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earning-Based Cooperative Content Caching and
Sharing for Multi-layer Vehicular Networks

Jun Shi, Yuanzhi Ni, Lin Cai, and Zhuocheng Du

stract—Caching and sharing the content files is critical and
mental for various future vehicular applications. However,
to satisfy the content demands in a timely manner with
d storage is an open issue owing to the high mobility of
es and the unpredictable distribution of dynamic requests.
tter serve the requests from the vehicles, a cache-enabled
-layer architecture, consisting of a Micro Base Station
) and several Small Base Stations (SBSs), is proposed in
aper. Considering that vehicles usually travel through the
age of multiple SBSs in a short time period, the cooperative
g and sharing strategy is introduced, which can provide

rehensive and stable cache services to vehicles. In addition,
the content popularity profile is unknown, we model the

nt caching problems in a Multi-Armed Bandit (MAB)
ective to minimize the total delay while gradually estimating
pularity of content files. The reinforcement learning-based
thms with a novel Q-value updating module are employed
date the caching files in different timescales for MBS
BSs, respectively. Simulation results show the proposed
thm outperforms benchmark algorithms with static or
g content popularity. In the high-speed environment, the

ration between SBSs effectively improves the cache hit rate
urther improves service performance.

ex Terms—Cooperative content caching, MAB, reinforce-
learning, multi-layer vehicular networks, high-speed envi-

ent.

I. INTRODUCTION

recent decades, the tremendous growth of mobile devices
d Internet applications brings great convenience to daily
. In the future, the demand for delay-stringent services
high data rates, e.g., multimedia streaming, edge com-
g and mobile crowdsensing, are expected to increase and
se pressure on vehicular networks with limited capacity.
ing content files in a distributed storage-enabled vehicular
rk, makes it easier for the users to acquire the content

for further application, computing and sharing. Storage
es in vehicular networks refer to the Base Station (BS),
ped with a reliable backhaul link to the core network,

could help to reduce traffic congestion and alleviate
ission pressure. It is believed that caching popular

nt files in the BS will lead to significant reductions in
y consumption, bandwidth usage, and costs, while also
cing user satisfaction [1]–[3].
wever, some bottleneck problems significantly affect the
nt caching efficiency and the implementation of the
e network. To begin with, the BS relies on lots of
vations to learn when and which content file to cache
der to find the optimal caching strategy. In the second
, how to deploy and manage the BS to facilitate caching

and updating in a highly dynamic environment is al
critical issue. At last, since the vehicle may travel through
coverage of multiple SBSs, the total downloading delay u
the proper scheduling is the key metric which is determine
the source and routes together. Therefore, an adaptive cac
and sharing strategy based on the cooperation between
heterogeneous BSs is significant to improve the Qualit
Service (QoS) of the vehicles.

Many recent works are devoted to addressing the a
issues. Artificial intelligence are employed to equip the
work entities with smart caching units, which could l
track, and adjust to unknown dynamic environments [4]–
A hierarchical architecture of cache-enabled networks
provide comprehensive and low latency cache services, w
can store more abundant content files and improve the
of vehicles [11]–[14]. On the other hand, cooperation betw
SBSs can also provide more content files for vehicles, re
the requests served directly by the MBS or the cloud
[15]–[17]. However, in a high-speed environment, the cu
technologies may fail to satisfy some requests due to
downloading delay, even with the optimal caching stra
This paper utilizes the cooperation between SBSs, i.e., the
relays the requests with long downloading delay to ano
SBS on the route of the vehicle. When the vehicle enter
latter SBS’s coverage, it will acquire the requested co
file quickly. In this paper, we study the content caching
sharing optimization problem in the finite area deployed
several SBSs and an MBS by minimizing the delivery dela
the requested content files in storage-enabled network ent
With the help of learning-based intelligence, the cac
strategies of BSs could be optimized collaboratively in
time period. Due to the variability of the environment,
tend to learn and optimize the caching strategy online in
MAB framework gradually. Besides, the MBS helps to
more content files and regulate the SBS caching strate
in real-time, coordinated with several SBSs to form a ca
enabled multi-layer network. In the high-speed environm
if the MBS knows the caching strategies of SBSs and
route of the vehicles, cooperative service between SBSs w
be possible to improve the QoS and also alleviate the tr
pressure. The main contributions are summarized as follo

• A cache-enabled multi-layer architecture, consistin
the cloud, an MBS and several SBSs, is propose
handle the dynamic and unpredictable requests of
vehicular networks. In addition, based on the prop
architecture and different caching timescales, the co
caching problems aiming at minimizing the total do
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loading delay are formulated for both the SBSs and the
MBS from an MAB perspective.
Considering the different capabilities and caching
timescales of SBS and MBS, the learning-based algo-
rithm MCUCB is proposed to adapt to the unknown and
varying popularity of the content files, and cache the most
suitable files in the SBS and MBS, which can provide
comprehensive and stable cache services.
To further improve the caching efficiency in the high-
speed environment, for the requests that could not be
served locally, cooperative MCUCB algorithm is intro-
duced to utilize the traffic information and the coopera-
tion between the deployed infrastructures, which further
improves the QoS.
e remainder of this paper is organized as follows. Sec-
I reviews the existing work. Section III introduces the
sed system model and the caching and sharing opti-
ion problem is formulated in Section IV. Section V
nts the details of the proposed reinforcement learning-

caching policy. Section VI introduces the simulation
s followed by the conclusions and the future work in
n VII.

II. RELATED WORK

ching content files in the BS to increase the QoS of
les has attracted great attention from both the industry
cademia. In this section, recent research will be reviewed
lassified into those with known content popularity profile
hose without.

aching strategies for known content popularity profile

tensive works have studied the content caching problem
the known content popularity profile. In [18], BS coop-
n in the radio access is considered and a low-complexity
ithm for the content caching problem is proposed to

ize the average downloading delay over user requests.
9], comparing the uncoded case and the coded case of
ideo files, the uncoded case is proved to be NP-hard,
uthors develop a greedy strategy for the coded optimum
assignment problem. In [20], SBS is considered always
or activated on demand of mobile users, and the authors

tigate the probabilistic small-cell caching strategy of the
cases. In [21], in the context of wireless networks with

ng link rates, a new network coding scheme called nested
modulation is utilized for the delivery phase, and for

acement phase, a novel file partition scheme is proposed,
is based on the allocation of unequal cache sizes.

aching strategies for unknown content popularity profile

ctically, the content popularity profile is usually un-
n in real life, thus more related works are devoted to
ssing the content caching problem without the knowledge
ntent popularity.
vious works addressed the content caching problem with
ast frequently used (LFU), least recently used (LRU), first
st out (FIFO), random replacement (RR), and myopic

algorithms, which are usually ineffective to cope with
dynamics of content popularity. Recent works tend to dev
learning and optimization-based algorithms that can lear
cache content files. In [22], the content caching proble
modeled as an MAB problem, and then an approxim
solution is proposed to solve the knapsack problem. In
from an MAB perspective, the authors study the co
caching problem by jointly optimizing content cachin
cooperative BSs, and propose a centralized algorithm a
distributed algorithm for the content caching problem.

However, in real life, the content popularity exhibits
namics, and reinforcement learning has advantages in de
with the dynamics of the content caching problem. In [4],
global and local popularity are considered, and the au
propose a Q-learning algorithm to learn the caching strate
and adapt the dynamics of content popularity. In [5],
simple but flexible generic time-varying fetching and cac
costs are introduced to minimize aggregate cost across
and time, and the Q-learning algorithm is employed to
the optimal fetch-cache decisions. DRL algorithms have
applied for content caching in, e.g., [6]–[10]. In [6], to s
the content caching problem in a timely and efficient ma
a pre-trained Deep Neural Network (DNN) is used to
the optimization algorithm, which can reduce the compl
in the delay-sensitive operation phase. In [8], to adap
the dynamics of the content cache, based on the Actor-C
framework, the authors propose a novel size adaptive co
caching algorithm.

Furthermore, a hierarchical architecture to provide co
files could also help to improve the QoS of vehicles, w
has become a common practice in recent works [11]–
In [11], a parent node is connected to multiple leaf nod
serve user requests for content files, and the authors propo
reinforcement learning framework to model the bidirect
impact between caching decisions made at parent and
nodes. In [13], the cloud servers are deployed at the netw
edge and the edge cloud is designed as a tree hierarch
geo-distributed servers, to better satisfy the peak loads
the mobile users.

Nevertheless, related works above tend to cache the
popular content files, which usually ignores those relat
unpopular content files and reduces the hit rate. In addition
requests to be served locally is not always the optimal ch
considering the different delay requirements and prioritie
this paper, the most popular content files are cached in the
SBS, and the cooperative service between SBSs is introd
to serve the requests for the relatively unpopular co
files. A cache-enabled multi-layer architecture is expecte
serve the most requests from vehicles, and the cooper
service between SBSs can ensure that vehicles can acq
the requested content files eventually.

III. SYSTEM MODEL

A. Network Model

The system model of the content caching network i
lustrated in Fig. 1. We consider a two-layer interconne
caching network, where the MBS is connected to U S
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BS associates with several cache-enabled SBSs in its
age, denoted as U = {1, 2, . . . , U}. It is assumed that the
u has a limited communication range lu, which means
he vehicle can communicate with the SBSs when the
ce lu,v between the SBS u and vehicle v is less than
this paper, in the finite area, the MBS can communicate

all the SBSs in this area, but not directly with vehicles.

TABLE I
SYSTEM PARAMETERS

ation Definition

SBSs set
Communication range of SBS u

Communication distance between the SBS u and vehicle v
Communication distance between the MBS and SBS u

Files set
Size of content file f

Popularity of content file f
Parameter of the Zipf distribution

Cache matrix of SBS u
Cache matrix of the MBS

Cache size of SBS u
Cache size of the MBS

S Transmission power of SBS
S Transmission power of MBS
v Bandwidth of SBS-vehicle links
,u Bandwidth of MBS-SBS links

Transmission delay from the SBS u to the vehicle v
u Transmission delay from the MBS to the SBS u

Transmission delay from the cloud to the MBS

rvice Model

MBS and several SBSs in this network store content
to serve requests from vehicles. When the vehicle enters
BS’s coverage and requires a content file from this SBS,
BS serves the request if it has cached the content file.
wise, the SBS will appeal to the MBS for the requested
nt file and then return it to the vehicle. In case the MBS
ot cached the requested content file, the MBS has to
unicate with the cloud to acquire the content file, which
e relayed to the MBS and SBS before arriving at the

sponding vehicle.
e service time is split into several periods, and each
d consists of a user request phase followed by a cache
ement phase. During the user request phase, we use

to represent the number of times vehicles request content
from SBS u within period t, which is assumed to be

dependent identically distributed (i.i.d.) random variable
a mean value of θu,f = E(dtu,f ). It is assumed that
ch time period, the SBS’s requests received from the
les occur independently following the Poisson process
an average rate of N t

u. In addition, it is assumed that
opularity of the files follows a Zipf distribution with
eter γ, θf = 1

fγ
∑F
i=1

1
iγ

, and the popularity set of all
is denoted as Θ = (θ1, . . . , θF ), which usually reflects
equency distribution of word occurrences in textual data.
e, the popularity of content file f , which is the expected
er of requests for content file f , can be described as
=

Ntu
fγ

∑F
i=1

1
iγ

, u ∈ U , f ∈ F , where F = {1, 2, . . . , F}
content file set. Notice that the parameter γ describes

Cloud

MBS

SBS1 SBS2

Cache server

SBSU

Fig. 1. system model

the skewness of the popularity distribution. When γ = 0
popularity is evenly distributed across files, and as γ incre
the skewness of the popularity intensifies.

C. Cache Model

Each content file is of size sf , f ∈ F , which follow
power-law distribution. Each SBS is equipped with a
cache size of Su, and the caching strategy of the SBS is
noted as Au = {(au,1, au,2, . . . , au,F )|au,f ∈ {0, 1}, f ∈
which should fulfill the cache size constraint

∑F
f=1au,f ·s

Su, ∀u ∈ U .
Different from the SBS, the MBS m has a much bi

local cache size Sm so that the MBS can cache more
As with SBS, the caching strategy of the MBS is denote
Am = {(am,1, am,2, . . . , am,F )|am,f ∈ {0, 1},

∑F
f=1am

sf ≤ Sm, f ∈ F}.

D. Transmission Model

In this paper, the total transmission delay of acquiring
content file is employed as the performance metric. W
the vehicle requires a content file from its nearby SB
will get the content file after a transmission delay τu,v i
SBS caches the requested content file. In the noise-lim
network, we model the transmission delay neglecting the i
ference and considering only the large-scale fading. Appl
the signal-to-noise ratio (SNR) to estimate the transmis
rate, the SNR of SBS-vehicle communication links ca
given as SNRu,v = PSBS · l−αu,v/σ2

N , where σ2
N is the w

Gaussian noise power, α is the path loss exponent,
denotes the transmission power of SBS, and lu,v repre
the communication distance from the SBS u to the v
cle v. Therefore, the transmission delay for transmitti
content file with unit size from SBS to the vehicle ca
computed as τu,v = 1/[Bu,v log2 (1 + SNRu,v)]. Similarly
SNR of MBS-SBS communication links can be expresse
SNRm,u = PMBS · l−αm,u/σ2

N , where PMBS denote the trans
sion power of MBS, and lm,u represents the communic
distance from the MBS m to the SBS u, and the transmis
delay for transmitting a unit-size content file from the M
to the SBS is given by τm,u = 1/[Bm,u log2 (1 + SNRm
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ermore, the transmission delay between the cloud and the
would be considered as τc,m � τm,u.

aching Refreshing Model

better serve the requests from vehicles, the SBS refreshes
ching queue in terms of the “considered” locally popular
nt files, and the MBS caches the content files that are not
y cached in the SBS. Since the SBSs are closer to the
les, they receive requests frequently which exhibit rapid
ral evolution at a short timescale. On the other hand,
BS observes requests from several SBSs, which exhibit

er fluctuations and experience the evolution at a longer
cale.
adopt a two-timescale approach to manage the network

l consisting of multiple SBSs and an MBS. The long
cale is denoted as T = 1, 2, . . . , each of which could be
ed into n short time periods t = 1, 2, . . . , n. The short
period is assumed to be 1 to 2 minutes based on the
ics of requests, while the long time interval is 8 to 10

tes depending on the dynamics of the requests from the
. It is assumed that the network model will not change
g the short time period t, but change between t and t+1.

IV. PROBLEM FORMULATION

this section, we model the SBS caching problem and
BS caching problem as the MAB problem. Specifi-
learning from the requests received and the historical

loading delay for the vehicles, the caching strategy for
BSs and the MBS is adjusted to minimize the total
loading delay for the vehicles over a long time period.

on-Cooperative Service for SBS Caching

r a vehicle v entering the SBS’s coverage, it may require
nt file f from the SBS, and the requests will be satisfied
e nearby SBS, the MBS, or the cloud. If the nearby SBS
ached the requested file f , the vehicle will be served
e nearby SBS with the downloading delay τu,v,f . If the
y SBS has not cached the requested file f , the SBS will
st the MBS for the file f , and then the total downloading
will be τu,v,f + τm,u,f if the MBS has cached the

sted file f . At last, if neither the nearby SBS nor the MBS
ached the requested file f , the MBS will request the file
m the cloud, which will experience a much longer delay
, and then the total downloading delay will be given as
+ τm,u,f + τc,m,f . It is assumed that the downloading
from the cloud will be lower than that from the other

, thus the case that the vehicle requests the local SBS
e content file relayed from the other SBSs will not be
dered in this paper.
us, the downloading delay of SBS u for content file f is

f = τu,v,f+(1− au,f ) [τu,m,f + (1− am,f ) τc,m,f ] . (1)

time period t, dtu,f represents the number of requests
u received for content file f , Thus the total downloading

delay of SBS u in period t can be computed as the sum o
individual delays Du,f for each content file f .

Dt
u =

F∑

f=1

dtu,f {τu,v,f + (1− au,f ) [τu,m,f + (1− am,f )

In this section, the objective of the content caching pro
is to minimize the total downloading delay of the SBS
a long time period N by learning and finding the opt
caching strategy when the preference for the content fi
unknown in advance. The SBS caching optimization pro
can be expressed as follows:

P1 : min
{Au}

N∑

t=1

Dt
u

s.t. au,f ∈ {0, 1}, ∀f ∈ F ,
F∑

f=1

au,f · sf ≤ Su, u ∈ U .

The optimization problem P1 is a classical caching
mization problem. In the real world, we usually cannot o
the popularity information in advance and cache the co
files accordingly. Several previous work took the appr
to estimate the popularity profile, Θ = (θ1, . . . , θF ),
then optimize the caching strategy. In this paper, ins
we directly learn the caching strategy with a low-compl
algorithm to make sequential caching decisions. In this
tion, the reinforcement learning-based method is employe
solve the sequential decision-making problem from an M
perspective.

In the formulated SBS caching problem, the cache se
is considered as a gaming machine, which is a collectio
M “arms”, and the agent chooses which arm to pull,
is, the cache server chooses which content file to cache.
strategy aims to find the optimal choice which maximize
cumulative reward among multiple choices in a limited num
of times. Since over a period of time, the SBS will c
several content files instead of only one, we choose to a
the variant of the classical MAB model, i.e., the combinat
MAB (CMAB), where we can pull m < M arms over a pe
of time [24].

At first, the reward for caching content file f in the
is defined as the reduction in downloading delay compare
the case without caching. If the SBS u does not cache
content file f , the downloading delay is described as

Du,f
′ = τu,v,f + τu,m,f + (1− am,f ) τc,m,f .

Then we can get the reward for caching content file f in
SBS as

Yu,f = Du,f
′ −Du,f .

After defining the reward, P1 is reformulated as a CM



Journal Pre-proof

JOURN 5

probl

In
the m
conte
in the
the co
to m
strate
certai
will a
canno
is no
the c
the si
storag
been
strate
propo
with

B. C

Co
usual
that r
file. M
return
large
file is
delay
SBS
the fa
befor
non-c
for S
and i

As
satisfi
could
relaye
delay
relaye
locati
vehic
not h
assign
of th
of th
file in
vehic

uests
from
SBS
ain-
ting
the
the

time
fresh

and

and
SBS
, the
SBS
ctor.

the
f to
d in
and
S u

es in

Yu,f

(7)
ing,

(8a)

(8b)

(8c)

ch is
own

d by
n of
cted
the
Jo
ur

na
l P

re
-p

ro
of

AL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

em P2.

P2 : max
{Au}

N∑

t=1

F∑

f=1

dtu,fYu,f (6a)

s.t. au,f ∈ {0, 1}, ∀f ∈ F , (6b)
F∑

f=1

au,f · sf ≤ Su. (6c)

the formulated model, we mainly focus on how to place
ost popular content file in the BS. The cost of replacing
nt files with new required files is not directly included

objective function for the following two reasons. First,
st for replacing the content files is a necessary overhead

aintain the content sharing efficiency regardless which
gy is employed. Even the cost is relatively large in
n situations, the facilities including the MBS and SBS
lways update the cache to avoid more cost in case the file
t be obtained directly. Therefore, the cache replacing cost

t the main concern in the formulated problem. Second,
ost for replacing cached files is mainly correlated with
ze of files. As described in problem P2, considering the
e limitation of BSs, the reward per unit size has already
considered as the performance indicator for the caching
gy to incline those files with smaller sizes. Thus, the
sed caching policy in Section V also favors the solutions
lower replacing cost during the optimization process.

ooperative Service for SBS Caching

nsidering the high speed of vehicle movement, vehicles
ly move out of the transmission range of the local SBS
eceived its request before acquiring the desired content

any situations may result in content files failing to be
ed to the vehicles, e.g., the size of the content file is too
to be returned in the limited time period or the content
in the MBS or the cloud leading to a long downloading

. Therefore, we prefer to cache these content files in the
in advance to serve the corresponding requests. However,
ct is that we cannot cache all the content files in the SBS
e it receives the requests. In this section, based on the
ooperative service for SBS caching, cooperative service
BS caching is proposed to address the above concerns
mprove the QoS of serving requests from vehicles.
illustrated in Fig. 2, to serve these requests fail to be
ed in the local SBS i, the collaboration between SBSs
be employed to solve this problem. When the request is
d to the MBS, the MBS could compute the downloading
in order to determine whether the request should be
d to other SBSs. It is assumed that the MBS knows the
ons of all the SBSs and the route plan in this area. If the
les fully trust the MBS, which means the vehicles will
ide their driving routes from the MBS, the MBS could

these requests to the corresponding SBS on the route
e vehicles. More precisely, according to the instruction
e MBS, SBS j could cache the corresponding content

the previous time period. Several time periods later, the
le v will receive the desired content file from SBS j.

MBS

SBSi

Cache server

SBSj

v v’

Several time 
periods later

Fig. 2. Cooperative service for SBS caching

In the user request phase, the SBS could receive req
from the vehicles in this area and the vehicles moving
other areas. According to the local cache in the SBS,
will return the content file to the vehicles, and the rem
ing requests will be relayed to the MBS. After compu
the downloading delay of the requests, MBS will serve
requests that could be satisfied in this SBS, and relay
other requests to the corresponding SBSs in the following
period. In the cache replacement phase, the SBS would re
its content file based on the requests in this time period
the requests from other areas.

The reward for caching content file f is defined in (5),
the local SBS u should pay a part of reward Yu,f to the
w who fulfills the request for content file f . Therefore
reward of SBS u will be (1− r) ·Yu,f , and the reward of
w will be r ·Yu,f , where 0 ≤ r ≤ 1 is the proportional fa

In time period t, for SBS u, we use dtu,u,f to denote
number of requests satisfied in the SBS u itself, dtu,w,
denote the number of requests which could not be satisfie
the SBS u and be relayed to the SBS w ∈ U , w 6= u,
dtw,u,f to denote the number of requests relayed to the SB
from SBS w ∈ U , w 6= u. Thus, the reward SBS u receiv
time period t can be given by

Rtu,f = dtu,u,fYu,f +
∑

w∈U
w 6=u

dtu,w,frYu,f +
∑

w∈U
w 6=u

dtw,u,f (1−r)

After introducing the cooperative service for SBS cach
the SBS caching problem can be given as

P3 : max
{Au}

N∑

t=1

F∑

f=1

Rtu,f

s.t. au,f ∈ {0, 1}, ∀f ∈ F ,
F∑

f=1

au,f · sf ≤ Su.

The optimization problem P3 is a CMAB problem, whi
challenging to solve. First, the popularity profile is unkn
in advance, thus this problem cannot be directly solve
optimization or game theory. In addition, the selectio
action is difficult due to the uncertainty about the expe
reward associated with various actions. Second, with
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uction of cooperative service, the SBS selection and the
selection are coupled with each other and the feasible

on domain increases exponentially. Thus, the traditional
hing algorithms cannot be directly applied to solve the
lated problem while maintaining a high efficiency.

roblem Formulation for MBS Caching

this section, the MBS caching problem is also modeled
MAB problem with a longer cache refreshing timescale.
worth noted that since the SBS keeps learning and
izing the caching strategies, the requests for the MBS
volves accordingly and constantly. Therefore, the MBS

ng encounters a more complicated and dynamic problem.
e start of each time interval T , the MBS refreshes its

queue, and then the MBS serves the requests from
to help the content file delivery. Different from SBSs,
receives requests from the SBSs and decides its caching

gy based on the historical requests from the SBSs, to
e the requests served by the cloud.
st, for the requests from the SBS u, the downloading
of MBS m of content file f is

Dm,u,f = τu,v,f + τu,m,f + (1− am,f ) τc,m,f , (9)

is the same as equation (4) and the downloading delay
S does not cache the content file f is described as

Dm,u,f
′ = τu,v,f + τu,m,f + τc,m,f , (10)

is actually the downloading delay from the cloud to the
sponding vehicle.
e number of the requests for content file f from SBS u
e interval T is denoted as dTm,u,f , then the reward of
for serving the content file f requests from the SBS u
e interval T can be described as,

RTm,u,f = dTm,u,f (Dm,u,f
′ −Dm,u,f ). (11)

the end, with the reward for the requests from each SBS,
BS caching problem can be expressed as:

P4 : max
{Am}

∞∑

T=1

F∑

f=1

U∑

u=1

RTm,u,f (12a)

s.t. am,f ∈ {0, 1}, ∀f ∈ F , (12b)
F∑

f=1

am,f · sf ≤ Sm. (12c)

EINFORCEMENT LEARNING-BASED CACHING POLICY

ooperative SBS Caching Strategy

inforcement learning is applied by agents to learn and
ize their actions in the SBS caching optimization prob-

The SBS caching policy is designed based on Q-learning,
fective reinforcement learning algorithm. The main idea
-learning is to use Q-value to represent the expected
lative reward that agents receive for taking a specific

in a given state. However, the environment cannot
s be represented by states and only the action space is
into consideration. In such cases, the standard Q-learning

method is simplified to its stateless version [25]. In
paper, it is obvious that we cannot describe the environ
in terms of finite states, and then the stateless Q-lear
is considered. Therefore, the reinforcement model comp
three components, i.e., agent, action, and reward. Here
agent is the SBS, actions are its caching decisions and
rewards are reductions of the downloading delay. For SB
the Q-value Qu (au) is defined to estimate the effective
of executing action au in the next time period, and ca
updated after receiving the reward of the execution.

For SBS u, the caching decision employed at each
period t can be considered as the super action. First, we
treat the super action as an action, and then simply use
traditional Q-learning to solve the optimization problem
In the stateless setting, Qu (au) , au ∈ Au is denoted a
estimated reward of executing super action au in the next
period t. At each time period t, SBS u updates Qu (au) ,
Au with the reward of executing super action au. The up
equation for Q-value in time period t is defined as [26]:

Qu (au)← Qu (au) + αt
(
Rtu −Qu (au)

)
,

where Rtu is the reward associated with the super a
executed in time period t, which can be computed by equ
(5). αt ∈ {0, 1} is the learning rate, which is used to co
the effect of reward on current Q-value.

However, the traditional Q-learning algorithm raises
issues in solving the formulated problem. Firstly, if the s
action au is treated as an action, we need to decide wh
to cache each content file f or not, which will lead to a
action space of 2F . Owing to the combinatorial explosion
is exponential to the number of content files F , thus it t
a long time to traverse the entire action space. Secondly
reward Rtu can be shared by several super actions. This is
to that when the content file f is requested in time pe
t, part of the reward Rtu will be shared by the super ac
which contain au,f = 1. In other words, the outcome of s
action au is the sum of underlying actions au,f , f ∈
and we cannot distinguish the content file with high rew
Therefore, it is ineffective to employ the traditional Q-lear
algorithm to solve P2.

For the MAB problem, the upper confidence bound (U
algorithm balances exploration and exploitation, and
achieve relatively good performance. Specifically, this a
rithm selects actions by balancing the potential to ex
known actions with high payoffs and the potential to exp
unknown actions. Firstly, the counter and cumulative re
are initialized for each action to 0. Secondly, in time pe
t, for each action i, its upper bound value is calculate
µi = µ̂i +

√
ln t
ni

. µ̂i is the average reward, and
√

ln t
ni

i
upper confidence interval where t is the time period num
and ni is the number of times the action i is selected. A
calculating the upper bound, we select the action with
maximum upper bound value and execute the action fo
current time period t. At last, according to the reward in
time period t, counters and cumulative rewards for sele
actions are updated. In summary, the UCB algorithm r
actions by calculating the upper bound value where ac
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higher average rewards and fewer selections have a larger
bound value and are more likely to be selected, and it

rges to the optimal action over time.
this paper, we consider the CMAB framework where a
action au is a vector comprised of underlying actions
In time period t, a super action au is selected and the
ds of underlying actions au,f in the super action au could
served. Therefore, the combinatorial upper confidence
(CUCB) algorithm is proposed to utilize the expected

ds of underlying actions instead of the rewards of the
actions. As a result, by employing the CUCB algorithm,

ould reduce the action space from the number of super
s 2F to the number of underlying actions 2F . However,
duction of action space is at the cost that the optimal
action cannot be obtained directly and we have to

ute the optimal super action or sub-optimal super action.
UCB algorithm relies on a computation oracle, which

utes the optimal or sub-optimal super action based on the
ted rewards of the underlying actions and the problem
ce.
ferent from the UCB algorithm, the CUCB algorithm
ains an empirical mean reward µ̂f for each action au,f .
UCB algorithm is described as µf = µ̂f +

√
ln t
nf

. The
ence between the CUCB and UCB is that the CUCB
ithm focuses on the rewards of the underlying actions
instead of the super action au. Given the rewards of
lying actions, we could use the computation oracle to
e super action, and update nf and µ̂f accordingly.
nce, we further propose a learning-based CUCB algo-

as follows. Instead of Qu (au) in the traditional Q-
ng algorithm, this algorithm employs Qu,f (au,f ), which
average reward of action au,f selected by SBS u. Let

(au,f ) represent the number of times that SBSu has
ed the action au,f ∈ {0, 1}. In time period t, if action
is selected by SBS u, the Q-value Qu,f (au,f ) is updated

,f (au,f )← Qu,f (au,f )

+
1

Nu,f (au,f ) + 1

(
Rtu,f −Qu,f (au,f )

)
, (14)

Rtu,f can be calculated by equation (7).
e CUCB algorithm updates the Q-values based on the re-
Rtu,f in time period t and the number of times action au,f
een selected. Improving the CUCB algorithm, we add a
t parameter to the upper confidence interval to speed

e convergence and promote exploitation-exploration. The
ithm is described as µf = µ̂f + c

√
ln t
nf

, which is called
odified combinatorial upper confidence bound (MCUCB)
ithm. Due to the Zipf-like distribution of the content
arity and the specific structure of the problem, we can

the weight parameter and update the Q-value as

Q̄u,f = Qu,f + l · 14 ·Nu · sf
F γ

√
3 log t

2Nu,f (1)
, (15)

Qu,f = Qu,f (1)−Qu,f (0), l = max
i∈F

Qu,i/si. F is the
er of files, and parameter γ is the shape factor of Zipf

distribution. The weight parameter l · Nu·sfFγ balances expl
tion and exploration as follows. When the Zipf distribu
is skewed, characterized by a large γ value and few pop
content files, the factor 1

Fγ promotes exploitation. Th
we know none about the content popularity distributio
advance, we can empirically approximate the paramet
as in [27]. The exploration is promoted when the param
Nu is large, since Nu independent realizations of the re
distribution can be observed.

After computing the adjusted Q-value Q̄u,f for each co
file f , the single period problem (SPO) problem can be wr
as follows.

P5 : max
F∑

f=1

au,f · Q̄u,f , (

s.t.
F∑

f=1

au,f · sf ≤ Su, (

au,f ∈ {0, 1} . (

Let aOu = (aOu,1, a
O
u,2, . . . , a

O
u,F ) denote the optimal solu

of the SPO problem. The SPO problem P3 for finding
optimal super action aOu is the 0-1 knapsack problem, w
the value is Q̄u,f and the weight is sf for each conten
f . Knapsack problems known as NP-hard [28], can be so
by algorithms such as the Dynamic Programming Algori
Greedy Algorithm, Branch and Bound Algorithm, etc. In
paper, we study content caching in vehicular networks
we need to obtain the super action promptly to adap
the high dynamics. However, through these algorithms
cannot calculate the super action easily and these algori
may involve randomness with a low probability of fai
Therefore, an algorithm converges to the sub-optimal solu
aOu with a short computation time is preferred.

We employ an approximation oracle to solve P3, whi
a (α, β)-solver. The (α, β)-solver is defined as: the algor
can output a super action whose expected reward is at lea
proportion of the optimal expected reward, with a probab
of β when α, β ≤ 1. To solve the 0-1 knapsack proble
greedy algorithm is employed as the approximation oracl
this algorithm, the reward per unit of weight is used as
performance indicator, and content files with a higher re
per unit of weight would be cached. At first, the perform
indicator can be described as Yu,f = Q̄u,f/sf , f ∈ F . A
that, Yu,f is arranged in a descending order. The super a
is initialized as a∗u = (0, 0, . . . , 0), and a∗u,fi with the cu
maximum i in each iteration is set to 1 until the last a
which means we cannot cache any more content files bec
of the SBS cache size constraint Su. At last, assuming a∗u,
1, for i = 1, 2, . . . , F , the elements a∗u,fk of the super a
a∗u is obtained as follows.

a∗u,fi =





1,
k−1∑
j=1

a∗u,fjsfj + sfi ≤ Su

0,
k−1∑
j=1

a∗u,fjsfj + sfi > Su.

However, after introducing the cooperative service for
caching, the SBS has to cache the content files for the req
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ithm 1 The Learning-Based Algorithm of Cooperative
ce for SBS Caching
tep 1. Initialize:
u,f (au,f ) = 0, Qu,f (au,f ) = 0, ∀f ∈ F .
ache all the content files once, observe the rewards Rtu,f ,
nd then update Nu,f (au,f ) and Qu,f (au,f ), ∀f ∈ F .
et t← F + 1.
tep 2. observe (user request phase in period t):
or f ∈ F do

Observe the reward Rtu,f .
Update Qu,f (au,f )← Qu,f (au,f )+1/(Nu,f (au,f )+1)·
(Rtu,f −Qu,f (au,f )) and Nu,f (au,f ) ← Nu,f (au,f ) +
1, ∀au,f selected in time period t.
Compute Qu,f = Qu,f (1)−Qu,f (0).

nd for
ompute l = max

i∈F
Qu,i/si and Q̄u,f = Qu,f + l ·

4·Nu·sf
Fγ

√
log t

Nu,f (1)
, ∀f ∈ F .

tep 3. optimize (cache replacement in time periot t):
bserve the relayed requests F t+1

r = {f1, f2, . . . , fr} in
e next time period t+ 1.
ompute Yu,f = Q̄u,f/sf for the remaining content files,
nd arrange Yu,f in a descending order: Yu,fi , fi ∈ F ,
= r + 1, r + 2, . . . , F .
ssign au,fi to 1 for content files in F t+1

r and compute
u,fi for the remaining content files according to equation
17), then get super action au.
ache the content files according to au.
et t← t+ 1.
o to Step 2.

d from other SBSs the next time period t+1 to guarantee
layed requests could be served in this SBS. Therefore, the
on of finding the optimal super action has to be modified,
the SBS should cache the content files to serve the
d requests in the next time period t+1 first. Specifically,
ing the relayed requests in the next time period t+ 1 is
= {f1, f2, . . . , fr}, arrange the remaining content files
,fr+1

≥ Yu,fr+2
≥ · · · ≥ Yu,fF , fi ∈ F . Initializing

uper action as au = (0, 0, . . . , 0), the optimal super
of cooperative service for SBS caching can be given

,fi
= 1, i = 1, 2, . . . , r, and the remaining elements are

ed according to equation (17).

define δ as the ratio between the optimal solution and
roposed approximation oracle, which can be estimated as
F
f=1 a

O
u,f ·Q̄u,f/

∑F
i=1 a

∗
u,fi
·Q̄u,fi ≤ 2 [28]. Therefore,

xpected reward of the proposed approximation oracle is
st 1/2 proportion of the optimal expected reward with
bility 1. Then we can derive the proposed algorithm as
, β)-solver with α = 1/2 and β = 1. The learning-based
ithm for SBS caching is detailed in Algorithm 1.

described in Algorithm 1, the computational complexity
omputing the Q-values for content files is O(F ), and
or finding the optimal super action by the approximation

is also O(F ). This means that the computational
lexity for Algorithm 1 is O(F ).

B. MBS Caching Strategy

The MBS caching problem is modeled as a CMAB pro
as described in equation (12). The objective of the M
caching problem is to cache the content files with m
expected rewards in the MBS in order to reduce the req
relayed to the cloud, which is similar to the SBS cac
problem. Thus, the proposed learning-based CUCB algor
can be employed to solve the MBS caching problem
a greater timescale. In addition, rather than the greedy-b
(1/2, 1)-solver, the dynamic programming algorithm is ap
to solve the knapsack problem in the MBS caching.

In the MBS caching problem, the super action is the cac
strategy of the MBS, Am = {(am,1, am,2, . . . , am,F )|am
{0, 1},∑F

f=1am,f ≤ Sm, f ∈ F}. In the CMAB framew
we consider the action am,f , f ∈ F to reduce the a
space. In the stateless setting, Qm,f (am,f ), f ∈ F den
the estimated reward of executing action am,f in the next
interval. The learning rate is defined as the reciprocal o
number of times action am,f selected by the MBS in the

1
Nm,f (am,f )+1 , thus in time interval T the Q-value Qm,f (a
is updated by

Qm,f (am,f )← Qm,f (am,f )

+
1

Nm,f (am,f ) + 1

(
U∑

u=1

RTm,u,f −Qm,f (am,f )

)
,

where RTm,u,f is given by equation (11).
To promote the exploitation-exploration, the MCUCB a

rithm is employed to adjust the Q-values based on the co
popularity and the particular structure of the problem, and
adjusted Q-value will be given by

Q̄m,f = Qm,f + l′ · 2 · U ·Nu · sf
F γ

√
3 log T

2Nm,f (1)
,

where Qm,f = Qm,f (1) − Qm,f (0), l′ = max
i∈F

Qm,i/si

the MBS caching problem, we modify the weight param
by multiplying it by the number of SBSs U to further pro
the exploitation-exploration.

Therefore, the SPO problem for the MBS caching pro
could be described as follows,

P6 : max

F∑

f=1

am,f · Q̄m,f , (

s.t.
F∑

f=1

am,f · sf ≤ Sm, (

am,f ∈ {0, 1} . (

The optimization problem P6 is also a 0-1 knapsack p
lem. Different from the SBS caching problem, in time int
T , the MBS has a relatively long time to get the solu
of P6, and the dynamic programming algorithm is chose
find a better solution. The detailed MBS caching strateg
shown in Algorithm 2, where V (f, S) denotes the maxim
value obtained by caching the first i content files in the M
with the capacity of S. Initializing the boundary condition
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ithm 2 The Learning-Based Algorithm for MBS
ing
tep 1. Initialize:
m,f (am,f ) = 0, Qm,f (am,f ) = 0, ∀f ∈ F .
ache all the content files once, observe the rewards
T
m,u,f , and then update Nm,f (am,f ) and Qm,f (am,f ),
f ∈ F .
nitial the MBS cache queue according to the Q-value
m,f (am,f ).
et T ← F + 1.
tep 2. observe (SBS request phase in interval T ):
or f ∈ F do

Observe the reward RTm,u,f , ∀u ∈ U .
Update Qm,f (am,f ) ← Qm,f (am,f ) +

1/(Nm,f (am,f ) + 1) · (∑U
u=1R

T
m,u,f − Qm,f (am,f ))

and Nm,f (am,f ) ← Nm,f (am,f ) + 1, ∀am,f selected
in time interval T .
Compute Qm,f = Qm,f (1)−Qm,f (0).

nd for
ompute l′ = max

i∈F
Qm,i/si and Q̄m,f = Qm,f + l′ ·

·U ·Nu·sf
Fγ

√
log T

Nm,f (1)
, ∀f ∈ F .

tep 3. optimize (cache replacement in time interval
):
reate a table V (f, S), f = 0, 1, 2, . . . , F , S =
, 1, 2, . . . , Sm, and initial the boundary conditions,
(0, S) = V (f, 0) = 0.
et the state transition equation as, V (f, S) =
ax(V (f − 1, S), V (f − 1, S − sf ) + Q̄m,f ), thus fill
e table V (f, S).
ccording to the result V (F, Sm), compute the optimal

olution a∗m and Cache the content files according to a∗m.
et T ← T + 1.
o to Step 2.

S) = V (f, 0) = 0, the state transition equation is found
(f, S) = max(V (f−1, S), V (f−1, S−sf )+Q̄m,f ). In
words, the first case is the MBS cannot cache the content
, V (f, S) = V (f−1, S), and if the MBS is able to cache
ntent file f , V (f, S) = V (f−1, S−sf )+ Q̄m,f ). After
the table, the result V (F, Sm) will be the solution to find

ptimal super action a∗m. For the dynamic programming
ithm, we create a table of V (f, S), from which the
lexity is derived as O(Sm · F ).

VI. SIMULATION RESULTS

this section, we demonstrate the performance of the pro-
MCUCB algorithm for SBS caching and MBS caching.

erformance metrics include: 1) the downloading delay, 2)
stantaneous reward, 3) the percentage of the local cache
te, 4) the percentage of the local SBS cache hit rate, 5)
BS cache hit rate, and 6) the total cache hit rate (the sum
SBS cache hit rate and the MBS cache hit rate). It is

that the downloading delay is calculated by the models
ction III-D, including the total downloading delay of all
sts during a time period. The instantaneous reward is the
tion of downloading delay compared to the case without

caching for all the content files in the SBS. The percen
of local cache hit rate is the part of the requests that coul
served by the local SBS, which is the sum of the percen
of the local SBS cache hit rate, the MBS cache hit rate,
the cloud cache hit rate. Moreover, due to the dynamic
the environment, the average of the performance metrics
the start to the current period is chosen to better display
performance of the algorithm.

TABLE II
SIMULATION PARAMETERS

Parameters Values

Transmission range of SBS 100m
Transmission range of MBS 200m
Transmission power of SBS (PSBS ) 1W
Transmission power of MBS (PMBS ) 40W
Gaussian white noise power (σ2

N ) 1W
Path loss exponent (α) 4
Bandwidth of SBS-vehicle links (Bu,v) 10MHz
Bandwidth of MBS-SBS links (Bm,u) 10MHz
Number of SBSs (U ) 10
Number of content files (F ) 50
Poisson distribution parameter (λ) 5
Size of content files (sf ) [1, 9]
Cache size of SBSs (Su) 25
Cache size of MBS (Sm) 125
Parameter of Zipf distribution (γ) 1
Maximum local downloading delay (Dmax) 25s
Proportion factor of payment (r) 0.5

To evaluate the performance of the algorithm propose
this paper, the following benchmark algorithms are sele
for comparison.
• Informed Upper Bound (IUB) Algorithm: The p

larity profile Θ is known in advance, which provide
upper bound on the performance of any MAB algori
Since the size of the content file is not evenly distrib
instead of the popularity, popularity per unit siz
sorted to improve the caching strategy. Moreover, i
remaining cache size is inefficient to cache the
popular content file, the less popular content file
smaller size will be cached. Therefore, the IUB algor
actually provides the relatively better caching strateg
comparison.

• Context-Aware Proactive Caching (CAC) Algor
[29]: The caching strategy is divided into two ph
exploration and exploitation. In the exploration ph
the under-explored content files will be cached firs
the exploitation phase, the content caching proble
modeled as an MAB problem, and the popular co
files are cached.

• Least Frequently Used (LFU) Algorithm [30]:
least requested content file is replaced with the reque
content file which is unavailable in the local cach
the current time period. The LFU algorithm meas
the popularity of the content file to cache the conten
receiving more requests.

• Least Recently Used (LRU) Algorithm [31]: The
recently requested content file is replaced with the
quested content file which is unavailable in the
cache in the current time period. For simplicity, in
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(c) SBS cache hit rate
The downloading delay, instantaneous reward and SBS cache hit rate for SBS caching with the stationary content popularity

time period, the most popular content files during the
recent time interval are kept.
Myopic Algorithm [22]: The requested content files in
the last time period are kept and the rest of the content
files are replaced randomly.
this paper, the requests for content follow the independent
distribution, θf = 1

fγ
∑F
i=1

1
iγ

, where the Zipf parameter
et to 1. Unless otherwise stated, the number of content
F is 50, and the size of content files follows the power-
istribution, P (sf = x) = c · x−α, 1 ≤ sf ≤ 10,
Z, where c is the normalization constant and the

r-law index α is set to 1. The number of requests SBS
eived in time period t, i.e., N t

u follows the Poisson
bution, and the distribution parameter λ = 5. Both the
and the MBS are uniformly distributed in a square area

0× 500 m2, and the transmission range of the SBS and
BS will be 100 m and 200 m, respectively. The local
size of the SBSs and the MBS are set as Su = 25 and
125. The transmission power of the SBS and MBS

SBS = 1 W , PMBS = 40 W , respectively. The path
xponent α = 4, Gaussian white noise σ2

N = 1 W , and
andwidth of the SBS and MBS are Bu,v = Bm,u =
Hz, respectively. Furthermore, the transmission delay
en the MBS and the cloud is set as twice the maximum
of that between the SBS and the MBS, i.e., τc,m =
2/[Bm,u log2 (1 + SNRm,u)]. Specifically, considering

ooperative service for SBS caching, the maximum local
loading delay is reduced to a constant, Dmax = 25 s. The
lt system parameters are shown in TABLE II. In addition,
e cooperative service for SBS caching, the relayed SBS
ion is modeled as the random selection of the SBSs that
ehicle may encounter on its route.

S caching with the stationary content popularity

st, as shown in Fig. 3, with stationary content popularity
1, We compare the performance of SBS caching algo-
s by analyzing downloading delay, instantaneous reward
BS cache hit rate. To simplify, the IUB algorithm will
ployed to solve the MBS caching problem, and we will

consider the single SBS in this simulation. In Fig. 3a,
b and Fig. 3c, we could observe that the downloading

delay, the instantaneous reward, and the SBS cache hit
will be relatively random in the beginning and finally conv
which is due to the dynamics of the environment. Addition
due to the large number of content files, the performanc
algorithms varies with the random requests even under
stationary popularity distribution. Due to the fixed content
ularity, LFU and LRU algorithms achieve similar performa
The Myopic algorithm achieves the worst performance du
that the Myopic algorithm learns only from the recent
period and random cache content files. Moreover, the
cache hit rate for the IUB algorithm is significantly more
other algorithms, while for the other two performance me
the IUB algorithm performs similarly to and even worse
other algorithms. Since the IUB algorithm will cache the
popular content file, content files in the SBS and MBS
have many duplicates, which increases the downloading d
and decreases the instantaneous reward. The CAC algor
balances the exploration and the exploitation, then ob
a relatively poor performance. In Fig. 3a, the downloa
delay for the MCUCB algorithm is about 61s, similar to o
benchmark algorithms. In Fig. 3b, the instantaneous re
for the MCUCB algorithm is approximately 22, which is m
than other benchmark algorithms. In Fig. 3c, since the co
popularity is known in advance, the SBS cache hit rate
the IUB algorithm is about 56%, and those for the MCU
CAC, LFU and LRU algorithms are close to 45%. For the
caching problem, with the stationary content popularity
MCUCB algorithm achieves the relatively better performa

B. SBS caching with the non-stationary content populari

In Fig. 4, with the non-stationary content popularity
downloading delay, instantaneous reward, and the SBS c
hit rate are compared with the benchmark algorithms. S
larly, the IUB algorithm will be employed to solve the M
caching problem, and only consider the single SBS. Fo
non-stationary content popularity, the parameter γ is initia
as 0.5, and changed to 1.5 and 1.0 in time period 1000
3000, respectively. Ignore the fluctuation at the beginn
we will focus on the following performance. In Fig. 4a
observe that the MCUCB algorithm acquires the least do
loading delay of about 40s, similar to that of other benchm
algorithms. In Fig. 4b, the figure shows that the instantan
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(c) SBS cache hit rate
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(c) Total cache hit rate
The downloading delay, instantaneous reward and total cache hit rate for MBS caching with non-stationary content popularity

d for the MCUCB algorithm is about 21, similar to that
e IUB algorithm. Fig. 4c indicates that the SBS cache
r the MCUCB is close to 69%, slightly less than the

algorithm. We could observe that when the parameter γ
ses, the performance of the algorithms improves. when

arameter γ is large, most content requests concentrate on
ll number of content files, and caching the most popular
nt files could serve more requests, that is, decrease the
loading delay, and increase the instantaneous reward and
cache hit. Comparing Fig. 3 and Fig. 4, it is indicated that
CUCB acquires a similar performance, in other words,
pts to the variation of parameter γ and still offers a

ising performance.

BS caching with non-stationary content popularity

Fig. 5, for the non-stationary content popularity, we
the performance of the proposed algorithm in the MBS

ng problem, compared with the benchmark algorithms.
is simulation, the IUB algorithm will be employed to
the SBS caching problem for the benchmark algorithms,
he MCUCB algorithm will be employed to solve both

BS caching problem and the SBS caching problem
he proposed algorithm. Instead of the time period t,
ng timescale interval T composed of 10 time periods
sed in this simulation. For the non-stationary popularity,
arameter γ is initiated as 0.5, and changed to 1.5 and

time interval 100 and 300, respectively. Therefore, the

downloading delay is the sum of the downloading delay
the requests in this interval, the instantaneous reward is
reduction of the downloading delay in this interval, and
total cache hit rate is the sum of the SBS cache hit rate
the MBS cache hit rate. In Fig. 5a, the Myopic algor
get the worst performance, and the proposed algorithm
the best performance, where the downloading delay is a
4000s in the interval, with the improvement on the percen
is approximately 30% compared with the IUB algori
In Fig. 5b, the instantaneous rewards of IUB, LFU, L
CAC and Myopic algorithms increase with time while
of the MCUCB algorithm decreases. In Fig. 5c, the prop
algorithm gets the maximum total cache hit rate, more
that of the IUB algorithm, and the Myopic algorithm get
minimum total cache hit rate. For the non-stationary co
popularity, the LRU and LFU algorithm cache the content
which is requested most, but due to the size of the co
files being unfixed, the higher cache hit rate does not m
a lower downloading delay and higher instantaneous rew
For the CAC algorithm, after the algorithm converges, s
unpopular content files will also be cached in the explor
phase, worsening the performance. Fig. 5 demonstrates
when the content popularity changes, the proposed algor
outperforms other algorithms for the MBS caching probl
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(c) Total cache hit rate
The downloading delay, instantaneous reward and total cache hit rate for MBS caching with different SBS cache sizes

BS caching with different SBS cache sizes

. 6 shows the performance of the algorithms when
ache size of SBS varies from 5 to 45. The setting in
imulation is similar to the simulation in Fig. 5. The
rmance metrics in this simulation will be the average
g 200 intervals. In Fig. 6a, for these algorithms, the
loading delay decreases with the increase in cache size of
BS. When the cache size of SBS increases, more content
ould be cached in the SBS, thus these content files could
quired with a lower downloading delay. In Fig. 6b, the
taneous reward for the benchmark algorithms increases

the increase of the cache size of the SBS, and that of the
sed algorithm decreases. In Fig. 6c, the total cache hit
or the IUB, CAC, Myopic, LFU, and LRU algorithms
ses with the increase of cache size of SBS, and the

cache hit rate for the MCUCB algorithm remains almost
. For the benchmark algorithms, when the cache size
S increases, the SBS cache hit rate increases, so more
sts can be served in the SBS. Therefore, the total cache
te and instantaneous reward increases with the increase
he size. However, when the cache size of SBS increases,

otal cache hit rate remains the same, where the SBS
hit rate increases and the MBS cache hit rate decreases.

lustrated in (5), the instantaneous reward for serving the
sts in the MBS is more than that in the SBS. When the
size of SBS increases, more requests will be served in

BS, thus the instantaneous reward decreases. As shown
g. 6, regardless of the cache size of SBS, the proposed
CB algorithm maintain a good performance, better than
benchmark algorithms.

BS caching with different content popularity

. 7 shows the performance of the algorithms when the
arameter γ varies from 0.2 to 1.4. The parameter setting
ilar to the simulation in Fig. 6. In Fig. 7a, when γ in-

es, the downloading delay for these algorithms decreases.
. 7b, for the benchmark algorithms, the instantaneous re-
increases and that of the MCUCB algorithm decreases. In
c, total cache hit rate for the MCUCB algorithm slightly
ses and that of other benchmark algorithms increases.
increases, the popular content files are more likely to

be requested by users and the popularity difference betw
popular files and unpopular files will be larger. There
more requests will focus on a small portion of content
with highest popularity. Total cache hit rate increases
the increase of γ. As more requests are served in SBSs
downloading delay decreases with the increase of γ. Fo
benchmark algorithms, the instantaneous reward increases
to that more requests are served. However, for the MCU
algorithm, more requests are served in SBSs and less req
are served in the MBS, thus the instantaneous reward fo
MCUCB algorithm decreases with the increase of γ. F
verifies that the MCUCB algorithm adapts to the chang
the content popularity compared with benchmark algorith

F. Cooperative MBS caching for different vehicle speeds

Finally, to verify the performance of the proposed c
erative MCUCB algorithm in a high-speed environment
compare the performance between the MCUCB algorithm
the cooperative MCUCB algorithm for different vehicle sp
in Fig. 8. In this simulation, the maximum local downloa
delay Dmax is computed by Dmax = 2·lu/v. For the MCU
algorithm, if the downloading delay for the content fi
higher than Dmax, the content file will fail to be retu
to the vehicle, while for the cooperative MCUCB algori
the request will be relayed to another SBS on the route o
vehicle. The downloading delay and instantaneous rewar
this simulation are those of a single request, to better show
performance. Fig. 8a and Fig. 8b shows that the downloa
delay and instantaneous reward for the cooperative MCU
algorithm are higher than that of MCUCB algorithm, w
is because for the cooperative MCUCB algorithm, the
SBS in this area cannot relay the request to another SBS,
increasing the downloading delay and instantaneous rew
In Fig. 8c, for the MCUCB algorithm, when the vehicle s
increases and the maximum local downloading delay D
decreases, the SBS cache hit rate almost keeps the same.
to the limit of the maximum local downloading delay, f
requests can be served by the MBS, so the MBS cach
rate and local cache hit rate decrease. For the cooper
MCUCB algorithm, with the increase of vehicle speed, m
requests are relayed to other SBSs, thus the MBS cach
rate decreases, SBS cache hit rate and the relayed SBS c
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(c) Total cache hit rate
The downloading delay, instantaneous reward and total cache hit rate for MBS caching with different content popularity
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The downloading delay, instantaneous reward and cache hit rate of the MCUCB and cooperative MCUCB algorithms for MBS caching

te increases. Fig. 8c indicates that the higher the vehicle
is, the higher the importance of cooperative service is.

nclusion, the cooperative MCUCB algorithm can adapt
high-speed environment well.

VII. CONCLUSION AND FUTURE WORK

ching the popular content files in the distributed storage-
ed network entities can alleviate the pressure on the
aul links with limited capacity in the vehicular networks.
paper considers a cache-enabled multi-layer architec-
comprising several SBSs and an MBS. A two-timescale
ach is proposed for cache refreshing, where the SBSs
h the content files in a short timescale because they are
r to the vehicles, while the MBS refreshes the content in
g timescale as it receives requests from the SBSs with
er frequency. The content caching problem is modeled
an MAB perspective, and the learning-based algorithm
CB is proposed for the SBSs and the MBS. Additionally,
arantee that the vehicles can get the requested content
in the high-speed environment, cooperative service was
uced to further improve the QoS of vehicles. Simulation
s show the impressive performance of the proposed
ithms and prove that the proposed approach successfully
s to the dynamics of content file popularity.
ere are some challenges in the cooperative caching prob-
that are worth further exploration. For example, the
ng SBSs should be carefully selected to improve content

delivery efficiency and reduce the redundant transmissio
addition, how to handle the requests from the vehicles w
stringent time requirement is also a challenging problem
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