
Computer Networks 233 (2023) 109863

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Congestion-aware delay-guaranteed scheduling and routing with renewal
optimization
Xiangyu Ren a,∗, Lin Cai a, Pu Yang a, Jiequ Ji b

a Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

A R T I C L E I N F O

Keywords:
Delay-guaranteed scheduling and routing
Cross-layer design
Congestion-aware
Renewal optimization

A B S T R A C T

The emergence of time-critical applications imposes great challenges on traditional best-effort data networks.
Such applications demand delay-guaranteed services with different granularity. In this paper, we propose
a novel fully distributed approach that provides delay-guaranteed services at the packet level within an
autonomous system. Specifically, we adopt priority queues with fixed buffer sizes to provide differentiated
services and per-hop delay upper bound and explore path diversity in the network to achieve multiplex gain.
Network congestion is a major cause of long delay. To address this issue, a virtual queue manager is deployed at
each node in the network to exchange their local queue information with neighbors periodically. The exchanged
queue information reflects the congestion status of the neighborhood so the nodes can avoid congested routes
in making routing decisions. Given the rich control space including routing and queuing decisions, we aim at
maximizing the overall network utility. Due to the randomness caused by network dynamics, we transform
the utility maximization problem into renewal optimization which is solved at each node. A delay laxity-based
reward function and a weighted queue time cost are designed to characterize each decision. To solve the
renewal optimization problem, an algorithm named DSROpt is proposed using an iterative approach. Extensive
experiments are conducted to verify the performance of the proposed solution using NS-3. Simulation results
show that the proposed solution can guarantee packet-level delay while achieving significant performance

improvements in goodput and network utility over the state-of-the-art.
1. Introduction

The Internet is facing new challenges and requirements character-
ized by stringent QoS requirements such as extremely low latency and
extremely high reliability [1,2]. Typical applications including meta-
verse, digital twin, and real-time control involve large volumes of both
delay-sensitive (DS) and non-delay sensitive (NDS) data exchange [3–
5]. Although bandwidth over-provisioning has been adopted as an
engineering solution to satisfy the stringent QoS requirements, how
to effectively and efficiently support both DS and NDS applications
remains an open issue [6,7].

With the existing best-effort Internet services, packets may experi-
ence packet loss and unexpected long latency caused by congestions
or software/hardware failures [8,9]. The distinctions among packets
with different priorities, such as delay requirements, are ignored on the
Internet where all packets are treated equally. Such design is undesir-
able and inefficient with the growing demand for DS applications. It
is crucial to introduce priority to networks and provide differentiated
services (DiffServ) to different applications to ensure service quality
and high network resource efficiency.

∗ Corresponding author.
E-mail addresses: jamesrxy@uvic.ca (X. Ren), cai@ece.uvic.ca (L. Cai), puyang@uvic.ca (P. Yang), jiequ@nuaa.edu.cn (J. Ji).

The routing and scheduling problem to provide end-to-end (e2e)
delay-guaranteed service for DS applications has been extensively
studied from different aspects. In recent years, the deterministic net-
work (DetNet) led by the IETF DetNet working group has become
a hot research topic to provide delay-guaranteed services on a per-
deterministic-flow basis by exploring explicit data paths [10,11]. The
DetNet takes the joint effort of both layer three routed segments and
layer two bridged segments using technologies such as multiprotocol la-
bel switching (MPLS), software-defined network (SDN), and IEEE 802.1
Time-Sensitive Networking (TSN) [12–14] in a centralized manner. The
data traffic of each deterministic flow is delivered with guaranteed
delay and low delay variation constraint via resource reservation [15].
To find the optimal routes with guaranteed delay in a given network,
several routing algorithms have been proposed using the worst-case
delay [16–18]. However, the existing approaches have various limita-
tions. Resource reservation-based solutions guarantee delay at the cost
of multiplexing gain. The worst-case delay-based routing algorithms
can be too conservative to serve DS applications with low latency re-
quirements. The flow-based traffic engineering solutions face scalability
vailable online 8 June 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109863
Received 15 February 2023; Received in revised form 2 May 2023; Accepted 2 Jun
e 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:jamesrxy@uvic.ca
mailto:cai@ece.uvic.ca
mailto:puyang@uvic.ca
mailto:jiequ@nuaa.edu.cn
https://doi.org/10.1016/j.comnet.2023.109863
https://doi.org/10.1016/j.comnet.2023.109863
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109863&domain=pdf

Computer Networks 233 (2023) 109863X. Ren et al.
issues and cannot guarantee delay at the packet level. In addition, these
solutions are unaware of the deadlines of each packet when making
routing decisions and fail to handle congestion caused by network
dynamics.

On the other hand, the distributed e2e delay-guaranteed solution
at the packet level is underexplored given the following challenges.
First, it is difficult to handle large variations in the e2e delay. The
highly dynamic feature in e2e delay is mainly caused by the varying
queuing delay at each hop in the network and is difficult to predict
due to the randomness in network traffic. Second, the diversity in delay
requirements. For most DS applications, packets belonging to the same
flow can have different priorities or delay requirements. For example,
I/B/P frames have different importance for MPEG videos [19]. How
to effectively guarantee various delay requirements at the same time,
i.e., satisfying high-priority packets without starving the low-priority
packets, remains a critical task. Last but not least, how to efficiently
handle the bursty traffic while guaranteeing delay with good load
balance is challenging. The traditional shortest-path routing algorithms
can result in heavy congestion in certain paths due to bursty traffic
causing long queuing delay and high packet loss rate.

To bridge the gap, we propose a novel distributed, delay-
guaranteed, and congestion-aware network architecture called delay-
guaranteed scheduling and routing (DSR) which provides DiffServ to
various applications and guarantees the packet-level end-to-end delay.
DSR explores a new possibility that enables collaboration across layers
and among neighboring routers. The solution is feasible to be adopted
in an autonomous system and is backward-compatible with existing
network infrastructure with acceptable modifications. Specifically, each
DS packet carries a maximum tolerable delay requirement called delay
budget specified by the source application. The network is responsible
for delivering the packet within its delay budget using information
collected from both the network layer and the link layer. The priority
queue is adopted to provide DiffServ to packets with different delay
requirements. Given the randomness of network traffic, we rely on
the per-hop delay upper bound to guarantee the e2e delay, where
each priority queue is assigned a fixed buffer size and service rate.
Moreover, to avoid congestion due to bursty traffic in the network,
neighboring routers exchange their congestion information periodically
so the upstream node can adjust routing decisions in advance.

In addition, an efficient packet scheduling algorithm is fundamen-
tal to a distributed routing protocol to achieve high network utility.
Although many routing and scheduling algorithms have been heav-
ily explored in the literature to maximize throughput [20–22], these
throughput-optimal scheduling may suffer severe queuing delays be-
cause only the backlog-gradient are considered and they are unaware
of the temporal correlation between each scheduling decision.

To address these issues, we develop a scheduling and routing solu-
tion named DSROpt that makes routing decisions and schedules packets
to different priority queues by jointly considering their delay budgets,
queuing delay, and neighborhood congestion status. For simplicity, we
refer to the scheduling and routing decision space for each packet
as a forward decision set and each scheduling decision as a forward
decision. To this end, we formulate an optimization problem that max-
imizes the overall network utility under the constraint of the e2e delay
requirement of each packet. We solve the problem in a fully distributed
manner where each router determines a suitable forward decision for
each packet. The main contributions of this work are three-fold:

• We achieve the e2e delay-guaranteed service using a cross-layer
approach, where the link layer queue management and the net-
work layer distributed routing work together to guarantee e2e
delay at the packet level.

• We propose a novel scheduling and routing algorithm to improve
network utility by solving a renewal optimization problem at each
node. The proposed algorithm is run by each router which selects
the optimal forward decision for each packet by considering
2

the delay requirement, queue status of the current node, and
the congestion status of the downstream nodes. The proposed
algorithm maximizes the reward per unit time cost ratio using
an iterative approach to improve the overall network utility.

• To verify the performance of the proposed solution, we build a
prototype in the NS-3 simulator. Extensive simulations are con-
ducted to evaluate the proposed DSR solution with comparisons
to the state-of-the-art and benchmarks. The results show that
DSROpt is capable of providing DiffServ, guaranteeing e2e delay,
reducing packet loss caused by congestion, and achieving high
network utility.

The rest of the paper is organized as follows: Section 2 introduces
the related work. Section 3 presents the system model and problem
formulation. The design details and working mechanisms of DSR are
explained in Section 4. In Section 5, the simulation settings and ex-
perimental results are explained and analyzed. Finally, conclusions and
future research issues are discussed in Section 6.

2. Related works

2.1. Delay-guaranteed network architecture

In [23], a latency-based forwarding (LBF) solution was proposed
to achieve high-precision latency objectives. LBF focused on a link
layer forwarding strategy where each node takes different actions on
receiving the packet. LBF consists of two major parts, i.e., latency
budget determination and QoS Action. The actions taken at each node
to guarantee delay depend on the packet’s remaining latency budget,
destination, and the latency encountered. The Push-In First Out (PIFO)
queue was adopted to insert the packet to a specific position that
satisfies the latency budget’s lower bound. However, the LBF did not
involve routing and requires prior knowledge of the routing path for
each packet, which may cause delay guarantee failure due to network
dynamics or router failure. In addition, the PIFO enqueue strategy
applied in LBF may cause strong decision interference among successive
packets and result in longer delay than expected.

An adaptive routing protocol was proposed in [24]. The solution
assumes that the remaining delay budget for each arriving flow is
known to the network. The delay upper bound and the typical delay
of each link are exchanged in the network to generate a lookup table
indicating the guaranteed delay bound to reach the destinations. In
the run-time phase, the node selects the path with the smallest typical
delay and checks whether the delay budget of the path is within the
remaining delay budget. However, the typical delay is highly dynamic.
Therefore, it either requires a high overhead to collect this information,
leading to high oscillations of path selection and congestion; or the
typical delay used in the algorithm is inaccurate leading to poor path
selection. Moreover, the maximum delay of each hop is very high, so
the algorithm may frequently fail to find a suitable delay-guaranteed
path even if such a path exists.

2.2. Delay-based scheduling and routing protocol

The backpressure (BP) routing algorithm has been widely adopted
to achieve throughput optimality by stabilizing the network [20,21].
The original BP algorithm used the backlog gradient to formulate
the throughput problem, which, however, suffers from severe queuing
delay. To address this problem, many extensions of the BP algorithm
have been developed in terms of different congestion gradient metrics.
In [22], a sojourn time-based BP algorithm (STBP) was proposed. The
accumulated sojourn time of buffering packets describes the conges-
tion status of each queue instead of queue length. The sojourn time
backlog measurement has the advantages of faster increment, reducing
random walk packet delay and last packet delay. More recently, a
routing algorithm that takes the advantages of both BP and max-
weight scheduling algorithms named MW+BP was proposed to achieve

Computer Networks 233 (2023) 109863X. Ren et al.
Table 1
Notations and definitions.

Symbol Definitions

 Set of nodes
 Set of priority queues
 Set of forward decision
 Set of profits achieved by each queue
𝑇𝑏𝑢𝑑𝑔𝑒𝑡 End-to-end delay requirement (delay budget)
𝑅 Link rate
𝑇WRR Total service time of each round-robin period
𝑇𝑘 Delay upper bound of queue 𝑘
̂ Set of simplified forward decision
ℎ𝑘
𝑖,𝑗 Forward decision for each packet, 𝑖, 𝑗 ∈ , 𝑘 ∈

𝑄𝑘
𝑖,𝑗 [𝑡] Queue length of queue 𝑘 at port 𝑗 of node 𝑖 at time slot 𝑡

𝐵𝑘 Buffer size of queue 𝑘
𝑤𝑘 Portion of service time assigned to queue 𝑘
GI Delay upper bound of the highest priority queue
Cost(⋅) Routing cost (delay) of a path
𝑔𝑑 (⋅) Network utility function for delay-sensitive packet
𝑔𝑛(⋅) Network utility function for non-delay sensitive packet
𝑇 ∗
𝑏𝑢𝑑𝑔𝑒𝑡 Residual delay budget

𝑇ℎ𝑜𝑝 Per-hop delay budget
𝛼 Control parameter for queue management
𝛾 Congestion index
𝐺𝑘

𝑖,𝑗 [𝑡] Output gain of ℎ𝑘
𝑖,𝑗 at time slot 𝑡

𝑇 𝑘
𝑖,𝑗 [𝑡] Time cost of ℎ𝑘

𝑖,𝑗 at time slot 𝑡
𝜃 Reward per unit time cost ratio
(⋅) Complete cost-reward pair set
𝐿 Delay laxity
𝑃𝑘 Profit achieved using queue 𝑘

overload balancing [25] in a single-hop network with bounded buffers,
where the max-weight part aims to serve longer queues while the BP
part balances the load between ingress and egress buffers. However, the
existing approaches are insufficient to achieve delay-guaranteed service
at the packet level. First, the diverse delay requirements of different
packets of the same flow are not considered. Second, the temporal
correlation between scheduling decisions is not fully explored. Last,
considering the queue delay of the current node only is insufficient
because the packet may be dropped due to congestion in the next hop.

3. System model and problem formulation

We first give the design details of the proposed DSR network archi-
tecture. Then, we present the design objective and problem formula-
tion. Table 1 summarizes the notations and definitions frequently used
in this paper.

3.1. Network architecture

3.1.1. Router structure
The per-hop delay in a network is mainly composed of queuing

delay, processing delay, transmission delay, and propagation delay. In
this paper, we focus on the queuing delay as it is the major cause of the
e2e delay variation of packet delivery. While the instantaneous queuing
delay varies quickly due to high uncertainties in packet arrival rate, we
adopt the queue delay upper bound for route calculations. Each router
in the network maintains the delay upper bound of each queue by
fixing the buffer size and service rate. In addition, it exchanges its local
queue information with neighbors to advertise congestion information.
An overview of the router structure is shown in Fig. 1.

Each port of the router is deployed with a set of priority queues to
provide DiffServ for DS and NDS packets. The queues can be classified
into two categories in terms of service types, namely delay-guaranteed
(DG) queues, and best-effort (BE) queues. DG queues provide delay-
guaranteed services for the DS packets while BE queues only serve NDS
packets without any delay guarantee. Using multiple priority queues
for DS packets helps to provide finer granularity of delay-guaranteed
services and a rich forward decision set. To avoid always starving
3

Fig. 1. Router structure overview.

Fig. 2. System model overview.

low-priority queues, the weighted-round-robin (WRR) scheduling ap-
proach [26] is adopted where each queue is assigned with a certain
portion of service time, i.e., weight, for packet transmission. Thus, the
per-hop delay of each DG queue is upper bounded by fixing the buffer
size and weight of each queue.1 Note that in DSR, we assume a shallow
buffer size for each DG queue to guarantee a tight delay upper bound.2
Since the BE queue does not guarantee a delay upper bound, its buffer
size can be sufficiently large to store more NDS packets.

However, bounding the per-hop delay alone is insufficient to guar-
antee the e2e delay performance because packets may be lost due to
network congestion [27]. In this paper, we address network congestion
in the network layer via neighbor routers information exchange and
re-routing. A virtual queue manager (VQM) is designed for collecting
and exchanging queue information with neighbors as shown in Fig. 1.
In general, VQM in each router collects the local queue information,
i.e., the queue length of each priority queue, and exchanges it with
neighbors. The queue information essentially reflects the congestion
status of each router. In this case, routers are aware of network conges-
tion and are able to adjust forward decisions for each packet in advance
before congestion becomes severe.

3.1.2. System model

The system model of DSR network architecture is shown in Fig. 2
following the design principle proposed in [28]. We assume every DS
packet carries a delay budget in its packet header before being injected

1 For example, for a router with the link rate of 𝑅 Mbps requiring a queue
delay upper bound of 𝑇𝑘 ms in queue 𝑘, the corresponding buffer size should
be at most 𝐵𝑘 = 0.125𝑤𝑘𝑅𝑇𝑘 KB, where 𝑤𝑘 is the weight allocated to queue 𝑘.

2 We assume a light weight of DS traffics in the network and the tradeoff
between buffer size and packet drop is beyond the scope of this paper.

Computer Networks 233 (2023) 109863X. Ren et al.

i
a
t
e

I
s
r
n

l

r
c
𝑘
w
T
i

2
a
p
i
c
t
c
c
b
d
c
s

w
T
p

d
f

p
c

Fig. 3. DSR-enabled network with finite buffers.

nto the network. The delay budget is used by routers to make routing
nd scheduling decisions to guarantee the e2e delay requirements. In
he meantime, routers monitor their local queue information while
xchanging two types of information with each other, i.e.,

• Link-state information including delay upper bound of the high-
est priority queue (denoted by GI).3 GI is broadcast in the en-
tire network similar to the link state information used in the
open-shortest-path-first (OSPF) routing protocol [29].

• Neighborhood queue information (NI), i.e., the local queue in-
formation shared by neighboring routers. NI is useful for route
selection and congestion avoidance. Note that NI is exchanged
more frequently at the level of a few milliseconds.4

Routers in the DSR network generate forwarding tables based on GI.
t is worth noting that unlike single-path link state routing protocols
uch as OSPF, DSR-enabled routers adopt multipath exploration to
each the destination by computing the shortest paths rooted from their
eighbors. For example, for a target pair from 𝐴 to 𝐹 as shown in Fig. 2,

three shortest paths can be obtained at router 𝐴 by running the shortest
path algorithm from router 𝐵, 𝐶, and 𝐷, respectively, based on the
ink-state information.

In our routing algorithm, multipath exploration provides larger
outing decision space at the cost of increment in time and space
omplexity. In a network consists of 𝑛 nodes and an average number of
neighbor nodes. The time complexity of DSR increases to 𝑂(𝑘𝑛 log 𝑛),
hile the time complexity of a single-path routing protocol is 𝑂(𝑛 log 𝑛).
he space complexity for maintaining a forwarding table at each router

ncreases from 𝑛 (for single-path routing protocol) to 𝑘𝑛.
We numerically analyze the gain achieved by DSR using a simple

× 2 grid topology as shown in Fig. 3, where the link rate is fixed
t 20 Mbps. A source application deployed in node 𝐴 sends 1000 DS
ackets to the destination in node 𝐷 with a constant sending rate. We
ncrease the sending rate by 5 Mbps from 5 Mbps at each simulation. We
ompare DSR with OSPF and show their throughput performance varia-
ions under different sending rates. As shown in Fig. 4, the blue and red
urves show the goodput performance of DSR and OSPF, respectively,
onsidering packet delay requirements (i.e., packets exceeding delay
udget are ignored. For simplicity, we refer to it as goodput.). The black
ashed curve indicates the total throughput achieved by OSPF without
onsidering delay requirements, and the magenta curve indicates the
ending rate of the application.

As shown in Fig. 4, both DSR and OSPF achieve high throughput
hen the sending rate is lower than the link capacity (i.e., 20 Mbps).
heir performances diverge from 15 Mbps when the sending rate ap-
roaches the link capacity. OSPF in particular only achieves a total

3 The highest priority queue is chosen because it is the minimum per-hop
elay that can be guaranteed by each router and it allows a finer granularity
or path selection, especially for urgent packets with small delay budgets.

4 For easier implementation in practice, NI of each router can be a few bits
iggybacked in the frame header. In this context, the additional bandwidth
4

ost of NI exchange is only a few Kbps. p
Fig. 4. Numerical analysis of DSR throughput improvements.

throughput of around 15 Mbps and a low goodput of less than 5 Mbps
when the sending rate exceeds the link capacity. On the other hand,
DSR maintains an increasingly high goodput performance and only
starts to decrease when the sending rate exceeds 40 Mbps (2 times the
link capacity). The performance gain achieved by DSR is because both
paths (𝐴 → 𝐵 → 𝐷 and 𝐴 → 𝐶 → 𝐷) are used for packet transmission.
Specifically, the scheduler at node 𝐴 selects a different path if the
original path is congested. However, when the sending rate approaches
twice the link capacity, both paths become congested and packets will
be dropped directly, causing goodput performance degradation.

In summary, DSR adopts priority queues to provide DiffServ while
using per-hop delay upper bound maintained by each router to explore
multiple routing paths with various delay guarantees. In this context,
a rich set of forward decisions including routing and queuing decisions
at each hop can be obtained, which allows huge scheduling space to
accommodate bursty traffic via load balancing. Therefore, an efficient
routing and scheduling algorithm to determine the optimal forward
decisions is crucial in the proposed DSR network.

3.2. Network model

In this paper, we consider a network that is modeled as a graph
 = ⟨ ,⟩, where is the set of routers (we use node and router
exchangeable in the rest of the paper) and is the set of links. Let 𝑁
and 𝐿 be the number of nodes and links in the network, respectively.
Denote 𝑅 as the link rate and the link rate between two neighboring
nodes 𝑖 and 𝑗 is denoted by 𝑅𝑖,𝑗 . Denote 𝑖 as the set of neighbors
of node 𝑖 with the size 𝑁𝑖. For simplicity, we assume each node is
connected with its neighbor node via a specific port and the port ID is
the same as the neighbor ID. For example, in Fig. 3, node A is connected
to node B via port B at node A.

Let be the set of priority queues deployed at each port and has the
size of 𝐾. The buffer size of each queue is denoted by 𝐵𝑘, 𝑘 ∈ which
guarantees a delay upper bound denoted by 𝑇𝑘, and 𝑇1 < 𝑇2 < ⋯ < 𝑇𝐾 .
In addition, we assume each DS packet carries a tuple of information
denoted by = {𝑇𝑏𝑢𝑑𝑔𝑒𝑡, 𝑇𝑠𝑡𝑎𝑟𝑡} in its header, where 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 is the delay
budget and 𝑇𝑠𝑡𝑎𝑟𝑡 is the set-off time at the source node.5 The routers in
DSR network select a route and a corresponding queue for each packet.
We couple the route and queue selection and refer to it as a forward
decision. The forward decision for each DS packet is determined based
on at the ingress buffer and an NDS packet will be directly injected
into the BE queue. Let 𝑖 be the complete forward decision set at node
𝑖, then 𝑖 = {𝑖,1,… ,𝑖,𝑗 ,… ,𝑖,𝑁𝑖

}, where 𝑖,𝑗 is the forward decision
set at port 𝑗 of node 𝑖. The size of 𝑖 is denoted by 𝐻𝑖 and thus, there
are at most (𝑁𝑖 − 1) × 𝐾 forwarding decisions at each node excluding
the ingress port. Finally, let ℎ𝑘𝑖,𝑗 ∈ 𝑖 be the forward decision for each
packet in node 𝑖, which indicates that the packet should be enqueued
to queue 𝑘 at port 𝑗.

5 Here we assume all routers are synchronized using time-synchronization
rotocols, e.g., the IEEE 802.1AS standard [30].

Computer Networks 233 (2023) 109863X. Ren et al.

b
{
s
t

3

m
p
s
𝑗
q
p

a
w

𝑄

g

3

s
t

a
a

u
d
t

p
t
p
r
𝛼
e
a
c
d
w
w

4

4

a
e
m
D
t
s
c

4

n
i
𝑇
t
r
c
i
p
c
f
t

r
h
p
l
f
a

s
d
c

3.3. Weighted-round-robin scheduling model

The WRR scheduling strategy is adopted to guarantee the per-hop
delay upper bound of each DG queue and avoid low-priority queue
starvation. Let 𝑇WRR be the total service time of each round-robin
period. Each queue is assigned with a portion of the service time
denoted by 𝑤𝑘, where 𝑤1 > ⋯ > 𝑤𝐾 and ∑𝐾

𝑘=1 𝑤𝑘 = 1. The delay upper
ound guaranteed by each queue can be expressed by 𝑇𝑘 = 𝐵𝑘

𝑤𝑘𝑅
, 𝑘 ∈

1, 2,… , 𝐾}. We further assume that the WRR scheduler at each port
witches to the next queue to serve if the current queue is empty so
hat no time slot is wasted.

.4. Queuing model

We consider a discrete-time system where packet arrivals and trans-
issions occur at the beginning of each normalized time slot. Arriving
ackets are backlogged at the corresponding queues before transmis-
ion. Let 𝜆𝑘𝑖,𝑗 [𝑡] be the number of packets injected to queue 𝑘 at port
of node 𝑖 within time slot 𝑡. The number of packets dequeued from
ueue 𝑘 to node 𝑗 is denoted by 𝜇𝑘

𝑖𝑗 [𝑡], 𝑗 ∈ 𝑖, where 𝜇𝑘
𝑖𝑗 [𝑡] = 1 if the

acket is successfully transmitted and 𝜇𝑘
𝑖𝑗 [𝑡] = 0, otherwise. Denote 𝑄𝑘

𝑖,𝑗
as the queue length of queue 𝑘 at port 𝑗 of node 𝑖. Then the queue
dynamics of queue 𝑘 can be written as

𝑄𝑘
𝑖,𝑗 [𝑡 + 1] = max

{

𝑄𝑘
𝑖,𝑗 [𝑡] − 𝜇𝑘

𝑖,𝑗 [𝑡], 0
}

+ 𝜆𝑘𝑖,𝑗 [𝑡]. (1)

The average queue length of all DG queues at port 𝑗 after one WRR
scheduling period is given by

�̄�𝑖,𝑗 =
1

𝐾 − 1

𝐾−1
∑

𝑘=1

𝑇WRR
∑

𝜏=1
𝑄𝑘

𝑖,𝑗 [𝜏], (2)

nd similarly, the average queue length of all DG queues of node 𝑖 is
ritten as,

̄ 𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
�̄�𝑖,𝑗 , (3)

which is useful for reflecting the congestion status of node 𝑖 and
enerating NI shared with neighbor nodes.

.5. Problem formulation

We use a simple 4-nodes network topology to explain our problem as
hown in Fig. 3, where all packets at the ingress buffer of node A have
he same destination to node 𝐷. Each port has three queues including

two DG queues and one BE queue. There are two paths to reach node D
from node A, i.e., 𝑟1 ∶= {𝐴 → 𝐵 → 𝐷} and 𝑟2 ∶= {𝐴 → 𝐶 → 𝐷}, and we
ssume that the costs of both paths satisfy the delay requirement of the
pplication, i.e., max{Cost(𝑟1),Cost(𝑟2)} ≤ 𝑇𝑏, where Cost(𝑟) = ∑

ℎ∈𝑟 GIℎ
denote the routing cost (i.e. e2e delay) and GIℎ is the minimum delay
pper bound at each hop ℎ along path 𝑟. In this context, the forward
ecision set at each port of node A has the size 𝐻𝐴𝐵 = 𝐻𝐴𝐶 = 3 and a
otal size 𝐻𝐴 = 𝐻𝐴𝐵 +𝐻𝐴𝐶 = 6.

However, due to queue dynamics, not all queues in 𝐴 satisfy the
per-hop delay budget. Moreover, the congestion status at the down-
stream nodes (i.e., queue lengths of node 𝐵 and 𝐶) also varies over
time. A congested downstream node can lead to long queuing delay and
heavy packet losses. Therefore, it is crucial to consider both local queue
dynamics and neighbor queue information in routing and scheduling.
In addition, since the WRR scheduler is adopted, there exists a mutual
impact on queue selection. For example, heavy usage of the high-
priority queues results in long queue delays in the low-priority queues
because more time slots are used to serve the high-priority queues
in each WRR period. Similarly, a busy low-priority queue affects the
queuing time of the DS packets in the high-priority queues by using up
5

the entire service time in each period. b
Based on the above analysis, we formulate the following routing and
scheduling problem aiming at maximizing the overall network utility.
In brief, the optimization problem focuses on finding a series of suitable
forward decisions for each packet such that its e2e delay requirement
is satisfied while achieving load balance among priority queues at each
hop. Mathematically, the problem can be formulated as follows

P0: max
ℎ𝑑 ,ℎ𝑛∈

𝑇
∑

𝑡=0
𝑔𝑑 (𝑃𝑑 [𝑡];ℎ𝑑) + 𝑔𝑛(𝑃𝑛[𝑡];ℎ𝑛), (4a)

s.t. Delay(𝑃𝑑 [𝑡]) ≤ 𝑇𝑏𝑢𝑑𝑔𝑒𝑡, ∀𝑡 ∈ {0, 1,… , 𝑇 }, (4b)

𝑄𝑘
𝑖,𝑗 [𝑡] ≤ 𝛼𝐵𝑘, ∀𝑖, 𝑗 ∈ , ∀𝑘 ∈ , (4c)

where 𝑔𝑑 (⋅) and 𝑔𝑛(⋅) denote the network utility function for DS and
NDS packets, respectively; 𝑃𝑑 [𝑡] and 𝑃𝑛[𝑡] denote the DS and NDS
ackets received by the destination at time slot 𝑡; ℎ𝑑 and ℎ𝑛 denote
he forward decisions made at each hop along the path for DS and NDS
ackets, respectively; Delay(⋅) measures the e2e delay of each DS packet
eceived at the destination, which is calculated by 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 − 𝑇𝑠𝑡𝑎𝑟𝑡; and
∈ [0, 1] is the parameter to control the maximum queue length of

ach queue. In this paper, we fix 𝛼 = 1 for simplicity. Eq. (4a) aims
t maximizing the overall network utility for the source–destination
onnection pair. Constraint (4b) ensures all DS packets received by the
estination node should have e2e delay less than their delay budgets
hile constraint (4c) is used to avoid bufferbloat. Note that a packet
ill be dropped in the ingress buffer if (4b) or (4c) is not satisfied.

. Algorithm design

.1. Delay-guaranteed scheduling and routing protocol

The forward decision set grows with the increase of priority queues
nd the size of the network causing higher time complexity. How-
ver, some forward decisions are detrimental to the network perfor-
ance causing longer delay and loops [31]. To address this issue,
SR adopts a filter algorithm to filter out the undesirable routes in

he forward decision set and determines the optimal forward deci-
ion jointly considering local queue information and neighborhood
ongestion status.

.1.1. Route filter algorithm
Let 𝛺𝑖 be the complete set of routes to reach the destination from

ode 𝑖 in the forwarding table. Upon receiving a DS packet in the
ngress buffer, the node computes a threshold value, a threshold value
𝑡ℎ𝑙𝑑 = min{𝑇 ∗

𝑏𝑢𝑑𝑔𝑒𝑡,Cost∗(𝑟)} is set as the threshold value to filter out
he undesirable routes, where 𝑇 ∗

𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 − (𝑇𝑛𝑜𝑤 − 𝑇𝑠𝑡𝑎𝑟𝑡) is the
esidual delay budget of the packet and Cost∗(𝑟) is the routing cost
omputed in the previous hop.6 If 𝛺𝑖 becomes empty after filtering,
.e., there is no available path that satisfies the delay requirement, the
acket is dropped directly in the ingress buffer. Hence, the size of 𝑖
an be reduced to 𝐻𝑖 = (𝑁 ′

𝑖 − 1) × 𝐾, where 𝑁 ′
𝑖 is the size of 𝛺𝑖 after

iltering. The complete algorithm is shown in Algorithm 1 from line 3
o line 16.

In summary, the route filter algorithm ensures all the remaining
outes in the forward decision set have at least one queue (i.e., the
ighest priority queue) that guarantees the delay requirement of the
acket. It is also worth noting that the filter also helps to avoid the
oop problem in dynamic routing by ensuring the routing cost of each
orward decision selected at each hop is in descending order while
pproaching the destination.

6 The design rationale of 𝑇𝑡ℎ𝑙𝑑 is to ensure the remaining routing paths
atisfy the delay requirement, i.e., less than 𝑇 ∗

𝑏𝑢𝑑𝑔𝑒𝑡, and are closer to the
estination compared to the previous hop to avoid loop problem. The major
ause of loop in the DSR network is the imbalance between a large delay
udget and path diversity.

Computer Networks 233 (2023) 109863X. Ren et al.

w
b
h
u
𝑗
𝛺
i

q

𝑇

T
c
𝑇
r
t
n
t
s

4

e
i
s
u
s
s

l
S

o
c

𝜃

u
p
s

2

3
3
3
3
3
3
3

3
3

i
i

4.1.2. Congestion-aware route selection algorithm
Although the filtered forward decision set 𝑖 satisfies the delay

requirement, packets may be dropped due to network congestion in
the downstream nodes. We address this issue by enabling queue in-
formation exchange among neighboring nodes. Inspired by the idea
from backpressure routing algorithms [20] where the backlog gradient
is used for packet scheduling, we develop a congestion-aware route
selection algorithm as shown in Algorithm 1 Part 2 from line 18 to line
38.

The algorithm works based on the design of VQM which periodically
exchanges local queue information with neighboring nodes. Specifi-
cally, the VQM at each node computes the average queue length using
Eq. (3) to estimate the current queuing status. An indicator function 𝛾
based on the average queue length is designed as follows

𝛾𝑗 =

⎧

⎪

⎨

⎪

⎩

�̄�1
𝑗

𝛼�̄�1
�̄�1

𝑗 < 𝛼�̄�1,

1 �̄�1
𝑗 ≥ 𝛼�̄�1,

𝑗 ∈ 𝑖, (5)

here �̄�1
𝑗 and �̄�1 refers to the average queue length and average

uffer size of the all highest priority queues of the node.7 Such design
elps to deliver the congestion status of the downstream node to the
pstream node. If node 𝑖 receives a congestion signal 𝛾𝑗 = 1 from node
indicating heavy congestion, it removes the route to reach node 𝑗 from
𝑖 to alleviate the congestion of the downstream nodes. Otherwise, it

s used as a control parameter for route evaluation.
Next, for each decision ℎ𝑘𝑖,𝑗 ∈ 𝑖, the router computes a weighted

ueue delay denoted by 𝑇 𝑘
𝑖,𝑗 [𝑡], where

𝑘
𝑖,𝑗 [𝑡] = (1 + 𝛾𝑗) ⋅

𝑄𝑘
𝑖,𝑗 [𝑡] × PktSize

𝑤𝑘𝑅
(6)

and the per-hop delay budget 𝑇ℎ𝑜𝑝 of each output port

𝑇ℎ𝑜𝑝(𝑗) = 𝑇 ∗
𝑏𝑢𝑑𝑔𝑒𝑡 − Cost(𝑟𝑗), 𝑟𝑗 ∈ 𝛺𝑖 𝑗 ∈ 𝑖. (7)

he weighted queue delay 𝑇 𝑘
𝑖,𝑗 [𝑡] of each forward decision ℎ𝑘𝑖,𝑗 ∈ 𝑖 is

ompared with 𝑇ℎ𝑜𝑝(𝑗), and ℎ𝑘𝑖,𝑗 will be removed from 𝑖 if 𝑇 𝑘
𝑖,𝑗 [𝑡] >

ℎ𝑜𝑝(𝑗), i.e., the per-hop delay budget is insufficient to support the cor-
esponding forward decision. Note that the packet is dropped directly if
he forward decision set is empty, i.e., no available decision exists. Fi-
ally, a fully simplified forward decision set ̂𝑖, 𝑖 ∈ that guarantees
he e2e delay is obtained. Next, the router runs the proposed DSROpt
cheduling algorithm to determine the optimal forward decision ℎ𝑘∗𝑖𝑗 .

.2. Network utility maximization

We aim to maximize the network utility as presented in P0. How-
ver, since the forward decisions are spatio-temporally correlated,
.e., the current decision is affected by decisions made in previous time
lots and upstream nodes, and eventually affects the overall network
tility. Therefore, it is difficult if not impossible to find the optimal
cheduling policy at every node for every packet given the large
cheduling space, stringent delay requirement, and network dynamics.

To this end, we transform the utility maximization problem and
et each node computes the optimal forward decision for each packet.
pecifically, at time slot 𝑡, we represent each forward decision ℎ𝑘𝑖,𝑗 ∈
̂ 𝑖 by a cost-reward tuple (𝑇 𝑘

𝑖,𝑗 [𝑡], 𝐺
𝑘
𝑖,𝑗 [𝑡]), where 𝐺𝑘

𝑖,𝑗 [𝑡] is the reward
btained for executing ℎ𝑘𝑖,𝑗 . The infinite horizon reward per unit time
ost ratio is then given by

= lim
𝑇→∞

∑𝑇
𝑡=0 𝐺

𝑘
𝑖,𝑗 [𝑡]

∑𝑇
𝑡=0 𝑇

𝑘
𝑖,𝑗 [𝑡]

, (8)

7 This is because the highest priority queue guarantees the minimum delay
pper bound of each hop and is preserved for urgent packets by design (ex-
lained in Algorithm 2), its queue length is sufficient to reflect the congestion
tatus of the corresponding node.
6

f

Algorithm 1 DSR routing protocol
1: Input: forward decision set 𝑖 at node 𝑖
2: Output: Forward decision ℎ𝑘∗𝑖𝑗 = (𝑟𝑜𝑢𝑡𝑒, 𝑞𝑢𝑒𝑢𝑒)
3: Upon receiving a packet at the ingress buffer of node 𝑖
4: Read 𝑇𝑏𝑢𝑑𝑔𝑒𝑡, and 𝑇𝑠𝑡𝑎𝑟𝑡 from the packet and router
5: Compute residual delay budget:

𝑇 ∗
𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 − (𝑇𝑛𝑜𝑤 − 𝑇𝑠𝑡𝑎𝑟𝑡)

6: Set 𝑇𝑡ℎ𝑙𝑑 = min{𝑇 ∗
𝑏𝑢𝑑𝑔𝑒𝑡,Cost∗(𝑟)}

7: (Part 1: Route filter)
8: for each 𝑟𝑜𝑢𝑡𝑒 in 𝛺𝑖 do
9: Let 𝐶𝑜𝑠𝑡 = Cost(𝑟𝑜𝑢𝑡𝑒);

10: if 𝐶𝑜𝑠𝑡 > 𝑇𝑡ℎ𝑙𝑑 then
11: remove 𝑟𝑜𝑢𝑡𝑒 from 𝛺𝑖
12: end if
13: end for
14: if 𝛺𝑖 = ∅ then
15: Drop packet
16: end if
17:
18: (Part 2: Congestion-aware route selection)
19: Obtain 𝛺𝑖
20: for route 𝑟𝑗 ∈ 𝛺𝑖 do
21: if 𝛾𝑗 = 1 then
22: Remove 𝑟𝑗 from 𝛺𝑖
23: end if
24: end for
25: Compute 𝑇ℎ𝑜𝑝(𝑗) = 𝑇ℎ𝑜𝑝(𝑗) = 𝑇 ∗

𝑏𝑢𝑑𝑔𝑒𝑡 − Cost(𝑟𝑗)
26: for ℎ𝑘𝑖,𝑗 ∈ 𝑖 do

27: Compute 𝑇 𝑘
𝑖,𝑗 [𝑡] = (1 + 𝛾𝑗) ⋅

𝑄𝑘
𝑖,𝑗 [𝑡]⋅PktSize

𝑤𝑘⋅𝑅
8: if 𝑇 𝑘

𝑖,𝑗 [𝑡] > 𝑇ℎ𝑜𝑝(𝑗) then
29: Remove ℎ𝑘𝑖,𝑗 from 𝑖
0: end if
1: end for
2: Obtain ̂𝑖
3: if ̂𝑖 = ∅ then
4: Drop packet
5: else
6: Run DSROpt(H𝑖)

37: Return: Routing decision ℎ𝑘∗𝑖𝑗 = (port 𝑗, queue 𝑘).
8: end if
9: Enqueue packet to queue 𝑘 at port 𝑗

assuming the limit exists. In this context, the overall network utility can
be improved if 𝜃𝑖 at each node 𝑖 ∈ is maximized. Note that to avoid
the divide-by-zero issue, we set 𝑇 𝑘

𝑖,𝑗 [𝑡] = 1 if the queue is empty.
In other words, we decouple the end-to-end network utility maxi-

mization problem in P0 into a series of subproblems, where the reward
per unit time cost ratio at each node is maximized. Therefore, P0 can
be rewritten as follows

P1: max
ℎ𝑘𝑖,𝑗∈̂𝑖 , 𝑖∈

𝜃𝑖 = lim
𝑇→∞

∑𝑇
𝑡=0 𝐺

𝑘
𝑖,𝑗 [𝑡]

∑𝑇
𝑡=0 𝑇

𝑘
𝑖,𝑗 [𝑡]

, (9a)

s.t. (𝑇 𝑘
𝑖,𝑗 [𝑡], 𝐺

𝑘
𝑖,𝑗 [𝑡]) ∈ (̂), 𝑡 ∈ {0, 1,… , 𝑇 }, (9b)

where (̂) denotes the set of all possible cost-reward combinations in
the forward decision set ̂. Since the forward decision set is only known
when the packet’s delay requirement is observed and the state of the
system is renewed after executing each forward decision, we identify
each subproblem as a renewal optimization problem [32,33]. However,
due to the randomness of network dynamics and large space of (̂),
t is impractical to find the optimal solution to P1 [33]. To address this
ssue, we propose a heuristic algorithm that maximizes (9a) by learning
rom past forward decisions.

Computer Networks 233 (2023) 109863X. Ren et al.

p

p

𝑇

𝐺

w
t

P

H

𝜃

w
n
t
o
a
a
n
s
o
n
𝐺
i
t

5

u
t
r
q

n
i

Algorithm 2 DSROpt scheduling algorithm

1: Input: forward decision set ̂𝑖, 𝜂
2: Output: forward decision ℎ𝑘𝑖,𝑗
3: Initialize 𝜙, 𝜙′ = 0, 𝜃[𝑡] ∈ [𝜃min, 𝜃max],
4: for each decision ℎ𝑘𝑖𝑗 ∈ ̂𝑖 at node 𝑖 do
5: Compute 𝑇 𝑘

𝑖,𝑗 [𝑡] and 𝐺𝑘
𝑖,𝑗 [𝑡] using (6) and (11)

6: Let 𝜙 = 𝐺𝑘
𝑖,𝑗 [𝑡] − 𝜃[𝑡]𝑇 𝑘

𝑖,𝑗 [𝑡]
7: if 𝜙 ≥ 𝜙′ then
8: 𝜙′ = 𝜙,port = 𝑗, queue = 𝑘
9: end if

10: end for
11: Update 𝜃[𝑡 + 1] =

[

𝜃[𝑡] + 𝜂(𝐺𝑘
𝑖,𝑗 [𝑡] − 𝜃[𝑡]𝑇 𝑘

𝑖,𝑗 [𝑡])
]𝜃max

𝜃min
12: Return: decision ℎ𝑘𝑖,𝑗 = (port 𝑗, queue 𝑘)

4.2.1. Delay laxity-based reward function
We first discuss the design of our reward function which will be used

in our proposed scheduling algorithm. We focus on the scheduling of
DS packets in this paper, as the NDS packets are directly forwarded to
the BE queue. Since there are multiple priority queues for transmitting
DS packets, it is unfair to use the same reward function to measure the
output gain of successful transmissions of DS packets using different
priority queues.8 In this regard, we define a metric called profit to
measure the true return of using each queue. Let = {𝑃1, 𝑃2,… , 𝑃𝐾}
be the set of profit to use each queue from high priority to low priority
and 𝑃1 < 𝑃2 < ⋯ < 𝑃𝐾−1.9 Furthermore, we define a delay laxity as
denoted by

𝐿𝑘
𝑖𝑗 |ℎ𝑘𝑖𝑗

= 𝑇ℎ𝑜𝑝(𝑗) − 𝑇 𝑘
𝑖,𝑗 , ℎ𝑘𝑖𝑗 ∈ ̂𝑖 (10)

as the residual per-hop delay budget, which is helpful in measuring the
urgency of each DS packet [34,35]. Finally, we define the reward func-
tion for successfully transmitting the DS packets of choosing decision
ℎ𝑘𝑖𝑗 from ̂𝑖 as follows

𝐺𝑘
𝑖,𝑗 |ℎ𝑘𝑖𝑗

= 𝑃𝑘 ⋅ 𝐿
𝑘
𝑖𝑗 = 𝑃𝑘 ⋅ (𝑇ℎ𝑜𝑝(𝑗) − 𝑇 𝑘

𝑖,𝑗), ℎ
𝑘
𝑖𝑗 ∈ ̂𝑖. (11)

The goal of such design is to first use the lower priority queues when
available while preserving the higher priority queues for the urgent
packets yet to come.

4.2.2. Renewal optimization based scheduling algorithm
Each router in the DSR network is essentially a renewal system that

updates its state, i.e., queue status, after executing each forward deci-
sion. But due to network randomness and lack of packet knowledge, it is
impractical to find the optimal scheduling strategy that maximizes (9a).
To this end, we develop a heuristic scheduling algorithm DSROpt based
on renewal optimization as shown in Algorithm 2.

Although packet arrival is unknown, the cost-reward pairs of all
possible combinations are bounded. For example, the output gain for
each DS packet is bounded by

𝐺𝑘
𝑖,𝑗 |ℎ𝑘𝑖𝑗

∈ [𝐺min, 𝐺max] = [0, 𝑃𝐾 ⋅max{𝑇ℎ𝑜𝑝}], ℎ𝑘𝑖𝑗 ∈ ̂𝑖.

Similarly, the time cost 𝑇 𝑘
𝑖,𝑗 is bounded by [𝑇 1

𝑖,𝑗 , 𝑇
𝐾
𝑖,𝑗], where 𝑇 1

𝑖,𝑗 and 𝑇𝐾
𝑖,𝑗

are the delay upper bounds maintained by the highest priority queue
and the lowest priority queue, respectively.

Assume the tuple
{

𝑇min, 𝑇max, 𝐺min, 𝐺max
}

is fixed at each node,
where

𝑇min = min
{

𝑇 𝑘
𝑖,𝑗 |𝑖, 𝑗 ∈ , 𝑘 ∈

}

,

8 Otherwise, the high priority queues are more likely to be selected as they
rovide smaller delay upper bounds.

9 For simplicity, we set the profit of each DG queue to be inversely
roportional to the weight assigned to them, i.e., 𝑃 = 1∕𝑤 .
7

𝑘 𝑘
Fig. 5. 3 × 3 grid topology.

max = max
{

𝑇 𝑘
𝑖,𝑗 |𝑖, 𝑗 ∈ , 𝑘 ∈

}

,

min = min
{

𝐺𝑘
𝑖,𝑗 |𝑖, 𝑗 ∈ , 𝑘 ∈

}

,

𝐺max = max
{

𝐺𝑘
𝑖,𝑗 |𝑖, 𝑗 ∈ , 𝑘 ∈

}

.

Let

𝜃min = min
{

𝐺min
𝑇max

,
𝐺min
𝑇min

}

, 𝜃max = max
{

𝐺max
𝑇max

,
𝐺max
𝑇min

}

denote the minimum and maximum reward per unit time cost ratio,
respectively. Then the optimal 𝜃∗ satisfies the condition 𝜃min ≤ 𝜃∗ ≤
𝜃max if exists.

Note that always choosing the decision which yields the maximum
reward does not necessarily maximize 𝜃 over time given the tempo-
ral correlations between forward decisions. To solve the optimization
problem in P2, an iterative approach proposed in [33] is adopted,
where 𝜃∗ can be approached by constantly selecting the cost-reward
pair that maximizes the reward gradient 𝜙 = 𝐺𝑘

𝑖,𝑗 [𝑡]−𝜃[𝑡]𝑇 𝑘
𝑖,𝑗 [𝑡]. In other

ords, the router determines the optimal forward decision by solving
he following problem

2: max
ℎ𝑘𝑖,𝑗∈̂

𝐺𝑘
𝑖,𝑗 [𝑡] − 𝜃[𝑡]𝑇 𝑘

𝑖,𝑗 [𝑡], (12a)

s.t. (𝐺𝑘
𝑖,𝑗 [𝑡], 𝑇

𝑘
𝑖,𝑗 [𝑡]) ∈ (̂). (12b)

ere 𝜃[𝑡] is updated after each decision

[𝑡 + 1] =
[

𝜃[𝑡] + 𝜂[𝑡](𝐺𝑘
𝑖,𝑗 [𝑡] − 𝜃[𝑡]𝑇 𝑘

𝑖,𝑗 [𝑡])
]𝜃max

𝜃min
, (13)

here 𝜂 is the step size of each iteration and [𝑥]𝜃max
𝜃min

denotes the
ormalization of 𝑥 within the range of [𝜃min, 𝜃max]. The convergence of
he update rule (12) is discussed in Appendix. Such an opportunistic
nline learning approach is effective because the historical decisions
re included in the optimization objective. The complete scheduling
lgorithm is summarized in Algorithm 2. To be more specific, each
ode 𝑖 ∈ initializes the reward per time cost ratio 𝜃[𝑡] by randomly
electing a value from the range [𝜃min, 𝜃max] at 𝑡 = 0. To determine the
ptimal forward decision for a DS packet received at time slot 𝑡, the
ode first computes the weighted queue delay 𝑇 𝑘

𝑖,𝑗 [𝑡] and output gain
𝑘
𝑖,𝑗 [𝑡] for each available forward decision ℎ𝑘𝑖,𝑗 ∈ ̂𝑖 of the packet. Then,

t selects the forward decision that solves P2 and updates 𝜃[𝑡] according
o (13).

. Performance evaluation

In the experiment, we implemented the proposed DSR network
sing the NS-3 network simulator [36]. Three priority queues including
wo DG queues and one BE queue are deployed at each port of each
outer. Note that the model can be easily extended with more priority
ueues to achieve a finer-granularity performance.

We compare the performance of DSROpt scheduling algorithm (de-
oted by DSR in our simulation results) with three BP-based schedul-
ng algorithms such as the finite-buffer max-weight algorithm [21]

Computer Networks 233 (2023) 109863X. Ren et al.

a
r
r
t
t
a
t
p

5

i

0
2
2
b
l

n
o
t
b

Fig. 6. Simulated U.S. backbone network.

Table 2
Network configurations.

Parameters DG queue 1 DG queue 2 BE queue

Weight 0.5 0.3 0.2
Buffer size (packet) 6 17 100

Network type Source Destination

Grid 𝑛2 , 𝑛0 , 𝑛1 𝑛6 , 𝑛7 , 𝑛8
Mesh 𝑛0 , 𝑛2 , 𝑛5 , 𝑛6 𝑛17 , 𝑛20 , 𝑛23 , 𝑛25

(denoted by MAX), sojourn-time-based BP algorithm [22] (denoted
by TBP), MW+BP algorithm developed in [25] (denoted by MBP),
nd one greedy algorithm denoted by GRD which always selects the
oute/queue with the highest reward calculated by Eq. (11). All algo-
ithms are implemented based on the proposed DSR network architec-
ure with priority queues. In addition, we use a single-queue network
hat adopts OSPF routing protocol (denoted by BEF) for packet delivery
s the benchmark in our experiment. Since we assume a static network
opology and link cost in our experiment, OSPF provides comparable
erformance as a centralized routing algorithm in static networks.

.1. Network configurations

We consider two types of network topology in the experiments,
.e., a 3 × 3 grid network and a 26-nodes mesh network as shown in

Figs. 5 and 6, respectively. Every router in both networks has the same
configurations as summarized in Table 2. The buffer size and weight
assigned to each queue are 1200, 3400, and 20 K bytes, and 0.5, 0.3, and
.2, respectively. The link rate of all links in both networks is fixed at
0 Mbps unless mentioned otherwise. All packets have the same size of
00 bytes. Therefore, the DG queues guarantee a per-hop delay upper
ound of 2 ms and 10 ms, respectively. The propagation delay of each
ink is randomly selected from a [3, 5] ms range.

We use the (Src,Dst) pair to indicate the source–destination con-
ection in our experiments. In the grid network, (𝑛2, 𝑛6) is used as
ur target pair, i.e., (𝑆0, 𝐷0) as shown in Fig. 5, for analysis while
hree other pairs (𝑛0, 𝑛6), (𝑛1, 𝑛7), and (𝑛2, 𝑛8) are set to simulate the
ackground traffic in the network. In the mesh network, (𝑛0, 𝑛25) is

the target pair. Three pairs (𝑛2, 𝑛20), (𝑛5, 𝑛17), and (𝑛6, 𝑛23) are used for
simulating background traffics. Note that in our experiments, we only
evaluate the performance of the target pairs.

5.2. Performance metrics

Several performance metrics are defined to measure the perfor-
mance of each algorithm: (1) the e2e delay of each DS packet, (2)
the average e2e delay of all DS packets and their standard deviation,
and (3) the goodput calculated by total received bits

total Tx time . We also define the
performance gain as 𝑎1𝑁DS +𝑎2𝑁NDS, where 𝑎1 and 𝑎2 (𝑎1 > 𝑎2) are the
utility gain for successfully receiving DS packet and NDS packet at the
destination. In our experiments, we fix 𝑎1 = 3, 𝑎2 = 1. Note that all DS
packets that exceed their delay budget are discarded in the network or
8

at the receiver side, i.e., are not considered in performance evaluations.
Table 3
Experiment settings.

Impact of Target pair Background pair

Bursty traffic Base rate: 5 Mbps
Bursty range: 1∼15 Mbps
Base rate: 1 Gbps
Bursty range: 0∼2.5 Gbps

Base rate: 10 Mbps
Bursty range: 1∼5 Mbps
Base rate: 1 Gbps
Bursty range: 0∼0.5 Gbps

Traffic density Base rate: 10 Mbps Base rate: 5 Mbps
(DS) Increase by 1 Mbps
(NDS) Increase by 2 Mbps

Delay budget Base rate: 10 Mbps

Delay budget reduce by
2 ms per epoch

(DS) Base rate: 5 Mbps
Bursty range: 1∼15 Mbps
(NDS) Base rate: 10 Mbps
Bursty range: 1∼5 Mbps

NDS traffics Base rate: 5 Mbps
Increase 2 Mbps per epoch

(DS) Base rate: 5 Mbps
(NDS) Base rate: 10 Mbps

5.3. Simulation results and analysis

We designed four experiments to evaluate our proposed delay-
guaranteed solution. Specifically, we tested its delay and goodput
performance under bursty traffic, different traffic volumes, various
delay requirements, and co-existence with NDS traffic. Each experi-
ment consisted of several simulation rounds with different settings,
called epochs. All experiments used UDP traffic and their settings
are summarized in Table 3. In addition, we select two representative
algorithms, TBP and BEF, to show their standard deviations in end-to-
end delay. TBP is selected because it leverages the local queuing delay
to make scheduling decisions and it performs the second best in our
experiments.

5.3.1. Impact of bursty traffic
In this experiment, we verify the performance of DSROpt scheduling

algorithm under bursty traffic using the 3 × 3 grid topology. Both
target and background traffic pairs transmitted DS packets with bursty
sending rates. The target source node transmitted 50 000 packets at a
base rate of 5 Mbps and an additional bursty rate of 1 ∼ 15 Mbps. The
background traffic pairs had a base rate of 10 Mbps and an additional
bursty rate of 1 ∼ 5 Mbps. All DS packets required a 30 ms end-to-end
delay performance.

The simulation results are presented in Fig. 7, where our algorithm
achieves the best delay and goodput performance compared with other
algorithms. As shown in Fig. 7(a), DSROpt guarantees the most DS
packets delivery up to 98% within 30 ms. GRD, MBP, and TBP show
similar performances guaranteeing around 82% of the DS packets while
MAX achieves 76% of e2e delay guarantee. BEF only guarantees 59%
of the packets due to severe packet drop caused by congestion and
bufferbloat.

Without loss of generality, we also compare the average delay and
goodput performances of all algorithms as shown in Fig. 7(b). As
expected, DSROpt shows the highest goodput up to 8.2 Mbps while
GRD, MBP, and TBP give similar goodput around 7.2 Mbps. MAX
shows a worse goodput performance of 6.7 Mbps. BEF gives the worst
goodput performance of 5.2 Mbps. As for the average e2e delay, the
BP-based scheduling algorithms achieve similar delay performances,
among which MAX shows slightly better performance as it achieves
load balance using the queue-length gradient. Overall, the proposed pri-
ority queue-based network outperforms the single-queue network be-
cause the upstream nodes are able to change routes for the DS packets.
DSROpt outperforms other algorithms thanks to its congestion-aware
design which helps to avoid congested paths to improve goodput.

In addition, we verify the scalability of our network architecture and
DSROpt scheduling algorithm using a high link rate network setting.
Each link has a rate of 2 Gbps. The target source application transmits
DS data packets with a bursty sending rate ranging from 1.0 ∼ 3.5 Gbps

Computer Networks 233 (2023) 109863X. Ren et al.
Fig. 7. Comparisons under bursty traffic.

Fig. 8. QoS performances with high link rate.
9

Fig. 9. QoS performance comparison using mesh network.

and the background traffics have a sending rate of 1 ∼ 1.5 Gbps. The
goodput and delay performances of DSROpt and other algorithms are
shown in Fig. 8. The results show that DSROpt has good scalability and
is able to maintain high goodput and low e2e delay in high data rate
network settings.

5.3.2. Impact of traffic density
In this experiment, we use the mesh network topology to verify the

performance of DSROpt under various traffic densities. In the target
pair, the source node transmits 10 000 DS packets with a delay budget
of 45 ms to the receiver at a fixed sending rate of 10 Mbps in each
epoch. As for the background pairs, both DS and NDS applications are
deployed. The sending rate of the DS and NDS application increases by
1 Mbps and 2 Mbps at each epoch from 5 Mbps, respectively.

Fig. 9(a) shows the delay performance. The e2e delay of BEF in-
creases quickly because all traffic uses the same queue for packet
transmission and OSPF always chooses the shortest path for packets
routing, which can easily result in network congestion when the packet
arrival rate exceeds the link capacity, leading to a long queue delay
and bufferbloat. This also accounts for the large end-to-end delay
variance in each epoch. BP-based algorithms (GRD, MAX, TBP, and
MBP) show similar performances, degrading from the 5th epoch when
the aggregated sending rate exceeds link bandwidth. DSROpt performs
best throughout the experiment, reducing end-to-end delay by up to
22.5% compared to BP-based scheduling algorithms.

Computer Networks 233 (2023) 109863X. Ren et al.
Fig. 10. Comparisons under different delay budgets.

Fig. 9(b) shows the goodput performance. BEF performs the worst
due to heavy congestion and packet drops as traffic density increases.
MAX, GRD, and MBP show similar patterns as the sending rate grows,
with GRD experiencing more rapid performance degradation due to
congestion. TBP has better goodput performance with slower degrada-
tion because it considers each DS packet’s sojourn time and schedules
urgent packets to higher priority queues, reducing delay outage drops.
On the other hand, DSROpt maintains the highest goodput throughout
the experiment and is only reduced by 0.8 Mbps until the last epoch.
Overall, DSROpt achieves a goodput increase of up to 26.4% over
BP-based scheduling algorithms.

5.3.3. Impact of delay requirements
Furthermore, We show the impact of the delay requirements using

the mesh network topology. Similar to the previous settings, the target
pair transmitted 20 000 DS packets at a fixed rate of 10 Mbps while the
background pairs transmitted 10 000 mixed DS and NDS packets at a
varying rate of [10, 30] Mbps in each epoch. The delay budget for the
target application decreased from 50 ms to 40.10 The simulation results
are shown in Fig. 10.

Overall, GRD, MAX, TBP, and MBP show similar delay and goodput
performance. All experience rapid goodput degradation when the delay

10 Note that the minimum e2e cost that can be guaranteed for the target
pair is 40 ms.
10
Fig. 11. QoS performance comparisons on DiffServ property for DS applications.

budget is less than 44 ms, approaching the target pair’s minimum delay
cost to reach the destination. DSROpt maintains a good performance,
reducing delay by up to 28.1% and improving goodput by up to 47.5%
compared to other BP-based scheduling algorithms. It maintains a
goodput of 9 Mbps when the delay budget is 40 ms while BP-based
algorithms degrade to less than 7 Mbps. This is because DSROpt consid-
ers each packet’s delay requirement and temporal correlations among
forward decisions for scheduling. On the other hand, BP algorithms
aim to minimize per-hop time cost in scheduling packets, frequently
occupying high-priority queues and leading to goodput degradation
when the delay budget is small.

5.3.4. Differentiated service
The DSR network architecture can provide DiffServ to both DS and

NDS traffic simultaneously and achieves the highest performance gain
using DSROpt. We verify this property using the grid topology shown
in Fig. 5. Two applications, one DS with a delay requirement of 35 ms
and one NDS, are deployed at the target and background pairs. In each
epoch, we increase both applications’ sending rate by 2 Mbps from
5 Mbps for the target pair. The background pairs’ sending rates are fixed
at 5 Mbps for the DS application and 10 Mbps for the NDS application.
We evaluate both applications’ QoS metrics for the target pair and only
compare DSROpt with the BP-based scheduling algorithms.

The QoS performances of DS applications are presented in Fig. 11.
As shown in Fig. 11(a), the average e2e delay achieved by all algo-
rithms increases in each epoch due to the longer queuing delay. GRD

Computer Networks 233 (2023) 109863X. Ren et al.
Fig. 12. QoS performance comparisons on DiffServ property for NDS applications.

achieves the least delay when the network is less congested but quickly
grows to the highest as the sending rate increases due to its greedy ex-
ploration strategy causing congestion and long queuing delays. DSROpt
performs best when the network becomes more congested because it
considers both downstream and current node congestion when making
forward decisions. As for the goodput performance shown in Fig. 11(b),
all algorithms have similar performances when the network is under-
loaded. BP-based algorithms gradually diverge when network traffic
exceeds link capacity from the 4th epoch. MBP degrades quickly from
the 5th epoch when the target pair’s aggregated sending rate exceeds
20 Mbps and the rest saturate from the 6th epoch. DSROpt shows
an approximately linear goodput increase, reaching up to 16.2 Mbps
when the DS packet sending rate is 17 Mbps, with TBP achieving the
second-best goodput of 16 Mbps.

In terms of NDS applications, the QoS performance presents a
different pattern as shown in Fig. 12. Two groups, GRD and MBP,
and MAX and TBP, show similar performances in delay and goodput,
respectively. All algorithms show low goodput and increasingly high
end-to-end delay as the sending rate grows due to a single queue and
shortest path being used for NDS packet transmission. The MAX and
TBP group, in particular, sees a sharp delay increase when the send-
ing rate increases because they heavily exploit optimal queues/routes
for DS packet transmission while starving low-priority queues trans-
mitting NDS packets. On the other hand, DSROpt achieves the best
performances in both e2e delay and goodput compared to the BP-
based scheduling algorithms because it considers the mutual impact of
11
Fig. 13. Performance gain achieved by different algorithms.

forward decisions by maximizing the long-term reward per unit time
cost ratio at each node, maintaining good performance for both DS and
NDS applications.

We also compared the network performance gain achieved by dif-
ferent scheduling algorithms as shown in Fig. 13. DSROpt achieves the
best performance, 10.2% higher than MBP. Although the pattern varies
by tuning the utility gain (i.e., 𝑎1 and 𝑎2) of DS and NDS packets,
DSROpt always performs best. We can conclude that DSR can provide
DiffServ to different applications with different delay requirements.

6. Conclusion

In this paper, we propose DSR, a novel distributed, congestion-
aware, and delay-guaranteed solution for time-sensitive applications.
DSR adopts priority queues with fixed buffer sizes to provide DiffServ
and per-hop delay upper bounds and explores path diversity in the
network to achieve multiplex gain. To reduce the time complexity and
avoid the loop problem, a filter algorithm is developed to filter out
unsuitable routes. In addition, DSR addresses the congestion problem
in the network by introducing a virtual queue manager that exchanges
the local queue information of each node to reflect the congestion status
of the neighborhood and accommodate route selection. Given the rich
set of forward decisions at each hop, we aim to maximize the overall
network utility by finding the optimal routing and scheduling strategies
under the e2e delay constraint. However, due to the randomness of
network dynamics and the large decision space, it is impractical to
find the optimal forward decision for every packet at each hop. In
this regard, we solve the network utility maximization problem using
a heuristic approach by decoupling it into a set of subproblems that
maximizes the reward per unit time cost ratio at each hop, where
each subproblem is essentially a renewal optimization. To this end,
we develop a novel scheduling algorithm named DSROpt that solves
the renewal optimization problem and determines the optimal forward
decision for each packet jointly considering its delay requirement,
downstream congestion status, and local queue information.

To verify the performance of DSR and DSROpt, we implement a pro-
totype on NS-3 and compare it with the state-of-the-art via simulations.
The results show that DSROpt guarantees the e2e delay requirements
while achieving the highest goodput and performance gain in various
experiments. In our current simulation, routers exchange the neighbor
queue information continuously and instantaneously. Such simplifica-
tion may affect the performance of DSR in practice, since the queue
length varies quickly due to bursty traffic. The delayed congestion
status feedback can result in poor forwarding decisions which requires
further research. In addition, it is worth further investigating how to
leverage more control functions such as congestion control and active
queue management to further improve network efficiency.

Computer Networks 233 (2023) 109863X. Ren et al.

𝑧

i
w

𝑧

I
s

R

CRediT authorship contribution statement

Xiangyu Ren: Conceptualization, Methodology, Software, Visual-
ization, Writing – original draft. Lin Cai: Methodology, Writing –
review & editing, Supervision. Pu Yang: Software. Jiequ Ji: Writing
– review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Lin Cai reports financial support was provided by Natural Sciences and
Engineering Research Council of Canada, and Compute Canada.

Data availability

Data will be made available on request.

Appendix

For a node in the network, let 𝑢 be a constant value that satisfies
1
2
E[(𝐺[𝑡] − 𝜃[𝑡]𝑇 [𝑡])2] ≤ 𝑢, (14)

where 𝐺[𝑡] and 𝑇 [𝑡] are the reward and time cost of scheduling a
packet at time slot 𝑡, and 𝜃[𝑡] is the reward-per-time-cost ratio that is
updated after each scheduling decision. 𝑢 exists as 𝐺[𝑡], 𝑇 [𝑡], and 𝜃[𝑡]
are bounded by design.

Denote 𝑧𝑡 =
1
2E[(𝜃[𝑡]− 𝜃∗)2] as the mean square error of 𝜃[𝑡] and the

optimal 𝜃∗ that can be obtained, where 𝑧𝑡, 𝑡 = 0, 1,… satisfies [33]

𝑧𝑡+1 ≤ (1 − 2𝑇min𝜂[𝑡])𝑧𝑡 + 𝜂[𝑡]2𝑢, ∀𝜂[𝑡] > 0, (15)

where 𝜂[𝑡] is the step size defined in (12). When a fixed step size,
e.g., 𝜂[𝑡] = 1

2𝑇min
, is adopted, we have

𝑡+1 ≤
𝑢

4𝑇 2
min

, (16)

.e., 𝑧𝑡 is upper bounded. Similarly, the convergence of 𝑧𝑡 can be proved
hen a varying step size is adopted.

Suppose 𝑧𝑡 ≤
𝑏

𝑡⋅𝑇 2
min

, then we prove 𝑧𝑡+1 is also upper bounded. Let

𝜂[𝑡] = 1
(𝑡+2)𝑇min

, then

𝑡+1 ≤ (1 − 2𝑇min𝜂[𝑡])𝑧𝑡 + 𝜂[𝑡]2𝑢

= (𝑡
𝑡 + 2

)𝑧𝑡 +
𝑢

(𝑡 + 2)2𝑇 2
min

≤ (𝑡
𝑡 + 2

) 𝑢
𝑡 ⋅ 𝑇 2

min

+ 𝑢
(𝑡 + 2)2𝑇 2

min

=
𝑢(𝑡 + 3)

(𝑡 + 2)2𝑇 2
min

≤ 𝑢
(𝑡 + 1) ⋅ 𝑇 2

min

(17)

t is obvious that a faster convergence can be achieved using a varying
tep size.

eferences

[1] T. Nakamura, 5G evolution and 6G, in: 2020 International Symposium on VLSI
Design, Automation and Test (VLSI-DAT), 2020, p. 1.

[2] I. Tomkos, D. Klonidis, E. Pikasis, S. Theodoridis, Toward the 6G network era:
Opportunities and challenges, IT Prof. 22 (1) (2020) 34–38.

[3] W. Jiang, B. Han, M.A. Habibi, H.D. Schotten, The road towards 6G: A
comprehensive survey, IEEE Open J. Commun. Soc. 2 (2021) 334–366.

[4] W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems, IEEE Netw. 34 (3) (2019)
134–142.

[5] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, D. Zhang, A survey on green 6G
network: Architecture and technologies, IEEE Access 7 (2019) 175758–175768.
12
[6] C. Curino, D.E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, S. Rao,
Reservation-based scheduling: If you’re late don’t blame us!, in: Proceedings of
the ACM Symposium on Cloud Computing, 2014, pp. 1–14.

[7] A. Sahoo, S. Chilukuri, DGRAM: a delay guaranteed routing and MAC protocol for
wireless sensor networks, IEEE Trans. Mob. Comput. 9 (10) (2010) 1407–1423.

[8] V. Addanki, L. Iannone, Moving a step forward in the quest for deterministic
networks (DetNet), in: 2020 IFIP Networking Conference (Networking), IEEE,
2020, pp. 458–466.

[9] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, V. Jacobson, BBR: Congestion-
based congestion control: Measuring bottleneck bandwidth and round-trip
propagation time, Queue 14 (5) (2016) 20–53.

[10] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, DetNet: A backbone network
for object detection, 2018, arXiv preprint arXiv:1804.06215.

[11] A. Nasrallah, A.S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, H.
ElBakoury, Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet
standards and related 5G ULL research, IEEE Commun. Surv. Tutor. 21 (1) (2018)
88–145.

[12] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, S. Punnekkat, Self-configuration
of IEEE 802.1 TSN networks, in: 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA, IEEE, 2017, pp. 1–8.

[13] B. Yan, Q. Liu, J. Shen, D. Liang, B. Zhao, L. Ouyang, A survey of low-
latency transmission strategies in software defined networking, Comp. Sci. Rev.
40 (2021) 100386.

[14] M.K. Boroujeny, B.L. Mark, Y. Ephraim, Stochastic traffic regulator for end-to-end
network delay guarantees, in: ICC 2020-2020 IEEE International Conference on
Communications, ICC, IEEE, 2020, pp. 1–6.

[15] M. Garetto, D. Towsley, Modeling, simulation and measurements of queuing
delay under long-tail Internet traffic, ACM SIGMETRICS Perform. Eval. Rev. 31
(1) (2003) 47–57.

[16] B.-H. Jang, S. Son, K.-J. Park, Deadline-aware routing with probabilistic delay
guarantee in cyber-physical systems, in: 2017 International Conference on
Information Networking, ICOIN, IEEE, 2017, pp. 51–53.

[17] K. Agrawal, S. Baruah, Z. Guo, J. Li, S. Vaidhun, Hard-real-time routing in
probabilistic graphs to minimize expected delay, in: 2020 IEEE Real-Time
Systems Symposium, RTSS, IEEE, 2020, pp. 63–75.

[18] S. Baruah, Rapid routing with guaranteed delay bounds, in: 2018 IEEE Real-Time
Systems Symposium, RTSS, IEEE, 2018, pp. 13–22.

[19] W. Liu, H. Zhang, H. Ding, D. Yuan, Delay and energy minimization for adaptive
video streaming: A joint edge caching, computing and power allocation approach,
IEEE Trans. Veh. Technol. 71 (9) (2022) 9602–9612.

[20] M.J. Neely, E. Modiano, C.-P. Li, Fairness and optimal stochastic control for
heterogeneous networks, IEEE/ACM Trans. Netw. 16 (2) (2008) 396–409.

[21] L.B. Le, E. Modiano, N.B. Shroff, Optimal control of wireless networks with finite
buffers, in: 2010 Proceedings IEEE INFOCOM, IEEE, 2010, pp. 1–9.

[22] L. Hai, Q. Gao, J. Wang, H. Zhuang, P. Wang, Delay-optimal back-pressure
routing algorithm for multihop wireless networks, IEEE Trans. Veh. Technol.
67 (3) (2017) 2617–2630.

[23] A. Clemm, T. Eckert, High-precision latency forwarding over packet-
programmable networks, in: NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, IEEE, 2020, pp. 1–8.

[24] Adaptive real-time routing in polynomial time, in: 2019 IEEE Real-Time Systems
Symposium, RTSS, IEEE, 2019, pp. 287–298.

[25] X. Wu, D. Wu, E. Modiano, Overload balancing in single-hop networks with
bounded buffers, in: 2022 IFIP Networking Conference (IFIP Networking), IEEE,
2022, pp. 1–9.

[26] Y. Zhong, T.Q. Quek, X. Ge, Heterogeneous cellular networks with spatio-
temporal traffic: Delay analysis and scheduling, IEEE J. Sel. Areas Commun.
35 (6) (2017) 1373–1386.

[27] N. Gvozdiev, S. Vissicchio, B. Karp, M. Handley, On low-latency-capable topolo-
gies, and their impact on the design of intra-domain routing, in: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 88–102.

[28] L. Cai, J. Pan, W. Yang, X. Ren, X. Shen, Self-evolving and transformative
(SET) protocol architecture for 6G, IEEE Wireless Commun. (2022) 1–12, http:
//dx.doi.org/10.1109/MWC.003.2200022.

[29] M.E.M. Dafalla, R.A. Mokhtar, R.A. Saeed, H. Alhumyani, S. Abdel-Khalek, M.
Khayyat, An optimized link state routing protocol for real-time application over
vehicular Ad-hoc network, Alex. Eng. J. 61 (6) (2022) 4541–4556.

[30] S.-H. Chang, H. Chen, B.-C. Cheng, Time-predictable routing algorithm for time-
sensitive networking: Schedulable guarantee of time-triggered streams, Comput.
Commun. 172 (2021) 183–195.

[31] D. Medhi, K. Ramasamy, Chapter 19 circuit-switching: Hierarchical and dynamic
call routing, in: D. Medhi, K. Ramasamy (Eds.), Network Routing (Second
Edition), second ed., in: The Morgan Kaufmann Series in Networking, Mor-
gan Kaufmann, Boston, 2018, pp. 646–672, [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B9780128007372000235.

[32] M.J. Neely, Dynamic optimization and learning for renewal systems, IEEE Trans.
Automat. Control 58 (1) (2012) 32–46.

[33] M.J. Neely, Fast learning for renewal optimization in online task scheduling, J.
Mach. Learn. Res. 22 (1) (2021).

http://refhub.elsevier.com/S1389-1286(23)00308-0/sb1
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb1
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb1
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb2
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb2
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb2
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb3
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb3
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb3
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb4
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb4
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb4
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb4
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb4
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb8
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb8
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb8
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb8
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb8
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb9
http://arxiv.org/abs/1804.06215
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb27
http://dx.doi.org/10.1109/MWC.003.2200022
http://dx.doi.org/10.1109/MWC.003.2200022
http://dx.doi.org/10.1109/MWC.003.2200022
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb29
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb29
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb29
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb29
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb29
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb30
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb30
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb30
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb30
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb30
https://www.sciencedirect.com/science/article/pii/B9780128007372000235
https://www.sciencedirect.com/science/article/pii/B9780128007372000235
https://www.sciencedirect.com/science/article/pii/B9780128007372000235
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb32
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb32
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb32
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb33
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb33
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb33

Computer Networks 233 (2023) 109863X. Ren et al.
[34] X. Ren, J. Ji, L. Cai, Delay laxity-based scheduling with double-deep Q-learning
for time-critical applications, in: 2022 IEEE 30th International Conference on
Network Protocols, ICNP, IEEE, 2022, pp. 1–6.

[35] J. Ji, X. Ren, L. Cai, K. Zhu, Downlink scheduler for delay guaranteed services
using deep reinforcement learning, IEEE Trans. Mobile Comput. (2023) 1–14,
http://dx.doi.org/10.1109/TMC.2023.3276697.

[36] G.F. Riley, T.R. Henderson, The ns-3 network simulator, in: Modeling and Tools
for Network Simulation, Springer, 2010, pp. 15–34.

Xiangyu Ren (S’19) received his B.Sc. degree from the
Department of Automation Engineering, University of Elec-
tronic Science and Technology of China, Chengdu, China
in 2019. He is currently pursuing his Ph.D. degree in
electrical engineering at the Department of Electrical and
Computer Engineering, University of Victoria, Victoria, BC,
Canada. He is the recipient of the Graduate Student Fel-
lowship Award from the University of Victoria in 2021.
His research interests include network optimization, wireless
communication, deterministic networks, vehicular networks,
and the application of machine learning and deep learning
in networks.

Lin Cai (S’00-M’06-SM’10-F’20) is a Professor with the
Department of Electrical & Computer Engineering at the
University of Victoria. She is an NSERC E.W.R. Steacie
Memorial Fellow, an Engineering Institute of Canada (EIC)
Fellow, and an IEEE Fellow. In 2020, she was elected as
a Member of the Royal Society of Canada’s College of
New Scholars, Artists, and Scientists, and a 2020 ‘‘Star in
Computer Networking and Communications’’ by N2Women.
Her research interests span several areas in communica-
tions and networking, focusing on network protocol and
architecture design supporting emerging multimedia traffic
and the Internet of Things. She was a recipient of the
NSERC Discovery Accelerator Supplement (DAS) Grants
13
in 2010 and 2015, respectively. She has co-founded and
chaired the IEEE Victoria Section Vehicular Technology and
Communications Joint Societies Chapter. She is an elected
member of the IEEE Vehicular Technology Society (VTS)
Board of Governors, 2019–2024. She is the Associate Editor-
in-Chief for IEEE Transactions on Vehicular Technology and
has served as the Distinguished Lecturer of the IEEE VTS
Society and IEEE ComSoc Society.

Pu Yang (Student Member, IEEE) received his B.Eng. degree
in software engineering from the Software and Microelec-
tronics College at Northwestern Polytechnical University in
Xi’an, China, in June 2016. He continued his academic
journey by obtaining an M.Eng. degree in Computer Tech-
nology from the Computer Science and Technology College,
Northwestern Polytechnical University, Xi’an, China, in May
2020. He is currently working toward a Ph.D. degree in
Electrical and Computing Engineering at the University
of Victoria. His current research interests include network
performance analysis and delay-guaranteed routing protocol
design.

Jiequ Ji received the Ph. D degree in 2021 from College
of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, Nanjing, China. From October
2018 to January 2020, she was a research assistant at
Nanyang Technological University, Singapore, with Prof.
Dusit Niyato. She was a research fellow with the Depart-
ment of Electrical and Computer Engineering, University of
Victoria, Canada, from 2021 to 2022. She is currently a
Post-Doctoral Research Fellow with the Pillar of Informa-
tion Systems Technology and Design, Singapore University
of Technology and Design, Singapore. Her research inter-
ests include UAV-enabled wireless communications, wireless
content caching, resource allocation in 5G and beyond,
mobile edge computing, and physical layer security.

http://refhub.elsevier.com/S1389-1286(23)00308-0/sb34
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb34
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb34
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb34
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb34
http://dx.doi.org/10.1109/TMC.2023.3276697
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00308-0/sb36

	Congestion-aware delay-guaranteed scheduling and routing with renewal optimization
	Introduction
	Related works
	Delay-guaranteed Network Architecture
	Delay-based Scheduling and Routing Protocol

	System Model and Problem Formulation
	Network Architecture
	Router Structure
	System Model

	Network Model
	Weighted-Round-Robin Scheduling Model
	Queuing Model
	Problem Formulation

	Algorithm Design
	Delay-guaranteed Scheduling and Routing Protocol
	Route Filter Algorithm
	Congestion-aware Route Selection Algorithm

	Network Utility Maximization
	Delay laxity-based reward function
	Renewal optimization based scheduling algorithm

	Performance evaluation
	Network Configurations
	Performance Metrics
	Simulation results and analysis
	Impact of bursty traffic
	Impact of traffic density
	Impact of delay requirements
	Differentiated service

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix
	References

