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Abstract— Time-sensitive applications have become increas-
ingly prevalent in modern networks, necessitating the develop-
ment of Delay-Guaranteed Routing (DGR) solutions. Finding
an optimal DGR solution remains a challenging task due to
the NP-hard nature of the problem and the dynamic nature
of network traffic. In this paper, we propose Deadline-Driven
Routing (DDR), a distributed traffic-aware adaptive routing
protocol that addresses the DGR problem. Inspired by online
navigation techniques, DDR leverages real-time traffic conditions
to optimize routing decisions and ensure on-time packet delivery.
By combining network topology-based path generation with real-
time traffic knowledge, each router can adjust packet forward-
ing directions to meet its heterogeneous latency requirements.
Comprehensive simulations on real-world network topologies
demonstrate that DDR can consistently provide delay-guaranteed
service in different network topologies with varying traffic
conditions. In addition, DDR ensures backward compatibility
with legacy devices and existing routing protocols, making it a
viable solution for supporting delay-guaranteed service.

Index Terms—Delay guaranteed routing, Adaptive routing.

I. INTRODUCTION

Delay-Guaranteed Routing (DGR) is a fundamental and
crucial problem in computer networking. From advanced vir-
tual reality (VR) and digital twin technologies to traditional
financial transactions and online meetings, the demand for
DGR keeps growing [1, 2]. Existing traffic engineering [3, 4]
and software-defined networking (SDN) methods [5, 6] can
improve network performance in terms of delay, jitter, and
throughput. However, they cannot effectively solve the DGR
problem due to limited flexibility and scalability.

To provide delay-guaranteed services, both network capacity
and traffic dynamics should be considered for routing proto-
cols. In this context, the DGR problem can be formulated as
an integer programming problem, with the objective of mini-
mizing the percentage of packets delivered that exceeds their
designed budgets. However, how to develop effective routing
solutions for delay-guaranteed services remains a challenging
problem.

Existing solutions to integer programming problems are
limited by their scalability, which is particularly challenging
in large-scale dynamic network environments. To address
this limitation, researchers introduce constraints to reduce the
search space. For example, Yiyang et al. [7] developed an op-
timization framework that can account for variations in traffic
demand and potential link failures by manually introducing
constraints and multiple relaxations. Bogle et al. [8] proposed
TEAVAR, which takes a risk management approach to traffic

engineering, leveraged by pruning linear programming prob-
lems while adding artificial constraints. However, the above
solutions require manual intervention by experienced experts
and require lengthy iterations, which is not feasible when
routers require real-time results.

To address the aforementioned limitations, we propose
a distributed traffic-aware adaptive routing protocol named
Deadline-Driven Routing (DDR). To ensure delay-guaranteed
services, each packet carries its delay limit in the network-
layer packet header, making it accessible to all routers. In-
spired by online navigation [9], which recommends routes
and alternatives based on real-time traffic conditions, DDR
optimizes routing solutions for punctual delivery by leveraging
the inherent synergy between network capacity and local traffic
information.

To achieve efficient path selection, the proposed DDR
utilizes both the network topology information and the traffic
dynamics information. In particular, DDR benefits from a
local complete Forwarding Information Base (FIB), which
provides a wealth of routing information. This FIB data can
be used by the proposed approach to make intelligent and
informed route selections. Finally, the path selection process is
optimized based on real-time network conditions and packet-
specific requirements.

To gain information about traffic dynamics, DDR uses a
locally adaptive forwarding strategy. As a result, routers can
dynamically adjust their forwarding decisions based on the
immediate network status and traffic conditions in their local
vicinity. Using locally adaptive forwarding, the proposed ap-
proach can efficiently and effectively handle traffic variations
and congestion at a fine-grained level, ensuring timely packet
delivery while efficiently utilizing network resources. This
feature fits well with the needs to make fast and real-time
routing decisions for the DGR problem.

From the above analysis, an accurate estimation of the
neighborhood traffic state is important for routing decisions.
Ideally, the router can promptly identify alternative routes
in response to congestion. However, in real-world networks,
traffic volume may change within tens of milliseconds, while
the neighbor information delivery delay ranges from a few
milliseconds to tens of milliseconds. To minimize the negative
impact caused by traffic information delay, DDR adopts a route
selection mechanism based on queue status estimation.

The main contributions of this work are summarized below:
• First, we present a formulation of the DGR problem in



the context of an autonomous system (AS) network. The
problem is formulated to address the challenges of delay
guarantee for time-sensitive applications.

• Second, to effectively tackle the DGR problem, we
introduce DDR, a novel distributed traffic-aware dy-
namic routing protocol. DDR explores a large set of
feasible paths while leveraging local traffic conditions
and network topology knowledge to ensure packet-level
delay guarantees, and optimizes the routing decisions in
real time. Through careful design, we have ensured its
compatibility with legacy devices in AS networks. This
feature makes DDR a practical and viable solution that
can be deployed without significant disruption to the
existing infrastructure.

• Third, we have developed and implemented a working
prototype of the DDR protocol. Extensive evaluations
have been conducted on real network topologies and traf-
fic data extracted from production networks. The results
show that DDR consistently provides delay-guaranteed
services in a variety of network and traffic scenarios. This
performance underscores the adaptability and reliability
of DDR.

The rest of the paper is organized as follows: Sec. II
provides a primer on the DGR solution, addressing its key
concepts and challenges. In Sec. III, we discuss the pain points
in the existing approaches to DGR. The system design is
illustrated in Sec. IV. The detailed implementation of the DDR
protocol is presented in Sec. V. Evaluation results, including
performance comparisons and simulations, are discussed in
Sec. VI. We discuss future research directions in Sec. VII,
followed by conclusions Sec. VIII.

Open-source. The code of DDR is publicly available at
http://tinyurl.com/yowaq7th.

II. DGR PRIMER

Large Internet Service Providers (ISPs) operate AS net-
works consisting of tens of servers. These AS networks must
continuously adapt to meet evolving user demands, services,
and traffic patterns, requiring optimization for efficient and
reliable communications. In this context, routing protocol
plays a crucial role in achieving efficient and reliable packet
delivery for latency-sensitive applications. The main objective
of DGR is to identify paths that can route packets within a
given latency budget.

The high-level goal of DGR is to provide efficient and
reliable routing mechanisms that ensure timely packet delivery
for latency-sensitive applications.

First, DGR represents a challenging combinatorial opti-
mization problem, with the primary objective of identifying
an efficient path for packet routing within a given latency
budget. In practical networks, fluctuating traffic patterns can
cause variations in edge delay, making static routing protocols
unable to achieve optimal performance. The decision-making
process must consider both static link properties and real-time
traffic conditions to handle latency requirements.

Therefore, the DGR solution requires a cross-layer approach
that involves both network and link layers. At the network
layer, the DGR solution determines appropriate paths to route
packets while meeting the specified latency requirements. At
the link layer, it implements priority queues to accommodate
packets based on their latency budgets and prevailing network
conditions. This cross-layer approach enables DGR to make
well-informed and coordinated routing decisions to achieve
efficient and punctual packet delivery.

Furthermore, the DGR solution in an AS network should be
addressed using distributed methods. Instead of relying on a
centralized controller to make routing decisions for the entire
network, the DGR solution allows individual routers to make
localized and adaptive decisions based on real-time observa-
tions of traffic conditions and queue status. This decentralized
approach makes it possible to deploy in traditional networks.
It also streamlines the routing process, reducing overhead and
complexity, resulting in faster and more efficient decision-
making. In addition, local optimization allows each router
to make routing decisions independently without extensive
communication with other routers or controllers, improving
scalability and robustness in large networks.
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Fig. 1: An illustrative example

We illustrate a delay-guaranteed routing service example,
assuming that a packet is to be delivered from A to D within
the given latency limit, as shown in Fig. 1. There are four
alternative routes from A to D, Route 1 (A-B-C-D), Route
2 (A-F-E-D), Route 3 (A-F-C-D), and Route 4 (A-B-C-F-E-
D), but different routes may suffer from different levels of
congestion. To satisfy the DGR requirement, Node A needs
to know the topology of the subnet as well as the delay upper
bound of each link along the paths and select an appropriate
direction to route the packet considering the neighborhood link
traffic status.

III. EXISTING APPROACH AND CHALLENGES

In this section, we formulate the DGR problem as an opti-
mization problem and analyze the challenges it poses. We pro-
vide an overview of the pain points of the existing techniques
in traffic engineering, resource reservation, and deterministic
scheduling used to tackle this problem. These techniques,
while valuable, have certain limitations in effectively solving



the DGR problem, which motivates our exploration of more
intelligent and systematic solutions in the subsequent sections.

A. Problem Formulation

Symbol Description
G A directed graph with m edges and n nodes
V Node set
E Edge set
τi Latency of packet i
Li Latency upper limit of packet i
Pi Set of edges that generates a path to deliver packet i
de The delay of edge e ∈ Pi, de is dynamic
zi Binary vector edge indicator of path Pi

I(·) Indicator function of the on-time delivery

TABLE I: Key notations in problem formulation

The AS network topology is abstracted as a directed graph,
where each router is represented as a node, and the links
between them form the edges. Traffic is represented as packets
between different nodes with various latency budgets based
on the service requirements. The objective of DGR is to
maximize the number of packets delivered on time while
satisfying all constraints imposed by hardware and operational
requirements. The problem can be formulated as an optimiza-
tion problem under a set of constraints. The mathematical
formulation is given below. Table I summarizes the key
notations of the problem formulation.

Consider N packets are scheduled to be delivered on a
directed graph G = (V,E) with m edges and n nodes. Let
Pi be the path that delivers packet i from its source to its
destination. Let de be the delay of edge e ∈ Pi, which changes
dynamically over time. The cumulative latency τi of packet i
over the path Pi is given by:

τi =
∑
e∈Pi

de. (1)

Therefore, the objective of the DGR is to maximize the
number of packets that can be delivered within their respective
delay requirements (called delay budgets in this paper), Li,
i.e.,

maximize
N∑
i=1

I(τi < Li),

subject to: zi ∈ {0, 1}m,

(2)

where Pi = zTi E. The decision vector zi of length m
represents the selection of edges. Using matrix-vector multi-
plication, path Pi can be denoted by the binary vector zi. The
inequality constraint I(τi < Li) ensures that the cumulative
delay of each packet τi is less than its delay budget Li. The
indicator function I(·) returns 1 if the condition inside the
parentheses is true, and 0 otherwise.

This problem is an integer programming problem and is
an NP-hard problem, making it challenging to find an opti-
mal solution using traditional iterative optimization methods.
Furthermore, in real networks, traffic variability causes fluc-
tuations in edge delay, making the shortest path chosen by a

static routing table potentially suboptimal. On the other hand,
capturing the traffic state of the entire network is prohibitively
expensive and will suffer from long delays. Therefore, how to
consider both network topology and traffic dynamics to solve
the DGR problem remains a challenging open issue.

B. Pain Points in Today’s Approach

We formulate the DGR problem above as an integer pro-
gramming problem above, but it could not be solved directly
with an off-the-shelf integer programming solver. The main
problem lies in the computational complexity of Integer Pro-
gramming solvers, making it challenging to directly apply off-
the-shelf solvers such as Gurobi [10] and MOSEK [11]. In
addition, the iterative computation of the integer programming
approach results in high computational resource consumption
and time overhead, which becomes even more problematic
under dynamic traffic conditions.

Constrained by hardware processing capabilities, the early
networks were designed to provide best-effort services. Over
the past few decades, an increasing number of concepts and
methods for optimizing network performance have been pro-
posed to meet various Quality of Service (QoS) requirements.

The Internet deployed simple and efficient distributed rout-
ing algorithms based on static routing tables OSPF [12],
BGP [13], and IS-IS [14]. They simplify the routing prob-
lem by ignoring traffic conditions and transforming it into
a shortest path problem that can be solved efficiently using
algorithms such as Dijkstra’s algorithm and Bellman-Ford
algorithm. However, table-based routing schemes cannot ef-
fectively handle traffic dynamics in the network.

Multipath routing protocols like Equal-cost Multi-path
Routing (ECMP) [15], and traffic engineering systems [16, 17]
can respond to regular network dynamics. However, when
congestion occurs along a path, the routers are unable to
change the forwarding direction and search for a new route.
This limitation can affect network reliability as well as delay
and jitter, and make the Internet incapable of guaranteeing
latency for time-sensitive applications.

The inadequacy of traditional Internet interior gateway rout-
ing systems led the interest in traffic engineering. Multiproto-
col Label Switching (MPLS) [4] employs reactive traffic en-
gineering, which allows routers to make forwarding decisions
based on labels rather than destination addresses, resulting in
more efficient packet delivery. NetPlumber [18] introduces a
policy-checking tool that allows routers to evaluate network
policies without delay and make adaptive routing decisions.
However, current traffic engineering methods can only op-
timize a constant scenario but lack robustness. Some even
rely on a manual intervention based on analysis of historical
experience. We need more automated and intelligent solutions
that adaptively adjust routing decisions based on real-time
network conditions to ensure efficient and reliable packet
delivery for time-sensitive applications.

More recently, SDN has applied centralized control to
network management, where the separation of control and
data planes allows for more flexible control of network



management and configuration. B4 [5] employs hierarchical
routing and centralized control based on global network state
information to achieve dynamic routing optimization and load
balancing. Microsoft proposed SWAN [19], a system that
increases network utilization by reconfiguring traffic via the
central controller, while LiveNet [20] applies the centralized
approach to global routing computation and path assignment,
improving performance for large-scale and low-latency stream-
ing. In addition, Kumar et al. [6] formulated the end-to-end
delay in SDN as a multi-constraint optimization problem and
used heuristic algorithms to solve it. Although the centralized
approach offers advantages in SDN due to the logically
centralized control plane and regular topologies, it faces scal-
ability and complexity limitations when applied to large-scale
networks. Lin proposes the SET [21], which aims to meet
the diverse requirements of network applications in various
environments through intelligent configuration. However, it
has only been proposed as an architecture and urgently awaits
implementation.

Advances in hardware performance have led to the explo-
ration and extension of the capabilities of routing devices.
One of the approaches is the programming slick network
functions [22], which enables dynamic and flexible network
control by defining and deploying network functions on-the-
fly. In addition, Kinetic et al. [23] used machine learning
to optimize network routing and improve performance in
dynamic environments.

In addition to routing, scheduling is critical for service
quality. Priority Queues [24] can classify packets into different
priorities based on their importance or time sensitivity to en-
sure that high-priority packets can access high-priority queues
to be forwarded ahead of lower-priority packets to reduce
their queuing delay. The scheduling scheme could improve the
performance of time-sensitive packets, but cannot thoroughly
solve the DGR problem in the network. Yang [25] proposed
a delay-guaranteed routing protocol (DGRP) that uses real-
time neighbor congestion information to adjust forwarding
directions. However, the study only considers ideal neighbor
traffic conditions obtained from a simulator and does not con-
sider the impact of delay to obtain such traffic conditions. To
fully satisfy the DGR service, we need cross-layer cooperation
between the network layer and the link layer.

To address these challenges, we adopt a greedy routing
strategy to ensure timely packet delivery in the presence of
traffic fluctuations. In the next section, we show why the
central idea of DDR - local traffic condition-based adaptive
routing - can be a powerful tool to improve the on-time arrival
rate.

IV. DDR DESIGN

We propose DDR, a hybrid approach that leverages the
advantages of table-based routing and a local traffic state
adaptive method to solve the DGR problem. By exploiting
the strengths of both methods, DDR achieves a millisecond-
level latency guarantee, enabling efficient and reliable packet
delivery under practical network conditions.

DDR Framework

Routing
Algorithm

Forwarding
Decision

Packet
Process

Link State
Database

Traffic Condition
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Queue
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Fig. 2: Framework of DDR

The DDR framework, as depicted in Fig. 2, requires the
cooperation of the link layer and network layer. A queuing
discipline is used to quantify queuing delay, while a routing al-
gorithm identifies possible forwarding directions. In addition, a
route selection algorithm dynamically makes forwarding deci-
sions based on real-time traffic conditions. This collaborative
approach ensures that DDR can efficiently find high-quality
routing solutions while adapting to the dynamics of network
traffic.

A. Traffic Condition Database

The Traffic Condition Database (TCDB) is designed to as-
sist the router in estimating the delay of routes under different
traffic conditions, which consists of two main functions: delay
quantization and delay estimation.

Delay quantization: To meet the latency requirements of
delay-sensitive applications, we introduce a priority queue
discipline, as shown in Fig. 3. This priority queue consists of
two virtual queues: a high-priority queue for delay-sensitive
packets and a low-priority queue for normal best-effort pack-
ets. The length of the high-priority queue is configured in
milliseconds, representing the amount of time it takes to drain
the queue. By measuring the traffic condition reflected in the
length of the high-priority queue, we can assign a congestion
state to the queue. The local router periodically broadcasts this
congestion state to neighboring nodes. Subsequently, neighbor-
ing routers can estimate the queueing delay and intelligently
choose an appropriate forwarding direction for packets. This
approach enables routers to make informed and adaptive
routing decisions based on real-time traffic conditions.

Delay estimation: In real-world networks, the delays for
the control packet which carries the traffic state to arrive
at neighboring routers can cause discrepancies between the
observed traffic conditions and the actual conditions at the
time of arrival. To address this issue, the TCDB implements a
latency estimation process that allows routers to estimate the
current traffic conditions of their neighbors based on historical
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records, while taking into account potential delays between
neighbors.

The delay estimation problem can be formulated as a
Time Series Estimation (TSE) problem, which is commonly
encountered in various domains such as signal processing,
control engineering, and traffic engineering. Techniques such
as Markov models [26], Hidden Markov models [27], and
Reinforcement Learning [28] can be applied to solve TSE
problems. In the context of DGR, the goal is to estimate
the neighbor’s future traffic conditions in a few milliseconds,
which is closely associated with the link delay. While machine
learning and reinforcement learning methods can achieve
accurate estimations, they often demand substantial comput-
ing resources and extensive training datasets. We employ a
straightforward yet effective Markov model for the latency
estimation process.

Actual level
Predicted level S1 S2 S3

S1 p11 p12 p13
S2 p21 p22 p23
S3 p31 p32 p33

TABLE II: Transition Matrix for Markov Model

To represent the traffic state, we utilize the high-priority
queue to define the state. The Markov model captures the tran-
sition probabilities between different traffic condition states.
By observing the current state, the routers can estimate the
probabilities of transitioning to different states in the future.
This information enables the routers to make better decisions
about the most appropriate forwarding directions, taking into
account the expected queuing delays and avoiding congestion.
The transition matrix, as presented in Table II, is a crucial
tool used for estimating and evaluating the Markov model.
The values in the matrix represent the probabilities of state
transitions.

The estimated queueing delay (Dq) in each neighbor can
be calculated using (3), where S represents the total number
of states in the Markov model. pij denotes the transition
probability from the ith state to the jth state, while dj
represents the expected queuing delay associated with the
jth state. The delay expectation (Dq) is a crucial metric
that enables routers to make intelligent decisions regarding
forwarding directions. This information plays a significant role
in the adaptive and dynamic behavior of the DDR protocol,
ultimately contributing to efficient and reliable packet delivery

under real-time network conditions.

Dq =

S∑
j=1

pij · dj (3)

By leveraging the Markov model, the latency estimation
process in TCDB provides routers with a reliable and efficient
means to estimate their neighbor’s future traffic conditions.
This estimation contributes to better adaptive behavior of the
DDR protocol, enabling timely and efficient packet delivery
while considering real-time network conditions.

B. Local Complete FIB
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Fig. 4: Feasible Path Candidate Set

OSPF uses the Dijkstra’s algorithm to compute the shortest
path tree, also known as the Shortest-Path First (SPF) algo-
rithm. However, relying on a single path may lead to network
under-utilization and degraded performance with unbalanced
traffic. Therefore, for DDR, we aim to identify all potential
paths that can meet the delay requirement. To achieve it, a
DDR router recursively uses the SPF algorithm to generate a
recursive feasible path candidate set. While the RecursiveSPF
algorithm efficiently generates the time-oriented routing table
based on the static delay component, there are opportunities
to optimize its performance. By leveraging parallel computing
techniques, such as parallelization across multiple processing
units or distributed computing across a network of routers,
the algorithm can be executed efficiently. This reduces the
computational complexity and enables faster generation of the
deadline-driven routing table.

Algorithm 1: Feasible Path Candidate Set
Data: A graph G(V,E), a root node root
Result: A feasible path candidate set F for the node

root
1 Let depth be the depth of the forest.
2 Function RecursiveSPF(G, root, depth, F):
3 if depth == 0 then
4 F.push(Dijkstra(G, root))
5 end
6 for each neighbor router i of root do
7 RecursiveSPF(G, i, depth− 1, F)
8 end
9 return



To explore more alternative forwarding paths, we generate
a feasible path candidate set for each node. The pseudo-code
is given in Algorithm 1. For a directed graph G(V,E), we
assign any node as the root and initialize an empty tree set
F to store the feasible path candidate set. Here we introduce
depth to represent the number of hops from the root node to its
neighbors, which also determines the number of shortest-path
trees in the current forest. Then we design a recursive function
RecursiveSPF with a core of the Dijkstra’s algorithm to
calculate the feasible path candidate set. Recursive depth
represents the range of traffic conditions observed by the router
when making routing choices. For instance, as shown in Fig. 1,
we set depth to 1. At node A, there are two neighbors in 1
hop, B and F, so the feasible path candidate set includes two
shortest-path trees rooted at node B and node F. The recursive
depth can be flexibly set according to the research needs,
which can gather more neighbor information across multiple
hops and optimize the algorithm.

By exploring alternative paths beyond the shortest route,
routers can dynamically adapt to changing network condi-
tions, spread traffic load more evenly, and optimize resource
utilization. This approach ensures efficient data transmission,
minimizes congestion and enhances the overall performance
of the time-oriented routing system.

C. Adaptive Route Selection
The adaptive route selection function aims to find a suitable

forwarding direction for a packet within its budget time.
Algorithm 2 presents the pseudo-code for adaptive route
selection. It uses two functions related to the previous section.
Function D(r) returns the cost of route r, which is described
in Sec. IV-B. Function Di(r) returns the estimated queueing
delay based on local traffic condition, which is described in
Sec. IV-A.

Algorithm 2: Adaptive Route Selection
Data: Forwarding Table T , Destination Address d,

Latency budget L
Result: A forwarding direction R

1 Let D(r) return the cost of route r.
2 Let Dl(r) estimate the local traffic delay of route r.
3 Let MinimumDelay(·) return the index of the

estimated fastest path of Set (·).
4 Let S be an empty set of routes.
5 S ← ∅
6 for each route r ∈ T to d do
7 if LoopAvoidCheck(r)
8 && D(r) +Dl(r) <= L then
9 S.Push (r)

10 end
11 end
12 index = MinimumDelay(S)
13 return S.Get (index)

Since DDR explores multiple paths, a key issue is how
to avoid loops. For each packet, the algorithm evaluates all

potential routes to the destination, and a loop avoidance check
function ensures that the forwarding direction is closer to the
destination. Each route is then analyzed based on its static
latency and the estimated local queueing delay. Routes that
can deliver the packet within its budget time are selected to
the candidate route set S. The MinimumDelay(·) function
then selects the route with the shortest estimated delay from
this set.

The adaptive route selection function plays a critical role
in ensuring timely packet delivery while considering both
the dynamic traffic conditions and the link capacity. By
intelligently selecting the most appropriate route, the algorithm
helps achieve millisecond-level delay guarantees in the DDR
system.

V. IMPLEMENTATION

In this section, we describe our implementation of DDR
using the ns-3 [29] simulator and discuss some of the imple-
mentation issues that arose. The packet-level simulation used
to evaluate the performance of DDR is illustrated in the next
section.

The implementation of DDR is based on an OPSF link-
state routing protocol that generates the LSDB by link-state
advertisement (LSA). The route computation function for
generating the local complete FIB and the route selection
function has been modified according to Sec. IV. However,
to ensure the optimal performance of DDR, two configuration
issues need to be addressed: determining how to set the traffic
condition scale and selecting the appropriate sampling rate.

In the proposed priority queue discipline for latency use
delay before quantization, we define the maximum queueing
delay for the priority queue as Qmax. The queue is divided
into K states, from 1 to K, and each state k represents a
range of queueing delays. Specifically, the queueing delay in
state K is between (k−1)Qmax

K and kQmax

K .
The scale traffic condition state setting is crucial and sig-

nificantly impacts the protocol’s performance. If the range for
each state is too small, the Markov Model may necessitate
predicting more steps to estimate the current state, poten-
tially decreasing the accuracy due to the increased prediction
complexity. Conversely, using a large granularity and fewer
states might result in higher estimation errors for certain
states. Thus, finding the right balance between granularity and
prediction steps is essential to achieve accurate and efficient
traffic condition estimations in the Markov Model for the
priority queue. Properly selecting the traffic condition scale
allows DDR to make informed and adaptive routing decisions
based on real-time traffic conditions, ensuring reliable and
low-latency packet delivery.

Eq. 4 provides a method to calculate the error in the
Markov Model. The scale used in this equation is in terms
of milliseconds, and the size of the error matrix is denoted as
S. The error (err) is calculated as the sum of the products
of the error matrix elements C(i, j) and the corresponding
differences between i and j, multiplied by half of the scale



and then divided by S. The error matrix represents the rela-
tionship between the predicted traffic condition and the actual
traffic condition. The error calculation takes into account the
discrepancies between predicted values and actual values, and
the scale factor ensures that the error is appropriately weighted
based on the time scale used in the prediction.

err =

S∑
i=1

S∑
j=1

C(i, j) · (abs(i− j) + 0.5) · scale/S (4)
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Fig. 5: The error in delay prediction varies different links with
diverse delays at various scales.

In our simulation, we assumed a delay ranging from 4 ms
to 10 ms for neighboring routers, and the high-priority queue
length was set to accommodate data that can be drained in
20 ms. We conducted the simulation to find the optimal scale
and sampling rate for the Markov Model. The simulation
results that when the scale is configured as half of the delay of
the neighboring link, the estimation error in traffic conditions
tends to be minimized, as marked in Fig. 5. Thus, setting the
scale to be close to the half actual link delay of the neighbor
results in more accurate traffic condition predictions.

VI. EVALUATION

A. Experimental setup

To evaluate the performance of DDR, we implement the
protocol and the comparative benchmark by simulation. The
results of the comparison are presented in (§VI-B). In addition,
we have investigated the feasibility of deploying DDR in real-
world networks in (§VI-C).

The DDR protocol is fully implemented in ns-3, and the
evaluation is performed on a consumer-grade computer with
Ubuntu 22.04 operating system, Intel i7-12700 CPU, 32GB
of RAM, and SSD storage. To investigate its performance
in a realistic network, we select four well-known network
topologies as shown in Table III, namely Abilene, AT&T,
CERNET, and GEANT, obtained from the Internet Zoo [30]
dataset.

Topology Name #Nodes #Edges
Abilene 11 14
AT&T 25 26

CERNET 36 53
GEANT 22 37

TABLE III: Topology Information

We compare DDR to three protocols, ECMP, LFID [31], and
DGRP. ECMP can choose the shortest paths with equal costs
for packet delivery, and it is a typical table-based protocol
that does not consider traffic conditions. LFID is a multi-path
routing protocol that considers traffic engineering to reduce the
load on congested links by distributing packets onto different
paths. DGRP is a recent work that targets the same problem
assuming that the neighbor status information is known with-
out delay. For a fair comparison, we use the same topologies
and background traffic conditions to test all routing protocols.
Note that we use control packet exchanges to implement the
exchange of DGRP neighbor queue information instead of
reading the information directly from the simulator’s memory.
Thus our results are slightly different but more realistic than
those reported in DGRP.

B. Performance evaluation

We first compare on-time delivery rates under various sce-
narios. Including an ideal network, traffic interference caused
by elephant flows, and burst traffic. For each scenario, we
select specific target transmissions that traverse the network.
In the Abilene network, the target transmission is from Seattle
to New York; in the AT&T network, it is from San Francisco
to Washington D.C.; in the CERNET network, it is from
Guangdong to Beijing; and in the GEANT network, it is from
Ireland to Hungary. By evaluating DDR’s on-time rate in these
diverse scenarios, we can effectively evaluate its performance
in handling real-world network conditions and interference.

Ideal network. Fig. 6 illustrates the comparison of the
on-time delivery ratio between different protocols in ideal
network scenarios with no competing traffic. The experiment
was repeated 50 times for each protocol in each topology,
varying the latency budget from half of the basic round-trip
time (RTT) of the shortest path to 1.5 times the basic RTT.
DDR achieved a 100% on-time arrival ratio when the latency
budget is slightly larger than half of the basic RTT of the
shortest path. DGRP exhibited some fluctuations due to fast
changes in neighbor’s queue lengths when selecting feasible
paths based on the known neighbor state information. ECMP
exhibited a vertical line, indicating that it forwarded all packets
through the shortest paths with the same cost only and do
not consider other choices. LFID, considering the k-shortest
paths, introduced significant variance in packet arrival times
due to separating packets on multiple paths without adaptive
adjustment to packet latency requirements.

Elephant flow competing. Fig. 8 illustrates the performance
of the protocols in the presence of elephant flow competing.
The elephant traffic flow consists of TCP traffic that is not
delay-sensitive and occurs on the main path of the target trans-
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Fig. 6: On-time delivery ratio in ideal network
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Fig. 7: The CPU cost for protocol initialization and routing table
storage cost on each topology.

mission. DGRP and DDR demonstrate superior performance
compared to the other two algorithms by effectively utilizing
neighbor traffic conditions and network topology information.
DDR exhibits greater stability than DGRP, benefiting from
the more accurate estimation provided by the Markov-based
database. ECMP cannot adapt routing decisions based on
traffic conditions, so it fails to deliver packets punctually in the
presence of elephant flow. LFID’s attempt to separate packets
onto multiple paths for load balancing also leads to challenges
in meeting latency requirements in this scenario.

Burst traffic competing. In Fig. 9, we evaluate the on-
time delivery rate of packets in the presence of burst traffic
occurring along the main route to the destination. The burst
traffic used in our study is derived from Virtual Reality (VR)
applications [32]. In heavy congestion conditions, the ECMP
protocol’s on-time arrival rate decreases to almost 0, mainly
due to its limited route selection options, as ECMP cannot
find a correct alternate direction for packets. LFID’s perfor-
mance decreases as some packets are separated onto congested
routes, experiencing severe delays, and leading to missed
deadlines. In contrast, DDR and DGRP perform better and
eventually achieve a 100 % on-time arrival rate with a larger
delay budget, thanks to priority management, which priori-
tizes delay-sensitive packets for forwarding. However, DGRP’s
performance is highly unstable, with packets experiencing
significant delays even with sufficient budget. The heavy traffic
congestion significantly impacts the estimated delay of queue

discipline in DGRP, and its random route selection based on
estimated information leads to erroneous forwarding decisions.
The delay budget that DDR can support is increased compared
to the case of elephant best-effort service flow competition.
However, DDR can still consistently provide DDR service
within a budget of 1.5 times the basic link delay. This success
is attributed to accurate traffic condition estimation and a
greedy selection of the best forwarding directions, ensuring
reliable and low-latency packet delivery.

C. Deployment

The deployability of DDR can be assessed from two per-
spectives: compatibility with existing routing protocols and
compatibility with legacy network devices.

Compatibility with existing routing protocols. DDR’s
compatibility with current Interior Routing Protocol (IGP)
and Border Gateway Protocol (BGP) is twofold: Firstly, as a
link-state-based adaptive routing protocol, DDR operates in a
distributed manner without relying on a centralized controller,
enabling seamless integration into traditional network infras-
tructures. Secondly, DDR can be deployed as a table-based
routing protocol, sharing the Link-State Database (LSDB)
with conventional protocols like OSPF, ensuring efficient
coexistence with established routing mechanisms in existing
networks.

Compatibility with legacy network devices. DDR is
designed to be lightweight and resource-efficient, making it
suitable for deployment on legacy network devices. The CPU
time and storage space costs for protocol initialization, as
depicted in Fig. 7(a), are normalized based on the OSPF
protocol cost. The results show that DDR’s CPU time uti-
lization is approximately three times that of OSPF, even
with increasing network size. Similarly, Fig. 7(b) illustrates
that DDR’s storage requirements are approximately two times
that of OSPF with network size growth, normalized to the
OSPF protocol cost. These findings demonstrate DDR’s ability
to operate effectively on legacy infrastructure without costly
hardware upgrades.

VII. DISCUSSION

As a new routing protocol, there are many interesting
problems that beckon for further investigation.



20 25 30 35 40 45

Delay requirements (ms)

Abilene - Basic route delay 23ms

0

0.2

0.4

0.6

0.8

1

20 30 40 50

Delay requirements (ms)

AT&T - Basic route delay 20ms

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Delay requirements (ms)

CERNET - Basic route delay 5ms

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60

Delay requirements (ms)

GEANT - Basic route delay 25ms

0

0.2

0.4

0.6

0.8

1

O
n
-t

im
e
 d

e
liv

e
ry

 r
a
ti
o
 (

%
)

ECMP LFID DGRP DDR

Fig. 8: On-time delivery ratio in elephant flow competing
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Fig. 9: On-time delivery ratio in burst traffic competing

Accurate estimation of neighbor’s queue information.
Accurate estimation of neighbor’s future queue information is
crucial for making informed and adaptive routing decisions in
DDR. Improving the accuracy of real-time traffic state esti-
mation, especially considering the dynamic nature of network
traffic, is an important area for further research. Techniques
such as machine learning or advanced statistical methods could
be explored to improve the accuracy of queue information
prediction.

Path selection for network utility and stability. Selecting
paths that maximize network utility while ensuring system
stability is a challenging optimization problem. The trade-
off between efficient resource utilization and maintaining
stable network operation must be carefully considered. The
development of intelligent path selection algorithms that take
into account factors such as link capacity, traffic load, and
latency constraints could lead to more efficient and reliable
DDR solutions.

Large-scale network test bed. Building a large-scale net-
work testbed is crucial to evaluating the performance and
scalability of DDR in real-world scenarios. Large-scale ex-
periments can help researchers identify potential bottlenecks
and challenges when deploying DDR in production networks.
Creating a testbed that accurately replicates real-world network
conditions and includes various traffic patterns and topologies
will provide valuable insights into the practicality and effec-
tiveness of DDR.

VIII. CONCLUSIONS

The increasing demand for new applications has necessi-
tated the need for DGR solutions. In this paper, we formulated
the DGR problem and proposed DDR, a heuristic routing
prototype for Intra-domain networks. Unlike centralized ap-
proaches used in SDN, DDR operates in a distributed manner,
making it suitable for networks without a centralized con-
troller. By leveraging both local neighbor traffic conditions
and network topology information, DDR adaptively adjusts
forwarding directions to provide packet-level delay-guaranteed
service. Additionally, DDR ensures backward compatibility
with legacy devices and can work in conjunction with existing
protocols. Through detailed simulations, we demonstrated that
DDR outperforms other approaches in terms of packet-level
on-time delivery. These results underscore the effectiveness
and practicality of DDR in achieving efficient and reliable
communication in modern networks.
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