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A Developmental Study of the Relationship Between Geometry and
Kinematics in Drawing Movements
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Trajectory and kinematics of drawing movements are mutually constrained by functional
relationships that reduce the degrees of freedom of the hand—arm system. Previous investigations
of these relationships are extended here by considering their development in children between 5
and 12 years of age. Performances in a simple motor task—the continuous tracing of elliptic
trajectories—demonstrate that both the phenomenon of isochrony (increase of the average
movement velocity with the linear extent of the trajectory) and the so-called two-thirds power
law (relation between tangential velocity and curvature) are qualitatively present already at the
age of 5. The quantitative aspects of these regularities evolve with age, however, and steady-state
adult performance is not attained even by the oldest children. The power-law formalism developed
in previous reports is generalized to encompass these developmental aspects of the control of

movement.

Two general frameworks are currently available to concep-
tualize the motor-control problem. Broadly, the two frame-
works differ in the answer that they give to the question
“Where do form and structure come from?” According to the
motor-program view (e.g., Schmidt, 1988), form and structure
in a movement come from a central abstract representation
of the intended result. Thus, making a movement entails a
detailed mapping of this representation into an appropriate
motor plan. The competing task-dynamic view (e.g., Kugler,
1989; Saltzman & Kelso, 1987) emphasizes instead the global
morphogenetic power of the nonlinearities of the motor sys-
tem. These two views need not be mutually exclusive. In fact,
different classes of movements may require different concep-
tual frameworks for their analysis. At any rate (at least in the
case of drawing movements considered here), an internal
representation of the intended trajectory and kinematics must
be available before execution. Consequently, much effort is
being devoted to understanding how this internal model is
translated into a set of motor commands. In this respect, one
basic conceptual difficulty is because the geometry of the
arm-forearm-hand system affords a large number of degrees
of freedom. Provided that there are no constraints in the
workspace, the only trajectory that matters in many manual
tasks is the more distal one, the so-called endpoint trajectory.
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Geometrical considerations show that there are generally an
infinite number of different sets of rotations at the intervening
joints that result in identical endpoint trajectories. In princi-
ple, the nervous system could implement any of these valid
solutions and even pick up a different solution every time a
movement is repeated. In practice, the system does not seem
to take advantage of such a freedom because only one specific
set of rotations at the articular joints is consistently selected
for generating a given trajectory (Soechting, Lacquaniti, &
Terzuolo, 1986). Most attempts to explain how the motor
system effectively controls this biomechanical system assume
that the excess degrees of freedom are dissipated by some
internal constraints (cf. Whiting, 1984); they differ only in
the approach for identifying these constraints.

Constraining Principles

Top-down strategies seek to derive a set of constraints from
some plausible a priori intuition about control optimality. In
particular, attempts have been made to demonstrate that the
solution actually adopted minimizes some global cost func-
tion. Hypotheses on the nature of this cost function include
(a) the total energy required to implement the motor act (e.g.,
Nelson, 1983), (b) the global sense of effort (Hasan, 1986), (c)
the average derivative of the acceleration (Flash & Hogan,
1985; Hogan, 1984; Wann, Nimmo-Smith, & Wing, 1988),
and (d) the rate of change of the articular torques (Uno,
Kawato, & Suzuki, 1989). Wann (1987) contrasted several
cost-minimizing models on the basis of handwriting move-
ments in children. Alternatively, the bottom-up approach
attempts first to expose some constraints at the level of the
measureable aspects of the movement and then speculates
post-factum on the possible significance of these empirical
findings from the point of view of optimality. Soechting et al.
(1986; Soechting & Terzuolo, 1986, 1987) pursued this route
by showing that when we trace elliptic or extemporaneous
trajectories in space, the uniqueness of the solution results
from an underlying correlation among the joint angles meas-
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ured in the Eulerian system of reference (yaw, pitch, and roll).
Another possibility in the same vein was explored in a series
of previous investigations (Lacquaniti, Terzuolo, & Viviani,
1983, 1984; Viviani & McCollum, 1983; Viviani & Terzuolo,
1980, 1982). Instead of considering joint angles, we concen-
trated on the endpoint motion itself and particularly on the
relationships between the trajectory and kinematics of this
motion.

Two such relationships are directly relevant to the expen-
ments reported here. The first was hinted at almost a century
ago by Binet and Courtier (1893) and Jack (1895), who noted
that the velocity of upper-limb movements covaries with the
curvature of the trajectory (see also Derwort, 1938). We
provide the first quantitative description of this regularity
through the so-called two-thirds power law, which states that
at all points of a movement trajectory that are sufficiently
removed from an inflection (in practice, when the curvature
is greater than 0.1), the angular velocity is proportional to the
2/3 power of the curvature, or equivalently that the tangential
velocity is proportional to the cubic root of the radius of
curvature. The second relationship of interest here exists
between the size of the trajectory and the average velocity.
Qualitative descriptions of a positive correlation between
these two movement aspects can again be found in some early
studies of human movements (Binet & Courtier, 1893; Der-
wort, 1938; Freeman, 1914). Moreover, in the special case of
point-to-point rectilinear movements, such a correlation is
implicit in Fitts’s Law (Fitts, 1954; Michel, 1971). We ex-
tended these early observations to the general case of curvilin-
ear trajectories and provided a quantitative formulation of
the phenomenon (termed isochrony) that is valid for both
periodic and aperiodic movements. The two-thirds power law
and isochrony can be construed as rules for prescribing two
complementary aspects of endpoint velocity, namely its in-
stantaneous modulations and its average value. Because end-
point velocity is uniquely specified by the angular positions
and velocities at the intervening joints, these empirical rela-
tionships represent a set of constraints among the correspond-
ing torques that restrict the range of possible solutions to the
problem of specifying the set of motor commands to be
delivered to execute a given trajectory. Note that the two-
thirds power law not only constrains the production of extem-
poraneous movements but also limits our capability to repro-
duce external models by pursuit tracking: Several studies have
shown (Viviani, 1988; Viviani, Campadelli, & Mounoud,
1987; Viviani & Mounoud, 1990) that it is almost impossible
to follow accurately dynamic target models that do not com-
ply with this rule.

So far, no bottom-up strategy has been pursued far enough
to afford a true solution to the degrees-of-freedom problem.
Neither the correlation among joint angles nor the relation-
ship between trajectory and kinematics can be construed as
first principles of motor organization. Indeed, they are both
likely to be the result of common underlying principles acting
at a higher hierarchical level. We cover this point as well as
the possible connections between bottom-up and top-down
solutions in the Discussion section of this article. We now
consider an issue that arises in conjunction with the transla-
tion of the internal model into a set of motor commands.

Computational Complexity

The trajectory and kinematics of hand movements are
determined jointly by both the time course of the active
torques at the articulations and by the masses that are set in
motion. It is well known (cf. Brady, Hollerbach, Johnson,
Lozano-Pérez, & Mason, 1985; Soechting, 1983) that as soon
as we take into account inertial torques and couplings, the
equations governing the movement of a system with several
degrees of freedom become very complex and nonlinear.
Working out the reverse solutions of these equations to deduce
the necessary torques from the intended endpoint motion can
be very time-consuming even for a large mainframe com-
puter, and the obvious fact that the nervous system could not
possibly frame the problem in terms of differential equations
as we do does not change its computational complexity. How,
then, can we make sense of the fact that biological solutions
seem to be found almost effortlessly and in such a short time?
A number of hypotheses have been put forward to explain
this apparent paradox (cf. Schmidt, 1988; Whiting, 1984). We
discuss only the conceptual approach that is most relevant to
our work.

The basic idea was introduced more than 20 years ago in
three seminal articles (Asatryan & Feldman, 1965; Feldman,
1966a, 1966b) which emphasized that any given position of
a limb can be maintained by balancing the agonist and
antagonist torques by setting the muscle stiffness appropri-
ately. After noting that if the stiffnesses are changed the
equilibrium of the torques is attained for a different set of
muscles lengths, the authors suggested that a limb can be
driven from one initial position to a specified target simply
by modifying the stiffness of the muscles that control the
joints. The interest of this idea vis a vis the computational
complexity of motor planning is that only the essential fea-
tures of the movement are supposed to be specified centrally,
whereas the details (both geometric and kinematic) result
from the intrinsic properties of the viscoelastic system formed
by the muscles and the moving masses. Although the idea
received some support from human (Abend, Bizzi, & Mor-
asso, 1982) and animal (Polit & Bizzi, 1978) experiments that
involved simple rotations of the forearm, it was soon clear
that it is difficult to represent complex movements with
sequences of point-to-point displacements. Moreover, neither
the trajectories nor the kinematics of movements driven only
by shifts in the equilibrium point mimic the actual observa-
tions very satisfactorily. Better results can be obtained with
modified versions of the same basic idea (Berkinblit, Feldman,
& Fukson, 1986; Feldman, 1974, 1986; Hasan & Enoka,
1985; Hogan, 1985). The original hypothesis of an abrupt
transition from one equilibrium point to another is replaced
with the more sensible notion of a continuous evolution of
the equilibrium point along a virtual (internal) trajectory. Of
course, the computational burden for the definition of the
virtual trajectory increases considerably. Nevertheless, the
motor system might use one of the aforementioned cost-
minimization approaches to specify the virtual rather than
the endpoint trajectory (Flash, 1987). Notice that the virtual
trajectory may be less smooth and continuous than the actual
one. In fact. as already stressed by several authors (e.g., Denier
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van der Gon, Thuring, & Strakee, 1962; McDonald, 1966),
the conversion of the efferent motor commands into forces
can be described as an integration (i.e., a low-pass filtering
operation) that has a smoothing effect.

The Oscillatory Hypothesis

Hollerbach (1981) presented behavioral evidence that even
a movement as complex as writing can be construed as the
result of modulating a basic sustained oscillatory mode (not
necessarily a harmonic mode). Similar ideas had been ex-
pressed in describing finger and hand movements (Denier
van der Gon & Thuring, 1965). Furthermore, quasiharmonic
oscillations arise naturally when one describes the biomechan-
ical and physiological properties of the muscles and the at-
tached masses by using second-order differential equations
(cf. Haken, 1977). This may suggest that the oscillatory mode
is a universal characteristic of many human movements and
that different gestures are obtained by efferent modulations
of the amplitude, phase, and frequency parameters of this
basic mode. In particular, the oscillatory hypothesis affords a
very simple way of distinguishing the control parameters
responsible for setting the size and shape of the trajectory (i.e.,
the amplitude of the oscillatory components) from those
responsible for the kinematics (i.e., the frequency of the
components).

Interestingly, most attempts to address either the degrees-
of-freedom problem or the computational complexity prob-
lem discussed before also (implicitly or explicitly) conclude
that hand motions ought to exhibit some of the characteristic
features of (possibly damped) elastic oscillations. The case of
elliptic trajectories is particularly interesting because many
portions of hand trajectories can be approximated fairly ac-
curately by elliptic segments; a complex movement may be
seen as a splined sequence of such segments (Morasso, 1986).
When the trajectory is an ellipse, the oscillatory hypothesis
implies the possibility of approximating reasonably well the
Cartesian components of the motion, either at the endpoint
or at some intermediate link, by using segments of harmonic
functions. Soechting et al. (1986) stated such a possibility
explicitly and tested it experimentally in the case of two- and
three-dimensional continuous movements. Moreover, both
the equilibrium-point and the virtual-trajectory hypotheses
make the same conclusion because of the nature of the
mechanisms that are supposed to maintain static and dynamic
equilibrium. In addition, our bottom-up approach leading to
the two-thirds power law and isochrony (see the previous
discussion) suggests a special connection between harmonic
functions and a certain class of natural movements. Indeed,
we demonstrate that if tangential velocity and radius of cur-
vature are functionally related through the equation V(r) =
K R(#)'”, and if the trajectory of the hand is an ellipse or a
combination of ellipses, then the horizontal and vertical com-
ponents of the movement are necessarily harmonic functions
of equal frequency (Viviani & Cenzato, 1985; see also Appen-
dix). The minimum-jerk model (Flash & Hogan, 1985; Ho-
gan, 1984) predicts that the x and y components are quintic
functions of time, but at least in the case of elliptic trajectories
the coefficients of the polynomials are such that the difference

with respect to sine and cosine functions are undetectable
experimentally. Some other models instead predict measura-
ble, systematic departures from the ideal sinusoidal motion.
A modified version of the Hogan and Flash idea—the visco-
elastic model for jerk minimization (Wann et al., 1988)—
allows temporal asymmetries in the x and y velocity compo-
nents. Similarly, Maarse and Thomassen (1987) suggested
that handwriting movements are best simulated by assuming
time-asymmetric velocity profiles. Finally, when certain types
of nonlinearities are introduced in the basic mass-spring
model to account for stable limit cycles (Kay, Kelso, Saltz-
man, & Schoner, 1987), the motion is no longer a perfect sine
wave.

Two things need to be stressed concerning the way elliptic
motions are generated. First, that the components of the
movements are approximately harmonic functions is not a
trivial mathematical fact. In principle, infinitely many pairs
of components—some of them sharply different from sine
and cosine functions—could be used to trace the same ellipse.
The particular solution that involves purely harmonic func-
tions is a special (and somewhat ideal) case. With reference
to the well-known patterns studied by the 19th-century French
physicist Jules Lissajous, in this article we use the term
Lissajous elliptic motion (LEM) to indicate such a special
case. Second, we have seen how different conceptual frame-
works may lead to the same general oscillatory hypothesis.
Assessing their relative merits is almost impossible as long as
the motion under examination is indistinguishably close to
an LEM. Nevertheless, we have seen that some of these
frameworks also make specific predictions about the possible
deviations from the ideal sinusotdal case. Thus, it is important
to investigate precisely those conditions in which systematic
deviations can be measured.

The Developmental Approach

The main goal of the experiments reported in this article is
to further the investigation of the constraints between trajec-
tory and kinematics, which (as argued before) provide a clue
to both the degrees-of-freedom problem and the computa-
tional complexity problem. The preceding arguments led us
to believe that one way of pursuing this goal is to try to
identify the more adequate conceptual scheme to account for
the oscillatory behavior of hand movements that is suggested
by so many converging lines of evidence. Our strategy is two-
pronged: On the one hand, we accept the premise that an
adequate identification is only possible by testing a candidate
scheme across a range of different experimental paradigms
that are likely to induce deviations from the sinusoidal model.
On the other hand, because it is likely that such deviations
can indeed be observed in the course of development (see the
Results section), we select age differences as the main factor
in our experimental paradigm. We consider the simplest
task—the continuous drawing of ellipses—for which there is
evidence of systematic departures from the simple sinusoidal
model even in adults (Wann et al., 1988), and we investigate
the differences between adult performances and the perform-
ances of children in the age range in which most children
attain proficiency in manual skills (writing, drawing, and
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playing musical instruments). We expect this developmental
comparison to be useful for understanding the relationship
between geometry and kinematics for the following reason. It
is known that at 5 years of age children can already produce
regular, smooth sinusoidal forearm movements similar to
the components of an LEM (Mounoud, Viviani, Hauert, &
Guyon, 1985; Viviani & Zanone, 1988). Thus, if the Lissajous
mode of trajectory formation were an emerging property of
the implementation stage specifically related to the active and
passive properties of the biomechanical system and requiring
no independent coordinative control of the components, there
should be no systematic difference between children and
adults in their drawing of an ellipse. In practice, however,
several differences have been documented between the way
children and adults execute the same movements of the upper
limbs (cf. Wade & Whiting, 1986). Some of them are credited
to a corresponding difference in the central representation of
the motor plan (Mounoud, 1986; Mounoud et al., 1985;
Sciaky, Lacquaniti, Terzuolo, & Soechting, 1987); others are
credited to a different use of the proprioceptive and extero-
ceptive afferences for controlling the ongoing movement
(Hay, 1979, 1981; Sgvik, 1981; Von Hofsten, 1979). Devel-
opmental redistribution of the degrees of freedom along the
biomechanical chain has also been cited as a source of age-
related differences (Ziviani, 1983). In any case, there are
reasons to suspect that children’s execution of our drawing
task may differ significantly from that of the control adult
population and that the difference concerns the motor-control
mode. If so, we could contrast a number of hypotheses on the
nature of the difference; more specifically, we could test
whether the two-thirds power law can be generalized to en-
compass both the fully mature performance and the preceding
stages of motor development.

Our experiments were also designed to document the evo-
lution with age of isochrony. It has been argued (Lacquaniti
et al., 1984) that this phenomenon results from an automatic
regulation of the average velocity as a function of the esti-
mated linear extent of the trajectory to be executed. By
necessity, this regulation must take place before the inception
of the movement, in the preparatory stage of motor planning.
Thus, the extent to which the degree of isochrony evolves
with age ought to clarify whether this aspect of motor prepa-
ration is inborn or the result of motor learning. We also
attempt to generalize the validity of the relationship between
isochrony and the two-thirds power law that previous studies
have suggested.

Method

Subjects

Six adults (4 men and 2 women, 26-44 years old) and 48 male
Genevan primary-school children participated in the experiment on
a voluntary basis. Children were divided into eight age groups. The
mean (years and months) and the standard deviation (months) of the
age in each group of 6 children were the following: Group 1, M =
5.0, SD = 2.2; Group 2, M = 6.0, SD = 0.4; Group 3, M = 1.0, SD
= 1.0; Group 4, M = 8.0, SD = 0.8; Group 5, M = 9.0, SD = 0.8;
Group 6, M = 10.0, SD = 1.6; Group 7, M = 11.01, SD = 1.9; Group

8, M = 11.11, SD = 1.9. Experiments were conducted at the earliest
2 months before a subject’s birthday and at the latest 2 months after.
All subjects were right-handed and had normal or corrected-to-
normal vision.

Apparatus

Drawing movements were recorded with a Calcomp Series 9000
digitizing table (California Computer Products, Inc., Anaheim, CA)
(sampling rate: 88 Hz; nominal accuracy: 0.01 mm; usable workspace:
90 % 90 cm) connected to a personal computer. The writing imple-
ment was the standard pen supplied with the table: It resembles a
normal ballpoint pen and leaves an analogous visible mark on paper.
The table was mounted on a support frame that permitted the
experimenter to adjust the inclination of the workplane according to
each subject’s preference. The inclination never exceeded 20°. Sub-
jects were comfortably seated and were allowed to lean and support
themselves on the table. Experiments were run in a quiet room of the
primary school that all of the children were attending. Templates for
the movements to be executed were drawn on a regular A3-sized
paper sheet placed on the table surface. The templates consisted of
10 elliptic outlines arranged spatially as shown in Panel A of Figure
1. The eccentricity of the ellipses was £ = 0.9. Their perimeter P
varied between 2.34 cm and 53.02 cm in a logarithmic sequence (P,
=234cm; P, =3.31cm; P;=4.69cm; P, =6.63cm; Ps =937 cm;
Pe = 13.26 cm; P; = 18.75 cm; Py = 26.51 ¢cm; Py = 3749 cm; Py =
53.02 cm). In all cases the major axis of the ellipses was rotated by
45° with respect to the horizontal. (Previous studies with adults and
pilot experiments with children have shown that the posture required
by this orientation is the most comfortable one for executing free
movements.)

Task

The task consisted of tracing each elliptic outline freely and con-
tinuously for about 14 s. Subjects were left free to choose the rhythm
of movement but were instructed to try to maintain a constant rhythm
throughout all movement cycles for any given ellipse. Movements
were recorded during a period of 10 s. The experimenter started the
recording after a few cycles of movement during which subjects
reached a stable pace. Because the pen left a visible mark, the template
outline was no longer clearly visible by the time the recording started:
Subjects were guided visually by the traces they had left on paper
during the warm-up cycles.

Procedure

Each subject participated in a single experimental session in which
the entire sequence of 10 ellipses was traced twice, with a short period
of rest between trials and a longer period between sequences. A trial
could be repeated if for any reason the subject was dissatisfied with
the performance. A new sheet with the template outlines was provided
for each sequence and whenever a trial was repeated. In half of the
subjects, the orientation of the outlines for the first sequence was the
one shown in Panel A of Figure 1; in the other half, the sheet was
placed upside down. In all cases, the orientation was inverted for the
second sequence. The session began with an introductory phase in
which the experimenter explained the task and demonstrated the use
of the pen. A few pretest trials were administered to familiarize the
subjects with the equipment and to let them find the most comfortable
posture. The order in which the 10 ellipses had to be traced was given
by the experimenter and was different for the two sequences in a
session. For each subject, the orders were selected at random (without
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Figure 1.

Movement templates and typical trials. (Panel A depicts the complete set of 10 elliptic

templates as they were arranged spatially within a regular A3-sized paper sheet. All templates were
traced successively in random order. In one series of recordings the orientation of the sheet was the one
shown. In a second series the sheet was turned upside down. The other three panels illustrate one
complete series of trajectories produced by an adult [Panel B], a 7-year-old child [Panel C], and a 10-
year-old child [Panel D]. The results in Panels C and D illustrate two of the most typical styles of

performance observed in children.)

replacement) from a subset of all possible permutations of the first
10 digits.

Results

Styles of Performance

All subjects completed the two series of recordings without
difficulty. We did not search for statistical evidence of motor
learning trends; however, no qualitative difference was de-
tected between the performances at the beginning and at the
end of a session. The two most obvious discriminating factors
among children of different ages and between children and
adults were (a) the degree of accuracy with which the shape
of the templates was reproduced and (b) the cycle-by-cycle
consistency. At all ages performers idiosyncratically chose a
baseline tempo and spontaneously tended to maintain this
tempo throughout. Generally, both accuracy and consistency
increased with age, but large individual differences emerged
even within age groups. These differences were partly the
consequence of the style of motor performance adopted by
the subjects. Panel B of Figure 1 shows the performance of a
42-year-old subject who exhibited the accuracy and fluency

of execution that is typical of most adults. Panel C illustrates
the performance of a 7-year-old child. His style of perform-
ance—characterized by a fast tempo, good fluency, and a
considerable amount of geometric variability—was not un-
common among both the youngest and oldest children. Panel
D illustrates another typical style observed most often in the
intermediate age groups. The results are from a 10-year-old
boy who was clearly very concerned about the spatial accuracy
of the traces. Movement runs less freely than in the examples
of Panels B and C; the general tempo of the movements is
much slower, and the traces are not as smooth. Whereas the
child from Panel C seems to apply only a global control over
the gesture (as adults generally do) and is able to plan an
entire cycle, the child from Panel D clearly exerts continuous
local visual control on the trace. Each cycle of this boy’s
performance results from a sequence of smaller units of
actions.

Geometric Parameters

For each trial several geometric parameters of the traces
were measured by off-line processing of the position data. We
used the following procedure to determine the best elliptical
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approximation to the entire trajectory. First, we computed
the center of gravity of the trajectory by averaging separately
the horizontal and vertical coordinates of the sampled points
of the trace. Then, after considering the samples as pointlike
unitary masses, we computed the central moments of inertia
of the trajectories for all axes that passed through the center
of gravity (inertial tensor). It is known (Goldstein, 1980) that
the inertial tensor of a two-dimensional distribution of point-
like masses can always be represented by an ellipse. Moreover,
we can show that if the traces were perfectly elliptical the
directions of the largest and smallest eigenvectors of the
inertial tensor (i.e., the axes around which the moment of
inertia of the masses is maximum and minimum) would
coincide with those of the minor and major axes of the traces,
respectively. Their amplitude would be scaled by a factor v2
with respect to the corresponding axis. Real traces are both
distorted and different from cycle to cycle. Nevertheless, the
inertial tensor ellipse rotated by 90° and scaled by V2 still
provides the best least squares approximation to the trajectory
of the movement. By this procedure we estimated three
parameters that measure the global geometric accuracy of the
performances: (a) the ratio between the perimeter of the best
fitting ellipse (Py) and that of the template (Py), (b) the aspect
ratio B/A4 between the minor and major axes of the best fitting
ellipse, and (c) the inclination of the major axis of the trajec-
tory with respect to the horizontal. Averages of the first two
parameters over all subjects in each age group and both
sequences of trials are shown in the two left panels of Figure
2. The corresponding averages for the inclination of the major
axis are shown in the upper-right panel of Figure 2. The
results indicate a monotonic age-related trend in all three
parameters, with younger children tending to produce larger,
less eccentric ellipses than the models (notice that adults’
traces are slightly but consistently more eccentric than the
templates). Younger children also tended to rotate the major
axis of the trace toward the vertical.

The last geometric performance descriptor was the varia-
bility of the traces: this parameter was defined as follows.
Consider a point (sample) of the trajectory and the line that
joins the point to the center of gravity of the traces. We define
the spatial error associated with the direction of this line as
the distance between the sample and the intercept of the line
with the best fitting ellipse. Conventionally, a positive value
is assigned to the error if the sample lays outside the best
fitting ellipse and a negative value is assigned if it lays inside.
As expected, the average absolute error e, over all points of a
trace increased with the perimeter of the template. For each
subject, however, the scaling of the average error with Py
could be represented accurately by an empirical power func-
tion e, = e,Pr’. Thus, a relative error e, for each point of the
trajectory was obtained by normalizing the corresponding
absolute error with the empirical function e, = ¢,/P+’. Finally,
we divided the space into 360 one-degree angular sectors that
originated from the center of gravity of the ellipse, and we
defined the average trace variability within each sector as the
standard deviation of the normalized error for all points of
the trace that were in that sector. We computed a polar plot
of the spatial variability for each age group by pooling the
data for all subjects within the group, all template sizes, and

both sequences. Figure 3 illustrates the results of this proce-
dure for the four indicated ages. For graphical convenience,
the ellipses have been rotated clockwise by 45°. These plots
show that geometric variability was not uniform for all direc-
tions: It was systematically smaller when the curvature was
higher. A similar anisotropy was also present in the groups of
children not shown in Figure 3, as well as in the adult group.
We obtained a global measure of the individual spatial accu-
racy by averaging the corresponding radial variability over all
directions. Means and 95% confidence intervals of the indi-
vidual averages for all age groups are shown in the lower-right
panel of Figure 2. The results confirm the trend of the Po/Py
plot in the same figure: The youngest subjects (5-year-olds)
stand out as being much less consistent than all other children.
Moreover, the variability of the traces for the children as a
whole was more than twice as large as that for adults. Even
the oldest children (12-year-olds) had not yet reached a fully
mature performance.

Temporal Parameters

There was considerable variability in the general tempos
the subjects chose for tracing the ellipses. Within each series
of recordings, however, the average velocity covaried with
template size in a strikingly consistent manner. It is well
documented (see the introduction) that in adults the average
velocity of planar movements increases with the linear extent
of the trajectory (isochrony). In the case of periodic move-
ments along a two-dimensional trajectory, this phenomenon
is best described as a relationship between the period T of the
movement and the perimeter P of the trajectory being traced.
In Figure 4 different symbols describe this relationship for
each age group. The ordinates of the data points are the
averages over all complete cycles of movement of the time
necessary to complete one cycle. The abscissas are the average
linear extents of the cycles. We pooled data from the two
sequences of recordings and all subjects in each age group. In
the double-logarithmic scale used for this plot, T is nearly a
linear function of P at all ages. Thus, the power function
shown inset is an accurate (albeit empirical) representation of
the relationship between perimeter and period. A linear regres-
sion analysis of the log P-log T relationship was performed
separately on each cluster of 120 (6 X 2 X 10) data points in
relation to a group of subjects (Figure 5). Despite the varia-
bility of the general tempo chosen by each subject, the coef-
ficients of linear correlation (open triangles) confirm the
validity of the power-law representation for each age group.
We estimated the exponent of the power law (solid circle) by
the slope of the linear regression of log T over log P. The
value of 4 is almost constant for all children and drops
somewhat in adults. The intercept parameter of the regression
(log T,) decreases with age in the children and increases in
adults.

These data quantitatively describe the form that isochrony
takes in our experimental conditions. The quantity 1/T,
represents a baseline tempo selected idiosyncratically by each
subject and spontaneously kept constant throughout (the
instructions only emphasized the request to maintain the
same rhythm in each trial). The actual rhythm of the move-
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Figure 2. Geometric parameters as a function of age. (The upper-left panel denotes the ratio between
the average perimeter of the trace [P;] and the perimeter of the template [Pr]. The lower-left panel
denotes the ratio between the minor [B] and major [A] axes of the best elliptic approximation to the
traces [A on the x axis represents adults]. The dashed line indicates the ratto [.437] that corresponds to
the eccentricity {Z = 0.9] of the templates. The upper-right panel denotes the inclination of the major
axis of the best elliptic approximation to the trace. The lower-right panel denotes the variability of the
trace as measured by the standard deviation of the radial error with respect to the elliptic approximation
[A = adults]. Errors are normalized to the perimeter of the template. In all cases data points are averages
over all trials of all subjects. Bars indicate the 95% confidence intervals of the means.)

ment (1/T) for each template results from scaling this base
value with the perimeter of the intended trajectory. The
exponent y measures the strength of the scaling. In the limit
case v = 0, the rhythm is constant for all perimeters (perfect
isochrony). By contrast, ¥ = | implies that T is proportional
to P, that the average tangential velocity is constant for all
templates, and that there is no compensation. Even though
on average adults were closer to isochrony than children, the
data in the upper panel of Figure 5 show conclusively that
this compensatory mechanism is already in place at the age
of 5 years.

It has been suggested (Wann & Jones, 1986) that some
writing difficulties experienced by 9- and 10-year-old children
correlate with a lack of stability in the temporal structure of
the writing movements. We explored the stability issue by
computing for each trial the coefficient of variability (standard
deviation/mean) of the period T. The lower panel of Figure
5 shows the means and the 95% confidence intervals of this
coefficient for all 120 trials recorded for each age group.
Children were more than twice as variable as adults, but we
found a clear age-related trend in the cycle-by-cycle temporal
stability of the movement; however, the improvement with
age is slow and not monotonic. In particular, there is evidence
of a regressive phase in 7-year-old children, whose timing
stability drops by almost 50% with respect to the preceding
age group. Notice that this deterioration partly reflects the
emergence of the discontinuous style of execution docu-
mented in Panel D of Figure 1.

Relationship Berween Geometry and Kinematics

In adults, when the trajectory of a planar movement has
no points of inflection, the two-thirds power law applies
throughout the movement. Figure 6 illustrates this with the
data in relation to two ellipses (P, and Py) traced by 1 adult
subject. As in Figure 4, a linear relation in doubly logarithmic
scales corresponds to the expression V' = K R” shown inset.
The slope and the intercept parameter of the log V-log R
linear regression can be used to estimate the exponent 8 and
the multiplicative constant K of the power law, respectively.
For obvious reasons, we call the constant K the velocity-gain
Jactor. A regression analysis of log V(¢) on log R(z) was
performed separately for each trial of each subject in each age
group. A two-way analysis of variance (ANOVA) (9 ages X
10 perimeters, with 12 replicates per cell) demonstrated a
significant effect of both variables of the experimental design
(age and template size) on the velocity gain: for age, F(990,
8) = 43.53, p << .0001; for perimeter, F(990, 9) = 81.51, p <«
.0001. Interaction was nonsignificant, F(990, 72) = 0.53, p =
1.000. In addition, exponent 8 was found to depend on age,
F(990, 8) = 66.28, p <« .0001 and on the perimeter, F(990,
9) = 18.74, p < .0001, with no significant interaction, F(990,
72) = 0.99, p = .512. Nevertheless, the influence of the
perimeter on 3 was actually limited to the children. By col-
lapsing the data over all children groups, we demonstrated a
weak but significant linear trend in the log P-g relationship-
slope = —0.058, intercept = 0.338, correlation = .370, p «
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Figure 3. Geometric variability as a function of age. (In each panel the bands around the templates
encompass +1 standard deviation of the absolute radial error with respect to the ideal trajectory. Data
for all trials and all subjects in the indicated age groups have been pooled. The plot for adults is similar
to that for {l-year-old children. Notice that the variability is not uniform around the trajectory.)

0001. Instead, no trend existed in adults: slope = —0.002,
intercept = 0.347, correlation = .070, p = .443. The effect of
age on the exponent of the power law can be summarized by
collapsing the values of 8 over all perimeters {(Figure 7). The
within-group average of the coefficient of linear correlation
(upper panel) exceeds .95 for all but the youngest children.
Regardless of age, then, in children the relationship between
tangential velocity and radius of curvature can be described
accurately by a power law. As expected from the results of
previous studies, the average of 8 for the adult group was close
to one third: The performance of adults agrees with the two-
thirds power law (see the Internal Consistency section). By
contrast, the averages for all child groups were significantly
smaller. Except for 5-year-old children, the exponent in-
creased consistently with age, but as in the case of the geo-
metric parameters, even the oldest children differed signifi-
cantly from the adults.

Within a sequence of trials the velocity-gain factor K varied
with the perimeter P. In Figure 8 different symbols illustrate
this relationship for each age group. As in Figure 4, the
abscissas of the data points are the linear extent of the move-
ment cycles averaged over all trials and all subjects within the
group. The ordinates are the corresponding averages of K.

Here again, linear functions describe fairly accurately the
relationship between the logarithms of the two variables.
Thus, for each group of subjects, the velocity-gain factor can
be described empirically by a two-parameter power function
of the perimeter. In addition, the interpretation of the results
in Figure 8 is similar to that for the timing data. We assume
that the velocity-gain factor is set by modulating a baseline
gain K, by the perimeter of the intended movement. The
baseline value is chosen idiosyncratically by each subject,
whereas the modulating effect of the movement size is taken
to represent a built-in property of the motor-control system
that is common to all subjects. Later, we present a derivation
of the timing data of Figure 5 from the results illustrated in
Figures 6 and 8.

We estimated the parameters K, and « with a linear regres-
sion analysis of log K on log P separately for each subject
(data for the two sequences of trials were pooled). A one-way
ANOVA (9 ages, with 6 replicates per cell) demonstrated a
significant effect of age on both the multiplicative constant
Ko, F(45, 8) = 4.17, p = .001, and the exponent, F(45, 8) =
2.16, p = .05. Accordingly, we averaged the two parameters
of the regression and the corresponding coefficients of corre-
lation over all subjects within each age group. The results are
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Figure 4. Isochrony: The relationship between the perimeter P of the trace and the duration T of a

movement cycle. (We obtained each data point by first computing the mean perimeter and the mean
period for each trial and each subject. Then we averaged the individual means over all trials and all
subjects [12 measures]. Different symbols identify the age groups. In a double-logarithmic scale all T-P
relationships are well approximated by linear functions. Thus, in linear scales, P and T are related by
the power function T = T, P*. The intercept of the linear regression with the line P = | estimates log
To. The exponent v is estimated by the slope of the linear regression. Both of these parameters vary

with age [see Figure 5].)

shown in Figure 9. The behavior of the adult subjects con-
firmed the conclusion of previous experiments: The velocity-
gain factor increases faster than the cubic root of the perime-
ter. The data from the children were qualitatively similar. The
two parameters of the power law vary across ages, however:
The baseline gain K, tends to increase, whereas the strength
of the perimeter modulation drops by almost 50% between
ages 5 and 12. Strangely enough, the behavior of children
diverges progressively from that of adults as their age in-
creases.

Internal Consistency

In the introduction we mentioned that if the exponent 8 in
the relationship V(¢) = K R(z)’ is equal to 1/3, then it follows
necessarily that all elliptic movements are LEMs. The adult
data presented here are hardly new: They simply confirm the
results of previous studies (Lacquaniti et al., 1983) by showing
that in these subjects the condition 8 = 1/3 is satisfied almost
perfectly. Therefore, when adults trace either isolated ellipses

or more complex figures composed of ellipses, the compo-
nents of the movements are indeed harmonic functions of
equal frequency. By contrast, the finding that children system-
atically violate the condition 8 = 1/3 is new and has a pivotal
importance for the logic of this article: We must provide
additional evidence that the violation is real. In particular,
one has to rule out the possibility that values of 8 different
from 1/3 are an artifactual result of computing a linear
regression analysis on nonlinear data. To this end, we per-
formed three further analyses of the data. First, with a different
data analysis we checked the statistical significance of the g8
estimates in adults. The parameters of the linear correlation
between log R and log ¥ calculated before with all data points
could be biased because successive samples of a continuous
trajectory are not independent (Morrison, 1976). This poten-
tial source of bias can be drastically reduced by considering a
regularly interspersed subset of the 880 samples available for
each trial. In particular, we calculated the linear regression
parameters again for each trail by selecting only 1 point in 5.
For each template size, Table | reports the new 8 estimate
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Figure 5. Linear regression analysis of the log T-log P relationship.
(The upper panel shows isochrony parameters as a function of age.
Circles represent the intercept [open circles] and the slope [solid
circles] of the linear regression between log T and log P [see Figure
4]. Triangles represent the corresponding coefficients of linear corre-
lation. The regression analysis was performed on the averages for
individual trials. The results indicate that almost irrespective of age,
the duration of one cycle of movement increased more slowly than
the square root of the perimeter. Notice that the baseline tempo 1/
T, increased with age in the child population. Adults did not follow
this trend. The lower panel shows temporal variability as a function
of age. Data points represent the average over all trials and all subjects
[120 measures] of the coefficient of variability of the movement
period. Bars encompass the 95% confidence interval of the mean. As
judged by this parameter, timing in adults is at least twice as stable
as in the child group, Seven-year-old children do not fit the general
trend of improving stability with increasing age.)

averaged over all subjects and the two repetitions. The asso-
ciated 95% confidence interval is the largest among the 12 (6
subjects X 2 repetitions) intervals calculated for individual
trials. We averaged the coefficients of linear correlation by
using Fisher’s hyperbolic tangent transform (Kendall &
Stuart, 1979). The results agree with the global analysis sum-
marized by the two data points in Figure 7 that are relative
to the adult control group.

The other two analyses were based on a generalized version
of the two-thirds power law. The formal developments that
led to the predictions actually tested are fully described in the
Appendix. Here we present the qualitative arguments. Con-

sider the general class of elliptic motions whose tangential
velocity satisfy the constraint V(¢) = K R(¢)* for some positive
values of K and . We use the term generalized Lissajous
elliptic motion (GLEM) to define this class. LEMs such as
those produced by our adult subjects are simply special cases
of GLEMs corresponding to the condition 8 = 1/3. We can
show that for a given ellipse (i.e., for fixed values of the
perimeter P and the eccentricity Z) and for a given value of
the velocity-gain factor K, the period T of a GLEM is uniquely
defined by the exponent g (see Equation 13 in the Appendix).
Thus, a comparison between the experimental (T.) and the-
oretical (T,) values of the period affords a stringent test of the
internal consistency of the results. Internal consistency implies
that the observed deviations of the exponent from the value
1/3 are not artifactual. The comparison was performed on all
1,080 recorded trials. We calculated the perimeter and the
eccentricity of each trace from their best elliptical approxi-
mation (see the previous discussion). The average gain K and
the exponent 3 were estimated from the regression of log V
on log R (as illustrated in Figure 6). The 1,080 pairs of T
values (observed and predicted) were binned into adjacent
classes according to the corresponding value of 8 (class size =
0.1). Finally, within each class separately we performed a
linear regression analysis of the two measures of the period to
verify that high correlation is not the artifactual result of
increasing the range of variability of the variables being re-
gressed. The results (Figure 10) are very satisfactory. Indeed,
independent of the preceding formal developments, the vari-

»
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radius of curvature «cm)

Figure 6. The two-thirds power law: data from two trials (templates
P, and Pg) in 1 adult subject. (These typical examples demonstrate
the linear relationship that exists between the logarithms of the radius
of curvature and the tangential velocity. In linear scales, this relation
corresponds to the power law V' = K R* The constant K [velocity-
gain factor] is estimated by the intercept of the linear regression with
the line R = 1. The exponent § is estimated by the slope of the
regression line. In adults, the exponent is insensitive to the size of the
movement and takes values close to 1/3. Changes pf the average
velocity as a function of size [see Figures 3 and 4] are only reflected
in a modulation of the velocity-gain factor K.)
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Figure 7. Evolution with age of the parameters of the two-thirds
power law: exponent. (The lower panel denotes exponent 8 in the
empirical power function ¥ = K R’ 8 was estimated by linear
regression analysis [as illustrated in Figure 6]. The upper plot denotes
the coefficient of linear correlation for the log R-log V relationship.
In both plots data points are averages over all trials and all subjects
in each age group {120 measures]. Bars encompass the 95% confi-
dence interval of the mean. At all ages, the exponent in children
differs significantly from the typical adult value. Convergence toward
this value is not achieved yet at 12 years of age. Five-year-old children
do not fit this age-related trend.)

ability of the actual periods within a class can always be
considered the result of the combined variability of two
factors: the perimeter of the trace and the average velocity of
the movement. The fact that the periods are accurately pre-
dicted by a formula that contains the parameters K and 8
explicitly and that these parameters were computed under the
assumption that the movements are GLEMs strongly con-
firms the validity of the assumption.

We carried out a third test of the fact that the deviations of
the exponent g in children’s movements is not artifactual by
comparing the theoretical and experimental time courses of
the velocity components. We can show that the horizontal
(x(1)) and vertical (y(1)) components of a GLEM are solutions
of a pair of nonlinear homogeneous differential equations (see
Equations 9 and 10 in the Appendix). For a given shape and
size of the ellipse and for any choice of the parameters K and
B, we can predict both the displacement components of the
corresponding GLEM and the associated velocity components
dx(t)/dt and dy(t)/dt. Panels A and B of Figure 11 show two
complete cycles of the theoretical velocity compontnts for 13
equally spaced values of 8 between O and 1. For this simula-
tion, the velocity-gain factor K and the perimeter P have been
fixed to 10 and 26.51 (Ps), respectively. The eccentricity was

the same as that of the templates (£ = 0.9). To make visual-
izing the difference between horizontal and vertical compo-
nents clear, the simulation is relative to an ellipse whose
major axis is horizontal. Moreover, to highlight the effect of
changing the exponent, we scaled the time axis for each value
of 8 by the corresponding value of the period T (see the
previous discussion and Figure Al in the Appendix). Units
on the vertical axes are arbitrary. Clearly, the velocity (and
therefore the displacement) components of a GLEM are not
in general harmonic functions. They are strictly time-sym-
metric, however. Panels C and D in Figure 11 show eight
examples of velocity components from children’s recordings.
To facilitate the comparison with the theoretical predictions,
we selected the examples among the trials with the smallest
values of 3 (see Figure 11). We computed each velocity profile
from the displacement data after rotating the corresponding
original trajectory clockwise by an amount equal to the incli-
nation of its major axis. The deviations of the experimental
velocity components from sine and cosine functions are sim-
ilar to those predicted by the GLEM model. The values of 8
have predictable effects on the law of motion, which supports
the contention that GLEM provides a unifying framework for
describing both adult and child motor performances.

Discussion

In the introduction we argued that an effective approach to
both the degrees-of-freedom problem and the computational
complexity problem is to investigate the constraints that limit
the number of possible implementations of a given motor
goal. The aim of the experiments reported here was to pursue
this approach in the specific case of those constraints that
manifest themselves as covariations between geometric and
kinematic variables of the endpoint trajectory. The basic
assumption in designing the experiments was that an insight
into the nature of these constraints can be gained through the
developmental approach, that is, by comparing the motor
performances at various stages of childhood with mature adult
behavior.

The results concern two aspects of arm-~hand movements
that are well documented in adults: (a) the scaling of endpoint
velocity with movement size (isochrony) and (b) the depend-
ence of velocity on the curvature of endpoint trajectory (two-
thirds power law). Age-dependent differences have been dem-
onstrated for both of these phenomena. The implications of
the findings vis 4 vis the aim of the study are somewhat
different, however, and need to be discussed separately. First,
we consider the phenomenon of isochrony and then the
velocity—curvature relationship. Finally, we attempt to outline
a possible integration of these two aspects of the control of
movement.

Isochrony

The notion of movement size that occurs in the definition
of isochrony must be qualified as a function of the type of
motor task that is executed. With simple closed trajectories
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Figure 8. Evolution with age of the parameters of the two-thirds power law: velocity-gain factor. (Data
points are averages over all subjects in each age group and all trials for a given template [12 measures].
Abscissas indicate the mean perimeter of the trace. Ordinates indicate the parameter K in the empirical
power law ¥ = K R?. K was estimated by linear regression analysis {as illustrated in Figure 6). In a
doubly logarithmic scale all K-P relationships are well approximated by linear functions. Thus, in linear
scales, K and P are related by the power function K = K, P* The intercept of the linear regression with
the line P = 1 [not visible in this plot] estimates log K,. The exponent a is estimated by the slope of the
linear regression. Both of these parameters vary with age [see Figure 9].)

traced repeatedly and continuously, a movement aspect that
is directly involved in setting the average velocity is the total
perimeter P of one movement cycle (Lacquaniti et al., 1984;
Viviani, 1986; Viviani & McCollum, 1983). In these cases
isochrony manifests itself as a power-function relationship
between perimeter and average velocity, or equivalently as a
power-function relationship between perimeter and cycle
period. This second mode of representation was adopted in
Figure 4. Such an empirical fitting described the covariation
between P and T with uniform accuracy for all age groups.
Thus, the discussion of the results can be based exclusively
on the two parameters T, and v of the power function. We
assume (see the Results section) that when faced with the
sequence of templates of different sizes, subjects idiosyncrat-
ically select a baseline tempo (1/To) that is kept spontaneously
constant throughout the execution of the series. We also
assume that the average velocity in a cycle of movement (V,,
= P/T) results from scaling this baseline tempo by a factor
that depends on the estimate of the perimeter P. This modu-
lating action, which represents the very essence of isochrony,
presupposes that the motor-control stage responsible for set-

ting the velocity of the movement has access to an accurate
quantitative estimate of the length of the intended trajectory.
The stability of the P-T relationships (Figure 4) and the fact
that the corresponding exponent v is almost constant across
all children’s groups (Figure S) indicate that (a) such an
accurate estimate is already available before the age of 5, and
(b) the mechanisms that set the velocity on the basis of this
length estimate do not evolve between 5 and 12 years of age.
Such a conclusion does not conflict with the fact (Figure 5)
that age significantly affects the within-trial variability of the
period. Indeed, we have seen (Figure 2, lower-right panel) that
geometric variability also decreases with age and that the
cycle-by-cycle temporal variations were mostly due to corre-
sponding variations in the size of the trace especially in
younger children.

The average adult values of the baseline tempo parameter
and the exponent v deviate significantly from the age trend
within the child population. Adults were intrinsically faster
than children (lower T,), and they kept the variations of the
period across the sequence of template sizes within a 2.5 to |
ratio, which agrees with the results of Viviani and McCollum
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Figure 9. Evolution with age of the parameters of the two-thirds
power law. (Circles represent the intercept [open circles] and the slope
[solid circles] of the linear regression between log K and log P [see
Figure 8]. Triangles represent the corresponding coefficients of linear
correlation. Regression analysis was performed on the averages of K
and P over the two trials for each subject and each template size. The
regression parameters were then averaged over all subjects in each
age group. Within the child group, the sensitivity of the velocity-gain
factor to the movement size () decreased with age, whereas the
baseline value K, increased. This reciprocal behavior is confirmed by
the data points for the adult controls, which nevertheless do not fit
the age-related trend exhibited by children.)

(1983). By contrast, children typically produced a 4 to 1 ratio.
The faster movement rate in adults is in keeping with the
generally increased fluency in most graphic skills that occurs
with increasing age (e.g., Ziviani, 1984). The difference in the
degree of isochrony can be ascribed either to the metric of the
internal representation of the templates or to the mechanisms
that translate the metric properties of the trajectory into an
appropriate set of kinematic parameters. It is clear, however,

Table |
Detailed Analysis of Adult Performances
P avg SD; Cmax r

Pl 344 017 .027 989
P2 .341 014 023 986
P3 338 014 .029 987
P4 335 019 025 989
P5 .339 017 .029 .989
P6 .339 .029 .024 991
P7 341 .010 .020 992
P8 .340 013 .020 .990
P9 338 013 .020 991
P10 334 015 .022 .989
Total .339 016 989

Note. For each adult trial (N = 120) we computed the exponent (3,
its 95% confidence interval, and the correlation r between log V" and
log R. For each perimeter (12 trials) the average (avs) and standard
deviation (SD;) of the exponent, the largest among the 12 95%
confidence intervals (¢max), and the average coefficient of linear cor-
relation (r) is indicated. (Fisher’s z transform was applied before
averaging correlations.) P denotes parameter.

that our experiments do not permit us to decide between the
two hypotheses. Indeed, it is not even obvious whether any
behavioral experiment may afford discriminatory evidence
on this point. At any rate, regardless of the quantitative
differences that exist between children and adults, the pattern
of results suggests that the basis for isochrony is laid in the
early stages of motor development (see the following discus-
sion),

It might be interesting to investigate further the aforemen-
tioned assumption that a significant degree of isochrony nec-
essarily implies the availability of some accurate estimate of
the linear extent of the trajectory. In previous reports on adult
subjects (Schneider, 1987; Viviani, 1986; Viviani & Cenzato,
1985), we presented evidence that complex movements are
decomposed into units of motor action and that isochrony
applies independently to each one of these units. If so, we
ought to be able to use the degree of isochrony as a criterion
for identifying the emergence of the simplest units of motor
action in very young children and for studying the process by
which several units are coupled in the planning of more
complex movements. On this speculative note we conclude
the discussion of isochrony; we now consider the second
constraint observed in the execution of elliptic movements.

Relationship Between Curvature and Velocity:
A Developmental View

First, we consider the question raised in the introduction:
Are developmental data conducive to a better understanding
of the relationship between radius of curvature and velocity?
To discuss this we must reassess the current status of the
empirical two-thirds power law, which purports to represent
the final state of the developmental process. A recent study
on adults (Wann et al., 1988) reported a replication of the
experiments that were at the origin of the law (Lacquaniti et
al., 1983; Viviani & Terzuolo, 1982) and questioned the
heuristic value of the power-law formulation. The main points
of the study by Wann et al. are the following: (a) When the
eccentricity of the ellipse and the rhythm of the movement
are both low, the exponent of the law, as measured by a global
regression technique similar to that illustrated in Figure 4,
deviates from the theoretical '3 value. (b) This deviation can
be interpreted as the result of pooling two heterogeneous sets
of data points in the log R~log V diagram. Each set is well
interpolated by a straight line, but the slopes of the lines are
different. (c) Slope differences can be modeled by a viscoelastic
generalization of the minimum-jerk model (mentioned in the
introduction). (d) As the pace of the movement increases,
slope differences disappear, and the original minimum-jerk
model accurately predicts the two-thirds power law.

To explain point (b), Wann and his colleagues assumed
that peak velocities for both horizontal and vertical compo-
nents are not symmetrically placed within each half-cycle of
the movement (cf. Wann et al., 1988, p. 627, Figure 2). Thus,
they suggested that elliptic trajectories are not traced as a
whole but rather as a sequence of four quarter-cycle segments
each corresponding to a harmonic function with a slightly
different frequency (see also Maarse & Thomassen, 1987).
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Figure 10. Test of internal consistency. (Panels A-E denote log-log scatterplots of the average period
of the movement for each trial [T,] versus the corresponding theoretical value [T,] predicted by the
GLEM model. The 1,080 data points for all recorded trials were distributed in five groups according to
the corresponding value of the exponent 8: A,0 <8< .1;B,.1=8=<.2;C,2=<8=<.3;D,3=s8=<
4, E, .4 < 8 =<.5. Nis the number of data points in each plot. Lines through the data points are linear
regressions [T, over T,]. Panel F denotes the frequency distribution of the exponent 8 for the entire
experimental population. The very high correlation between measured and predicted values of the
period supports the assumptions underlying the GLEM model.)

Numerical simulation showed that good approximations to
an ellipse may be produced with this composition rule and
that each pair of opposite segments gives rise to a distinct
linear segment in the log V-log R plan. These results raise
two questions: First, should the two-thirds power law be
abandoned as a principled description of the relationship that
mutually constrains form and kinematics? Second, can we
interpret the fact that in children the exponent 3 deviates
from the reference value Y3 on the basis of the frequency-
mismatch hypothesis set forth by Wann et al.?

For the first question we must consider both experimental
evidence and theoretical arguments. The experimental data
that bear directly on this question are the results from the 6
adults shown in Table 1. Simple inspection of the table ought
to dispel any doubt about the adequacy of the power-law
formulation. In particular, note that 3 is absolutely independ-
ent of the size of the templates and therefore of the average
velocity of the movement that increases by almost a factor of
10 between the smallest and the largest ellipse. Clearly, we are

not ruling out the possibility that biomechanical factors intro-
duce an asymmetry in the execution of the four quadrants of
the ellipse. Indeed, systematic distortions are known to occur
for certain orientations of the workplane (Soechting & Ter-
zuolo, 1986) and are quite visible in at least one of the traces
reported by Wann et al. (1988). A similar flattening of the
more proximal region of the trajectory was occasionally ob-
served in our experiments as well. The point is that shape
asymmetry alone is not sufficient to violate the power law;
the asymmetry must be present in the relationship between
trajectory and kinematics. Moreover, the specific hypothesis
set forth by Wann and his coworkers (temporal skew of the
component velocities) predicts large asymmetries in the cor-
responding acceleration traces, which we never observed in
our traces. (As far as we know, no one else has presented
evidence of such asymmetries in the case of ellipses.)

Finally, we comment on the aforementioned points (c) and
(d). Work in Viviani and Flash (1990) confirms the observa-
tion that the two-thirds power law is qualitatively satisfied by
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Figure 11.

Comparison of velocity profiles with the predictions of the GLEM model. (Horizontal

[Panel A] and vertical {Panel B] velocity components of a GLEM were computed by solving Equations
9 and 10 in the Appendix [K = 10, P = 26.51, = = 0.9, 0 < 8 < .1]. The major axis of the trajectory is
supposed to be horizontal. The displacement and velocity components are harmonic functions for 8 =
1/3 only. Panels C and D denote eight actual velocity-component traces from several subjects that
correspond to the following estimates of the exponent 8: [1], 0.102; [2], 0.113; [3], 0.124; [4], 0.146;

[51, 0.141; [6], 0.159; [7]. 0.105; [8], 0.116.)

a class of cost-minimizing kinematic models (Flash & Hogan,
1985; Nelson, 1983). Although we have not verified this
directly, a similar agreement most likely exists with a recent
dynamic model based on the minimization of torque change
(Uno et al., 1989). The observation does not detract from the
interest of the power-law formulation, however, for at least
two reasons. First, the power law applies to all sorts of
trajectories. Only in the case of ellipses (and when the expo-
nent is exactly 3) does it imply the Lissajous mode of gener-

ation. Inflections cannot be handled by the power law in the
present form, but work in Viviani and Flash (1990) indicates
that a simple generalization of the law exists that covers these
exceptional points. Thus, the power law is consistent with but
not dependent on the oscillatory models of movement and
their possible physiological underpinnings. In addition, the
implications of the two formalisms vis & vis the control of
movement are prima facie quite distinct. Analytically, the
minimum-jerk model solves the following problem: Given
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the initial position, the final position, and (optionally) the
position of one via point together with the corresponding
boundary conditions (time at the via point is not specified),
find the trajectory and the law of motion that minimize
average quadratic jerk. Thus, the model does not solve the
problem of “negotiating a given trajectory while minimizing
transients” (Wann et al., 1988, p. 623): The trajectory is part
of the solution and depends (sometimes whimsically) on the
boundary conditions (Viviani & Flash, 1990). By contrast,
the power law admits an interpretation in which the trajectory
is truly given a priori and the control system uses the form-
kinematics constraint to generate the law of motion along this
trajectory (the law of motion is the function / = /(¢) that
describes the increase with time of the curvilinear coordinate).
Because the two formulations are related but not mathemat-
ically equivalent, it would actually be interesting to discover
what global cost function is minimized by a system that
complies with the power law. At any rate, on the basis of our
data in adult subjects and the considerations presented earlier,
we believe that there are no reasons to abandon the power-
law approach for characterizing adult performances.

We now turn to the second question, namely the interpre-
tation of the deviations of the 8 value in children. A priori,
the velocity-skew hypothesis invoked previously appears in-
adequate because the conditions for the skew to appear (at
least in adults) are not met in our experiments. Even the
youngest children, who deviated the most from the required
eccentricity, never produced ellipses with Z less than 0.8,
whereas in the experiments by Wann et al. (1988) the devia-
tions of the exponent § is only appreciable for £ = 0.6.
Moreover (as discussed before), neither the velocity (see Figure
11) nor the acceleration traces showed evidence of the skew
asymmetry that is supposed to be the cause of the exponent
variability. It is still possible, however, to relate the deviations
of 8 to the stiffness of the biochemical system, as Wann et al.
suggested. As shown in the Appendix, a GLEM can be de-
scribed as the motion of a mass-spring system in which the
relationship between displacement and force is nonlinear:
d*x/di? + F(x, P, Z, Ko, a, 8) = 0. The incremental stiffness
term (dF/dx) of the system is constant only if 3 = 4. For
8 < Y the restoring force is a positively accelerated function
of the displacement from the equilibrium point. Conse-
quently, one could speculate that the increase with age of the
power-law exponent and the associated changes in the kine-
matics of the movement are the overt manifestation of a
maturational process through which the neuromuscular sys-
tem evolves toward a linear behavior.

Even if this suggestion has some validity, it is totally un-
warranted on the basis of simple behavioral data to advance
hypotheses of the means by which the motor-control system
achieves such a linearization. We maintain, however, that the
analysis of children’s performances has permitted us to recast
the power-law formulation in a broader perspective by dem-
onstrating that such a formulation is not a mere restatement
of the oscillatory theory. A simple relationship between form
and kinematics is preserved throughout the evolution of the
motor performance with age, and a minimal generalization
of the original power law proved sufficient to describe one
important aspect of this evolution.

Relationship Between Isochrony and Power Law

In essence, the two-thirds power law posits a factorization
of the tangential velocity into two components. On the one
hand, the velocity-gain factor K expresses the scaling of the
average velocity over one unit of motor action and depends
on a global geometric parameter of the unit (its linear extent).
On the other hand, the curvature term expresses the instan-
taneous dependence of the velocity on a local differential
parameter of the trajectory. The same interpretation carries
over to the generalized version of the power law and aliows
one to deduce the phenomenon of isochrony from these two
factors of the velocity. Specifically, in the case of GLEMs it
18 possible to work out an exact formula (see the Appendix)
which predicts that the period T is a power function of the
perimeter P of the ellipse: T = P' ¢~ *G(g, Z)/K,, where G(8,
Z)is a known function of its arguments. Recall that the actual
relationship between T and P (Figure 4) was described (em-
pirically) by a power function T = T,P". Thus, the accuracy
of the prediction can be gauged simply by comparing the
exponent v with 1 — 8 — « and comparing the multiplicative
constant T, with G(B8, Z)/K,, respectively. To carry out this
comparison, we characterize the performance of each subject
(children and adults) as follows. We computed the exponents
o and v and the coefficients K, and T, by linear regressions
through the 20 data points (two repetitions and 10 perimeters)
that corresponded to all of the trials recorded from that
subject. The exponent 3 was estimated by the average of the
slope parameter in the log V-log R regression over the same
trials. The parameter £ was estimated as the average eccen-
tricity of all ellipses. Finally, the observed values v and T,
were regressed linearly over the corresponding predictors 1 —
a — 3 and G(B, Z)/Ko. The results were quite satisfactory (v:
slope = 0.990, intercept = 0.022, correlation = .977; T, slope
= 0.970, intercept = —0.040, correlation = .988). The fact
that both of the idiosyncratic variations of «, 8, v, Z, Ko, and
T, from subject to subject and their systematic changes across
age were mutually related as predicted supports the notion
that isochrony is rooted in the specific factorization of the
tangential velocity expressed by the generalized power law.

Clearly, the aforementioned deduction of isochrony from
more primitive concepts is not a true explanation of the
phenomenon. One crucial effect—the dependence of the ve-
locity-gain factor on the linear extent of the unit of motor
action—is still an empirical fact waiting for a satisfactory
psychophysiological interpretation. We maintain, however,
that such a deduction is useful insofar as it permits one to
state the problem of isochrony in a conceptual framework
that is independent of the specific trajectory being traced. It
is then possible not only to compare the case of simple figures
such as those considered here with that of complex patterns
formed by more than one unit (Viviani & Cenzato, 1985) but
also to investigate nonperiodic movements. In particular, we
are now testing the proposed factorization of the tangential
velocity in the case of continuous extemporaneous move-
ments for which the notions of perimeter and period have no
meaning (Viviani & Schneider, 1990). Moreover, the separa-
tion within each unit of motor action of the role of the linear
extent from that of the curvature ought to make it easier to
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test the hypothesis that isochronous behavior is an emerging
property of the minimum-jerk model (Flash & Hogan, 1985).

Are the Constraints Innate or Learned?

Qualitatively, the results that concern the relationship be-
tween curvature and instantaneous velocity confirm the con-
clusion reached in the discussion of isochrony: This structural
constraint is already active at a relatively early stage of devel-
opment. Moreover, the quantitative differences between the
parameters of the R-V relation in children and adults are
roughly of the same order of magnitude as those observed in
the establishment of isochrony. Thus the genesis of these two
properties of the motor-control system calls for similar com-
ments. Constraints may be progressively imposed, through
learning, on an unconstrained initial state. For learning to
occur, however, it must be driven either by prescription and
imitation or by some cost-effectiveness trade-off. The first
hypothesis runs into the well-known difficulty that has already
been pointed out in other domains: There iS not enough
environmental evidence to provide the developing baby with
a consistent body of norms. Isochrony and the two-thirds
power law manifest themselves as accurate covariations of
" geometric and kinematic parameters that are very difficult to
apprehend perceptually. In fact, recent visual experiments
(Viviani & Stucchi, 1989, 1990) demonstrated that both the
geometry and the velocity of movements that do not comply
with the two-thirds power law are perceptually distorted. If
anything, these results suggest that visual perception is influ-
enced by some specific properties of the motor system and
not vice versa. On the other hand, proprioceptive reafferences
might be sufficiently accurate to provide a veridical represen-
tation of the constraints when they are present, but clearly
they cannot alone provide the appropriate input for a learning
process. The second hypothesis is supported by certain cost-
minimizing models that predict both a correlation between
curvature and velocity and a certain degree of isochrony.
Note, however, that the cost being minimized—be it jerk or
torque change (see the previous discussion)—is hardly the
kind of feedback information considered effective for learn-
ing. Finally, the learning hypothesis seems to be inconsistent
with the fact that certain performance parameters undergo
regression phases in their evolution with age (cf. Figures 2, 5,
and 7). Indeed, whenever regression phases have been docu-
mented in motor, perceptual, and cognitive performances
(Bever, 1982; Lockman & Ashmead, 1982; Mounoud et al.,
1985; Werker & Tees, 1983) it proved impossible to ascribe
them to a learning process. This difficulty is all the more
serious in our case, that temporal, geometric, and relational
parameters exhibit regressions at different ages.

As an alternative to the learning hypothesis, consider the
possibility that the P-J7" and R~} covariations emerge epige-
netically as part of the general process of motor development
that takes place in the earliest years of life. The question was
raised by Sciaky et al. (1987) in a developmental study of the
relationship between curvature and velocity. These authors
assumed the validity of the two-thirds power law at all ages
and concentrated on the coefficient of linear correlation be-
tween log V and log R”. The evolution between 5 and 12

years of the correlation for freehand elliptic movements was
compatible with an unconstrained initial state (Sciaky et al,,
1987, p. 524, Figure 4), as the epigenetic hypothesis suggests.
Nevertheless, the results of this study are subject to caution
because as we have shown the assumption that 3 = 3 at all
ages is incorrect. This may explain why the correlations
measured by Sciaky et al. are much lower than those reported
here (upper panel, Figure 7; see also Wann, 1989). Although
only appropriate measurements in babies and younger chil-
dren may be able to settle the point, we maintain that the
age-related trends in our experiments make the epigenetic
hypothesis somewhat unlikely. In fact, a truly unconstrained
initial state implies a zero correlation both between average
velocity and perimeter and between instantaneous velocity
and radius of curvature. This is certainly not suggested by
backward extrapolation of the correlation plots in Figures 5
and 7: For these plots to converge toward 0, we need to
postulate a fairly abrupt evolution of the correlation within
the first years of life, which, although possible, is unusual in
the context of motor development (Mounoud, 1986).

On the basis of our evidence, it seems reasonable to accept
the provisional conclusion that the psychophysiological bases
for the establishment of the constraints are part of the genetic
endowment. The fact that the measurable manifestations of
these constraints evolve over the entire range of age covered
by the experiments and that the evolution is not yet completed
at the inception of puberty demonstrates, however, that the
full deployment of such an inborn characteristic of the motor-
control system is a surprisingly elaborate process.
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Appendix

The GLEM Model

We derive the predictions of the GLLEM model that are relevant to
the discussion of the experimental data. Assume that at all points of
the trajectory that are sufficiently removed from inflections, the power
law

Viy=KR@qy, B8=z=0, (1

provides a good approximation of the actual relationship between
tangential velocity V and radius of curvature R. From kinematics we
know that

V() = [(dx/dt)z -+ (a’y/d[)Z]l/z 2
and
R(t) = V?/Udy/dr*Ydx/dt) = (d*x/dr*)dy/dD)]. &)

By substituting Equations 2 and 3 into 1, expressing the time deriv-
atives of the y components in terms of the time derivatives of the x
component, and rearranging, we get

(dx/di\d?y/dx*F[1 + (dy/dx)|* = 2 = K. 4

For a given trajectory y = f(x), the derivatives dy/dx and d?y/dx? are
explicit functions of x, and Equation 4 becomes a nonlinear differ-
ential equation of the first order in ¢

dx/dt = Wix, t, 8, K). (5)

In the case of GLEMs, the trajectory is an ellipse with semiaxes 4

and B (4 = BY:
y = H(B/ANA — X772, (6)
dy/dx = +(Bx/A)A* — x?)"12, @)
and
d*y/dx? = +AB(4* — xH)", 8)

By substituting Equations 7 and 8 into Equation 4 and expressing
the result in the form of Equation 5, one finally gets

Cj.x/d[ = K(AB)-U (AZ - xZ)]/Z/(AZ —_ ZZNXZ)(I - 3d)/2,
—A=x=A4,ZT=(1-(B/AN8=0. 9
Similar arguments lead to an analogous expression for the y compo-
nent:
dy/di = K(AB)™ (B? — y)'\2/(B? — T3 — 3972
~-B=y=B I¥=(1-(A4/B). (10)

The values dx/dt and dy/dr vanish whenever x = +4 and y = +B,
respectively; and they have an extremum whenever x = 0 and y = 0,
respectively. Thus, Equations 9 and 10 have periodic solutions of
equal frequency for all values of the parameters 4, B, 8, and K. These
solutions can either be expressed as series of Jacobi elliptic functions
or be computed by numeric integration. Figure Al shows five illus-
trative examples of the solutions x(7) and 1(¢)that correspond to = =



GEOMETRY AND KINEMATICS IN DRAWING

217

Y 4

v ‘max
B=1 \<j /o —

, v 4 V-kR®
B=% \l<j Roin 1 Rimax R
5 -

V ..-

B-1 \//_ T=f(Pk B,&)
B=o \//———‘——

0

Figure Al.

time T

Simulated examples of GLEMSs: horizontal (x) and vertical (y) components of an elliptic

movement that satisfies the generalized power law (Equation 1). (For each of the five indicated g8 values
the components were computed by solving the differential Equations 9 and 10 in the Appendix. Zero
lines for plotting the components are spaced according to the corresponding values of 8. In this
simulation the parameters of the trajectory of the movement were set as follows: P = 26.51 cm, 2 =
0.9, and the major axis was horizontal. The velocity-gain factor K was set to 10. Notice that the
components are harmonic functions only when 8 = 1/3. The dotted line represents the function T =
fIP, K, 8, Z] [Equation 13]. The inset diagram illustrates the significance of the parameter £.)

0.9, P = 26.51, K = 10, and the five indicated values of 3. When g =
1/3 (and only then) both Cartesian components of a GLEM are
harmonic functions. Even relatively small deviations from this special
value result in noticeable departures from sine and cosine functions,
which become even more apparent if one considers the velocity
components and scales the periods as in Figure 11. As for the period
of the solutions, we notice that Equations 9 and 10 are separable.
With the change of variable x = 4 sin & and through the use of the
notation

/2
'@, 2)= I [(1 — 2? sin?®@)! ~ 3072]4%, (11)

either one of the two differential equations yields easily:
T = 44' ~ ¥BT(B, Z)/K, (12)

which generalizes the result obtained in Viviani and Cenzato (1985).
Through the use of the complete elliptic integral of the second kind,
E(/2, Z), the semiaxes of the ellipse can be expressed as a function
of the perimeter P and of the eccentricity. Thus, the period can also
be written as

T = 4(P' ~ #/K)(1 — Z?¥[4E(x/2, Z)I ~ 'T(8, Z)
=fP, K, 8, 2). (13)

For a given ellipse, the period of a GLEM depends jointly on the
velocity-gain factor K and on the exponent of the relationship be-
tween R and V. For a fixed value of K, the period T can be either an
increasing or a decreasing function of 8, depending on the range of
oscillation of the radius of curvature (see inset in Figure Al). It can
be shown that for £ = 0.9, dT/dB < 0 whenever the harmonic mean
of the minimum and maximum radius of curvature is greater than
0.172. This condition was satisfied by all of our templates. The dotted
line in Figure Al represents the function T=f(P,K, 8, Z) (0 < g =<
1). Equation 13 provides the basis both for the test of internal
consistency described in the text and for predicting the relationship
between the perimeter of the ellipse and the period of the movement
(Figure 5). From the data in Figure 10 we have derived the empirical
expression K = Ko P*, which relates the velocity-gain factor to the
perimeter. By substituting this expression into Equation 13 one
obtains

T = [G(8, Z)/KoJP' =7~ . (14)

Finally, we show that GLEMs can be interpreted as the motion of an
undamped nonlinear mass-spring system. Differentiating both sides
of Equation 9 with respect to time and eliminating first derivatives
by again substituting Equation 9 in the result gives
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d*x/di* + F(x, P, Z, Ko, a, B) = 0, (15) Easy calculations show that dF/dx is constant for 8 = 1/3, increasing
for 0 < B < 1/3, and decreasing for 8 = 1/3. Expressions similar to

where F is the nonlinear restoring force. The “stiffness” of the system - >
Equations 15 and 16 can be derived for the y component.

is then obtained by differentiating F with respect to x:

dF/dx
- Kl{(AZ — EZXZ)MI =1 .
+ (38 — 1)ZHA? — Sx)(42 — ZxYY -2 Received November 20, 1989
- 2(38 — (38 — 2)=HA4* — x?) Revision received May 15, 1990
X (4> — Z2xD¥ 7 3)/(AB)*. (16) Accepted May 17, 1990 =
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