
Using Coevolution and Gradient-based learning for the
Virus Game

Munir H Naveed
Fatima Jinnah Women University

Department of Computer Science, ITC
Building, The Mall, Rawalpindi,

Pakistan.
+92 (051) 9271167

M.H.Naveed@bradford.ac.uk

Peter I Cowling
University of Bradford

MOSAIC Research Centre,
 Horton Building, Department of

Computing, Bradford, UK.
+44 (01274) 234005

P.I.Cowling@bradford.ac.uk

ABSTRACT
This paper presents a novel coevolutionary model which is used
to create strong game (The Virus Game) playing strategies. We
use two approaches to coevolve Artificial Neural Networks
(ANN) which evaluate board positions of a two player zero-sum
game (The Virus Game). The first approach uses the coevolution
with initial population of random ANN and second approach is a
novel coevolutionary model with initial population of ANN which
are trained using gradient based adaptive learning methods
(Backpropagation, RPROP and iRPROP). In our case, the results
of coevolutionary experiments show that pre training of the
population in coevolution is highly effective in creating stronger
game playing strategies than coevolution with random population.

Categories and Subject Descriptors
I.1.2 [Artificial Intelligence]: Learning, Connectionism and
neural nets, Knowledge acquisition.

I.1.5[Pattern Recognition]: Models, Neural nets.

General Terms
Algorithms, Performance, Design, and Experimentation.

Keywords
Coevolution, Gradient-based Learning, Artificial Neural
Networks, Virus Game.

1. INTRODUCTION
In biology, coevolution is the mutual evolutionary influence
between two species that become dependent on each other. Each
species in a coevolutionary relationship exerts selective pressures
on the other species. Coevolution occurs if the traits of one
species A have evolved due to the presence of a second species B
and vice versa. This natural phenomenon has motivated AI
researchers to apply coevolution in solving different types of
problems where two or more entities are interacting with each
other. Coevolution is an unsupervised learning method that
requires only relative measurement of phenotype performance,
well-suited to the game-playing domain.

The gradient-based learning methods: Backpropagation [11],
Resilient backpropagation (RPROP) [10] and improved resilient
backpropagation (iRPROP) [7] are supervised learning methods.
They use a delta rule and can be applied to the problem of

learning neural network weights to give a network which
produces the desired outputs with minimised error.

Games continue to be important domains for investigating
problem solving techniques [9]. Games offer tremendous
complexity in a computer manageable form and need
sophisticated AI methods to play at expert level. Board games like
Chess [3], checkers [6], Othello [15] and backgammon [14] have
been used to explore new ideas in AI. We will survey this work
late in this section. In this paper, we used the “Virus Game” as a
testbed to explore coevolutionary ideas.

The “Virus Game” [4][5] is a two-person perfect information
board game of skill. The game is played on a square board. The
player who always starts the game is the Black Player and the
other player is the White Player.

In the Virus Game, there are two kinds of moves available for
each turn. The first kind of move is grow move or one step move.
In this kind of move, a player moves a piece of his colour to an
empty position adjacent to its current position. The positions are
adjacent if their borders or corners are adjacent. The result of this
move reproduces the moving piece and occupies both positions,
the new position and the old position. The second kind of move is
jump move or two step-move where a player moves a piece to an
empty position which is two squares away from its current
position via an empty square. The piece leaves the old position
empty and occupies the new position. In either case, all opposing
pieces adjacent to the new player’s piece change colour. Players
alternate, moving only one piece per turn. The game ends when
neither player can move. The player with the greatest number of
pieces is the winner. The game is declared a draw if both players
have the same number of pieces at game end.

Competitive learning was initially explored by Samuel [13] to
adjust the parameters of a deterministic evaluation function in a
checkers playing computer program. Tesauro [14] used the
temporal-difference learning approach to evolve a backgammon-
playing neural network. Tesauro’s TD-Gammon yields a
computer playing backgammon program of world-champion
strength. Coevolutionary competitive learning is explored for the
Repeated Prisoner’s Dilemma (RPD) by Axelrod [2] and Miller
[8]. Axelrod evolve RPD playing strategies using a fixed
environment (i.e. using eight fixed opponents) while Miller
coevolved the RPD strategies by playing each strategy against
every other strategy and itself in a population. According to the
results shown by Miller, the best evolved RPD playing strategies

in his work performed well against strong strategies (like Tit-for-
Tat) taken from Axelrod’s work. Axelrod and Miller used Genetic
Algorithms to evolve RPD playing strategies. Angeline and
Pollack [1] used competitive coevolution with Tic Tac Toe as a
testbed. They introduced a tournament competitive fitness
function. Smith and Gray [12] introduced a competitive function
where there are n/2 competitions per generation for a population
of size n. Smith and Gray applied coevolution to Othello. The
weights of a deterministic evaluation function are evolved using a
co-adapted GA with explicit fitness sharing. The coevolved
evaluation function may not be very strong but the approach is
notable for the formation of stable niches (i.e. stable groups)
during the evolutionary process. The individuals of each group in
a generation have similar characteristics and the results show that
the individuals in a group continuously evolve during the
coevolutionary process.

Anaconda [6] is a checkers playing neural network which is
evolved using competitive coevolution.The authors have used
Evolutionary Programming to coevolve the neural networks in a
competitive environment and the strongest neural network,
Anaconda, is rated at expert level according to a tournament
conducted at website www.zone.com.

This paper investigates the effectiveness of two coevolutionary
approaches. In the first approach, initial populations, of varying
sizes, containing random neural networks, are evolved against 10
strong hand-crafted AI players. The weights of neural networks
are evolved using a Genetic Algorithm. In the second
coevolutionary approach, a large number of neural networks are
trained using gradient based learning methods under the
supervision of 10 fixed hand-crafted AI players. The trained
neural networks are then coevolved against the same and different
fixed opponents. Thus we are able to investigate whether pre-
training of the population is effective.

2. EXPERIMENTAL DESIGN
2.1 Neural Network Design
The architecture of our neural networks is represented by I-H1-H2-
O where ‘I’ represents number of input units, ‘H1’ means the
number of hidden neurons in first hidden layer, ‘H2’ represents
total number of hidden neurons in second hidden layer and ‘O’
represents number of output neurons. The architecture 64-58-27-1
(smallest among last three architectures) is used in all
experiments.

In the selected neural networks architecture, there are 64 input
units where each input unit is associated with a square of board. A
location-based input encoding scheme [14] is used where each
input unit is associated with a square of board. If the
corresponding square of an input unit has a black piece on the
board then its value is assigned as '1’, if square is occupied with
white piece the input value for this unit is ‘-1’ and value ‘0’ is
used for empty square.

 All hidden neurons have sigmoid [11] activation function. All
weights are encoded by real numbers in the range [-0.5, 0.5]. The
output neuron has linear activation function and gives a real
number as the output of the neural network.

2.2 Evolutionary Model
A Genetic Algorithm (GA) is used to evolve the connection
weights of a population of neural networks. A chromosome
contains all connection weights of one neural network. The fitness
of a chromosome is the total score of its corresponding neural
network in playing two games, one as a black and other as white,
with each of 10 fixed AI opponents. If a neural network wins a
game against an opponent, its score is increased by 3; if the match
is draw then score is increased by 1 and for loss there is no
change in the score. Each neural network plays twenty games per
generation and its total score after twenty games is used to
measure its fitness. All games are run to 1-ply only to keep search
times manageable.

The Selection operator applies a rank selection method [17]. At
the end of the tournament for a given generation, all
chromosomes are arranged in a descending order according to
fitness score. From the sorted list of N chromosomes, the top N/3
chromosomes are selected for sexual reproduction. These selected
chromosomes are paired to reproduce 2N/3 new chromosomes
through a two-point crossover operation. The process of two-point
crossover is used to reproduce two new chromosomes and
Gaussian Mutation Operator [16] is applied to each new offspring.

2.3 Gradient-based Learning
Neural networks are trained under the supervision of 10 hand-
crafted AI players using gradient-based techniques:
Backpropagation (BP), RPROP and iRPROP. In this case, 10
different training sets are created where each training sets
contains a large number of board positions and their evaluation
values as determined by a hand-crafted AI player. Therefore, each
neural network is trained to learn the evaluation function of a
given hand-crafted AI player. Each neural network is trained
using one training set. Four neural networks are trained using
iRPROP, three are trained using RPROP and three are trained
using BP, for each hand-crafted AI player. BP uses a learning rate
of 0.01. The learning parameters for RPROP and iRPROP are set
to η+=1.2, η-=0.50, ∆o=0.5, ∆min=0 and ∆max=50.

2.4 Coevolutionary Model
Our coevolutionary model uses two different approaches for
generating the starting population. In the first approach, an initial
population of neural networks with random weights is coevolved
against ten fixed opponents. The coevolution of neural networks
continues until at least one neural network in a given population
beats all of the fixed opponents or there is no improvement in the
scores of the best neural network for 10 consecutive generations.
All games in this coevolutionary approach are played at 1-ply by
both neural networks and fixed opponents.

In the second approach an initial population of trained neural
networks is used. These neural networks are selected from the
pool of 100 pre-trained neural networks. If the population size is
less than or equal to 10, all neural networks used are based on
different hand-crafted AI players. If population size is greater
than 10, these are selected randomly in such a way as to ensure
that a neural network trained by each of the 10 hand-crafted AI
player is in the starting population . Therefore two populations of
size 20 would have 10 identical and 10 different neural networks
in the initial population. The trained neural networks are

coevolved against 10 fixed opponents. The stopping condition and
ply depth is same as used in first approach.

To assess the generality of approach, we also test against another
10 hand-crafted AI players which are not used in pre-training or
coevolution.

3. RESULTS
The results obtained from the randomly initialised neural
networks are summarized in table 2 while the performance of the
best of these coevolved neural networks against 10 hand-crafted
AI players is shown in table 3. All experiments are run on
Pentium IV 1.2 GHz using C#.Net running under Windows XP.

Table 1 shows the results of coevolution with populations starting
from randomly created neural networks. The column “Mean of
Generation” represents average number of generations over 10
runs and “mean CPU time” represents usage of average CPU time
in seconds by a population during coevolutionary process over 10
runs.

We can see that small populations give much worse results than
large ones. The difference between the performance of small and
large populations is probably due to the number of parallel
directions for exploring potential solutions in the search space.
The experimental results also demonstrate that small populations
use less CPU time than large populations, essentially since less
neural network evolution are required. The average maximum
scores with 0% and 20% crossover rates demonstrate that neural
networks evolved using crossover generally have higher scores
than those which do not. The crossover operation appears to help
the evolutionary process to explore a more interesting region of
the search space. The crossover operator speeds convergence, and
the population converges to better solution than without
crossover. The mean of min and mean values show that diverse
populations are maintained.

Table 1. Results from of coevolution with an initial population
of randomly created neural networks.

Pop

Size

Cross

over
Rate

Mean
of

Max

Mean
of

Min

Mean
of

Mean

Mean
of

Gen

Mean

CPU

Time

6 0% 3 0 2 11 9

6 20% 18 0 9 10 13

15 0% 9 0 1 10 28

15 20% 6 0 1 11 40

20 0% 12 0 5 11 53

20 20% 30 0 3 6 57

30 0% 30 0 16 11 61

30 20% 60 0 34 6 72

50 0% 21 0 22 11 132

50 20% 60 0 35 5 72

The results of the tournament played between the best evolved
neural network from each population where coevolution was
started from an initial population of randomly generated neural
networks and ten hand-crafted AI players. All the best neural
networks with 0% crossover rate have won games as black against

all AI opponents but none is able to win when playing as white.
The best-evolved neural networks of all populations (except
population of size 15) with 20% crossover rate won all games
when playing as black and white. Table 1 and these results
provide clear evidence for the effectiveness of the crossover
operator, and support the advantage of Black and White in the
Virus game, at least for approaches using 1-ply search.

Table 2 shows the mean of maximum, mean, and minimum scores
of coevolved neural networks with a starting population of pre-
trained neural networks. The table also shows the mean number of
generations and CPU time (in seconds) for each population with
different crossover rates. Again we see that small populations
perform more poorly than larger populations. If we compare the
results of tables 1 and 2, it can be construed that starting from a
population of pre trained neural networks gives better and more
consistent performance (in terms of playing strength) than starting
from a population of random neural networks. Large sized
populations (started with initial population of pre trained neural
networks) use a smaller number of generations but still require
more CPU time during the coevolution of neural networks than
small size populations. The values of mean of minimum and
maximum scores show the diversity is maintained in the
population. Note that CPU times in this case include the time
need for learning of the initial population

Table 2: Results from of coevolution with an initial population
of pre-trained neural networks.

Pop

Size

Cross
over
Rate

Mean
of
Max

Mean
of
Min

Mean
of

Mean

Mean

Of

Gene

Mean

CPU

Time

6 0% 40 0 28 13 12

6 20% 60 0 31 5 7

15 0% 60 0 22 3 18

15 20% 60 0 28 1 18

20 0% 60 0 26 3 31

20 20% 60 0 31 1 25

30 0% 60 0 29 2 66

30 20% 60 0 36 1 55

50 0% 60 0 32 1 84

50 20% 60 0 34 1 84

Generally, we see from table 2 that coevolution with crossover
needs fewer generations and less CPU time than without
crossover

The experimental results show that the populations of large size
(starting from the initial population of pre trained neural
networks) generally have at least one pre trained neural network
which beats all the opponents before the start of coevolution when
playing as black and white.

Table 3. Summary of results from 10 runs of coevolution of
pre-trained neural networks using 20 opponents.

Pop

Size

Cross

over
Rate

Mean
of
Max

Mean
of
Min

Mean
of

Mean

Mean
of

Gen

Mean

CPU

Time

6 0% 80 0 66 12 102

6 20% 120 60 73 4 96

15 0% 120 0 45 2 48

15 20% 120 0 52 1 48

20 0% 120 0 45 2 48

20 20% 120 0 55 1 78

30 0% 120 0 59 1 102

30 20% 120 0 70 1 132

50 0% 120 0 87 1 168

50 20% 120 0 95 1 210

In order to further investigate the generality of populations
starting from an initial population of pre trained neural networks,
we introduced 10 more hand-crafted AI opponents which were
not used in the training of the initial population. Table 3 gives the
average results of coevolution with different populations starting
from initial population of trained neural networks where neural
networks play as black and white against 20 AI opponents in each
generation which include the 10 previously unseen opponents. In
this case, pre trained neural networks in larger populations were
able to beat not only AI players used for initialisation but also the
AI players which were unseen by them during the supervised
training of initial population of pre trained neural networks. The
results shown in tables 2 and 3 are quite similar. The results of
these both tables with populations of small sizes show that
coevolution with 20% crossover rate has better performance than
coevolution with 0% crossover rate. The coevolution of
populations of large size has same performance with both
crossover rates (essentially since the initial populations were very
strong).

According to results at the start of coevolutionary process, in the
populations of large size, there is at least one trained neural
network, which beats all 10 opponents when playing as black and
white against them.

Tables 4 and 5 present the results for a tournament between the
best player from each set of experiments starting with random
initial weights, R6,0, R6,20, ..., R50,20, and the best player from each
set of experiments starting with pre-trained networks, P6,0, P6,20,
..., P50,20. Each of these players plays 19 games as black against
each other player, and 19 games as white against each other
player. Since every one of P6,0, P6,20, ..., P50,20 is ranked higher
than every one of R6,0, R6,20, ..., R50,20 this provides very clear
evidence for the superiority of pre-training, particularly since the
training times for pre-trained networks were significantly smaller
than for the random initial population. Within R6,0, R6,20, ..., R50,20
and within P6,0, P6,20, ..., P50,20 we see significant variations in
performance. It is clear that there are still significant variations in
the phenotype among these best players.

Table 4: Summary of Tournament Results for coevolved
neural networks from initial populations of randomly created
neural networks.

Players
No

No of
games
Won as
Black
Player

No of
games
Won as
White

Player

Total
Score

Rank

(1-20)

R6,0 4 4 26 18

R6,20 1 7 32 16

R15,0 4 5 28 17

R15,20 5 2 22 19

R20,0 5 5 32 15

R20,20 9 6 47 12

R30,0 9 9 54 11

R30,20 2 4 20 20

R50,0 7 7 42 13

R50,20 7 6 39 14

Table 5: Summary of Tournament results for coevolved
neural networks from populations starting from pre trained
neural networks.

Players
No

No of
games
Won as
Black
Player

No of
games
Won as
White

Player

Total
Score

Rank

(1-20)

P6,0 10 10 63 10

P6,20 14 13 83 5

P15,0 16 15 93 1

P15,20 16 15 93 2

P20,0 16 15 93 3

P20,20 16 7 70 8

P30,0 16 7 70 9

P30,20 13 13 84 4

P50,0 16 8 73 6

P50,20 16 8 73 7

4. CONCLUSION
A coevolutionary model is presented where artificial neural
networks adapt and learn to play the Virus Game using
competitions with fixed strong hand-crafted (deterministic) AI
players. The neural networks are provided with only raw board
positions. The results presented in this paper demonstrate the
potential advantages of a combination of coevolution and
supervised learning techniques for building knowledge into
artificial neural networks. The combination of coevolution and
gradient-based learning techniques gives improved playing
performance and faster learning when compared to either
approach combined in isolation.

It would be interesting to explore the combination of gradient-
based learning techniques and coevolution for other games and in
the case where a deeper search is used.

The Genetic Operators of Crossover and Mutation are also
analysed and we have noted that an evolutionary algorithm with
crossover has much better performance than one with mutation
alone in most experiments. In future we aim to investigate the
dynamics which make crossover an effective operator.

5. REFERENCES
[1] P.J. Angelin and J.B. Pollack, “Competitive Environments

Evolve Better Solutions for Complex Tasks”, in the
proceedings of 5th International Conference on Genetic
Algorithms (GAs-93), 1993, pp. 264-270.

[2] R. Axelrod, “The Evolution of Strategies in the Iterated
Prisoner’s Dilemma”, Genetic Algorithms and Simulated
Annealing, in Lawrence Davis (ed.), Morgan Kaufmann,
1997, pp. 32-41.

[3] M. Campbell, Jr. A.J. Haone, F-h. Hsu, “Deep Blue”,
Artificial Intelligence, Vol.134, 2002, pp.57-83.

[4] P.I. Cowling, R. Fennell, R. Hogg, G. King, P. Rhodes, N.
Sephton, “Using Bugs and Viruses to Teach Artificial
Intelligence”, in the proceedings of 5th Game-on
International Conference on Computer Games: Artificial
Intelligence, Design and Education, 2004, pp. 360-364.

[5] P.I., Cowling, “Board Evaluation for the Virus Game”, in the
proceeding of IEEE 2005 Symposium on computational
Intelligence and Games (CIG’05), Graham Kendall and
Simon Lucas (editors), 2005, pp. 59-65.

[6] D.B., Fogel, and K. Chellapilla, “Verifying Anaconda’s
expert rating by competing against Chinook: experiments in
co-evolving a neural checkers player”, Neurocomputing,
2002, Vol.42, pp.69-86.

[7] C., Igel and M. Husken, “Empirical Evaluation of the
Improved RPROP Learning Algorithms”, Neurocomputing,
Vol. 50C, 2003, pp.105-123.

[8] J.H. Miller, “The Coevolution of automata in the repeated
prisoner’s dilemma”, Journal of Economics Behavior and
Organization, Vol.29, 1996, pp.87-112.

[9] D.E., Moriarty and R. Miikkulainen, “Discovering Complex
Othello Strategies Through Evolutionary Neural Networks”,
Connection Science, Vol.7 No.3, 1995, pp. 195-209

[10] M. Riedmiller and B. Heinrich, “A Direct Adaptive Method
for Faster Backpropagation Learning: The RPROP
Algorithm”, in the proceedings of IEEE International
conference on Neural Networks, 1993, pp.586-591.

[11] D.E. Rumelhart, J.L. McMlelland and the PDP Research
Group, “Parallel Distributed Processing”, Exploration in the
Microstructure of Cognition, Vol. 1, 1986, MIT Press

[12] R.E. Smith and B. Gray, “Co-Adaptive Genetic Algorithms:
An Example in Othello Strategy”, in the proceeding of The
Florida Artificial Intelligence Research Symposium, 1994.

[13] A.L. Samuel, “Some Studies in Machine Learning using the
Game of checkers”, IBM Research and Development
Journal, 1959, pp. 211-229.

[14] G.J. Tesauro, “Temporal Difference Learning and TD-
Gammon”, Communications of the ACM, Vol. 38, No. 3,
1995, pp. 56-68.

[15] M. Buro, “The Othello Match of the Year: Takeshi
Murakami vs. Logistello”, ICCA Journal, Vol. 20, No.3,
1997, pp.189-193.

[16] X. Yao and Y. Liu, “Fast Evolutionary Programming”, in the
proceedings of 5th annaual conference on Evolutionary
programming, 1996, pp. 451-460.

[17] M. Mitchell, “An Introduction to Genetic Algorithms”, MIT
Press

