are still significant variations in 
the phenotype among these best players. 

Table 4: Summary of Tournament Results for coevolved 
neural networks from initial populations of randomly created 
neural networks. 

Players 
No 

No of 
games 
Won as 
Black 
Player 

No of 
games 
Won as 
White 

Player 

Total 
Score 

Rank 

(1-20) 

R6,0 4 4 26 18 

R6,20 1 7 32 16 

R15,0 4 5 28 17 

R15,20 5 2 22 19 

R20,0 5 5 32 15 

R20,20 9 6 47 12 

R30,0 9 9 54 11 

R30,20 2 4 20 20 

R50,0 7 7 42 13 

R50,20 7 6 39 14 

 

Table 5: Summary of Tournament results for coevolved 
neural networks from populations starting from pre trained 
neural networks.  

Players 
No 

No of 
games 
Won as 
Black 
Player 

No of 
games 
Won as 
White 

Player 

Total 
Score 

Rank  

(1-20) 

P6,0 10  10 63 10 

P6,20 14 13 83 5 

P15,0 16 15 93 1 

P15,20 16 15 93 2 

P20,0 16 15 93 3 

P20,20 16 7 70 8 

P30,0 16 7 70 9 

P30,20 13 13 84 4 

P50,0 16 8 73 6 

P50,20 16 8 73 7 

4. CONCLUSION 
A coevolutionary model is presented where artificial neural 
networks adapt and learn to play the Virus Game using 
competitions with fixed strong hand-crafted (deterministic) AI 
players. The neural networks are provided with only raw board 
positions. The results presented in this paper demonstrate the 
potential advantages of a combination of coevolution and 
supervised learning techniques for building knowledge into 
artificial neural networks. The combination of coevolution and 
gradient-based learning techniques gives improved playing 
performance and faster learning when compared to either 
approach combined in isolation.                                                                               



It would be interesting to explore the combination of gradient-
based learning techniques and coevolution for other games and in 
the case where a deeper search is used.  

The Genetic Operators of Crossover and Mutation are also 
analysed and we have noted that an evolutionary algorithm with 
crossover has much better performance than one with mutation 
alone in most experiments. In future we aim to investigate the 
dynamics which make crossover an effective operator.  
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