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Abstract—Live traffic video is vitally important for vehi-
cles in future intelligent transport systems (ITSs). Due to the
limitation of onboard sensors, vehicles may not be able to
obtain a full view of the traffic situations which endangers
safety for autonomous driving vehicles. In this article, we
propose a traffic video multicasting scheme by using video
splitting and group splitting techniques for unmanned aerial
vehicles (UAVs)-assisted ITS, in which UAVs are considered
as the eyes in the sky to capture real-time traffic videos.
We aim to maximize the long-term video quality received
by vehicles by jointly optimizing vehicle grouping and spec-
trum allocation. Considering the interactions among UAVs,
the above optimization problem is formulated as a multiagent
coordination problem in the form of a Markov game (MG).
The MG is subsequently solved by leveraging a state-of-the-
art multiagent deep reinforcement learning (MADRL) algo-
rithm, namely, multiactor attention critic (MAAC), in which
an attention mechanism is utilized to pay attention to other
agents to make the learning process more effective and
scalable. Extensive simulation results show that the MAAC-
based algorithm has better performance in terms of video
quality and spectrum efficiency compared with the baseline
methods.

Index Terms—Deep reinforcement learning (DRL), evolved
multimedia broadcast multicast service (eMBMS), multiagent
learning, traffic videos.
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I. INTRODUCTION

REAL time, accurate, and comprehensive traffic
information is essential for driving safety of con-

nected autonomous vehicles (CAVs) [1]. As a key component
of the future intelligent transport systems (ITSs), CAVs can
both sense and collect traffic data. Each CAV’s own onboard
sensors, such as cameras, LiDAR, radar, GPS, etc. can
gather driving data and traffic information [2], [3]. Advanced
communication technologies, such as vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I) communications [4],
are utilized to collect data from the surrounding environment.
However, due to the limitation of locations, numbers, and
qualities of the sensing devices, the traffic situations may not
be fully observed by vehicles, leading to safety concerns of
CAVs.

Unmanned aerial vehicles (UAVs) assisted ITS, a new
paradigm of the smart city is emerged recently [5], [6], which
is a promising solution for numerous traffic video applications,
such as automatic driving, traffic monitoring and management,
and traffic accident rescue. In automatic driving scenarios, the
global perspective of traffic images captured by high definition
(HD) camera mounted on UAVs can be relayed to CAVs to
assist them in traffic guidance, traffic activity analysis, iden-
tify objects, and help cruise control systems to make sensible
decisions. Nevertheless, live HD video data are costly to share
due to high resolution, high frame rate, and highly dynamic
range characteristics. Furthermore, since the same traffic video
content is delivered by the UAV to all CAVs subscribed simul-
taneously, traditional unicast transmission mode is spectrum
inefficiency, especially in heavy traffic areas. Hence, resource
allocation is challenging.

Evolved multimedia broadcast multicast service (eMBMS)
is introduced by third generation partnership program
(3GPP) [7], to serve more users for data/video appli-
cations with limited radio resources using conservative
multicast scheme (CMS) [8] or opportunistic multicast scheme
(OMS) [9]. In CMS, a live content is multicasted/broadcasted
to all clients interested through a shared channel. However,
due to the high heterogeneity of links, especially in high
dynamic ITS networks, the transmission rate is bounded by
the user with the worst channel conditions in a multicast-
ing group, CMS suffers low spectrum efficiency consequently.
Vice versa, OMS aims to leverage the multiuser diversity by
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selecting only a part of multicast users to maximize throughput
at each scheduling. However, the short-term fairness among
users cannot be guaranteed, which cannot be used in traffic
video multicasting scenarios.

In this article, we take advantage of group splitting and
stream splitting techniques for traffic video multicasting
services in UAVs-assisted ITS. First, by employing advanced
stream splitting methods, such as scalable video coding (SVC)
encoder, the source video captured by the UAV is split into
multiple substreams with lower data rate, including a base
layer (BL), and a couple of enhancement layers (ELs) that can
be transmitted independently by dedicated channels. Second,
by leveraging group splitting methods, vehicles are split into
different groups according to channel conditions. To be spe-
cific, considering fairness and efficiency, all vehicles should
receive the base substream while vehicles with good chan-
nel conditions are split into different groups to receive full/a
part of enhancement substreams to improve video quality.
Third, a vehicle with good channel conditions may belong
to multiple groups and receives different layers’ data inde-
pendently that will be combined together later. In such a
manner, the “basic” quality content is multicasted to all vehi-
cles and the “improved” quality content is only transmitted
to those with better channel conditions [10]. In this novel
structure, we have to answer the following questions. 1) How
to jointly optimize user grouping and spectrum allocation?;
2) How to guarantee that each layer can be decoded success-
fully? Because each layer data is multicasted independently
and the ith layer data can be decoded successfully if and
only if the data of all lower layers have been correctly
received.

To address these open issues associated with stream splitting
and group splitting, we propose a multiagent deep rein-
forcement learning (MADRL)-based traffic video multicasting
scheme for UAVs-assisted ITS. The main contributions of this
article are listed as follows.

1) We consider multiple UAVs traffic video multicasting
scenarios, where the interference caused by other UAVs
is considered. Most of the existing works only consid-
ered single-cell scenarios for eMBMS applications, are
not directly applicable to multiple UAVs scenarios.

2) To maximize the long-term video quality, we jointly
optimize user grouping and physical resource blocks
(PRBs) assignment of the whole networks. The weighted
sum of all layers’ validity functions is defined as the
optimization objective, where the weights are utilized to
measure the importance of different layers and the valid-
ity function is introduced to measure whether a layer can
be decoded successfully or not.

3) We leverage a novel MADRL method, namely, mul-
tiactor attention critic (MAAC), to deal with the
problem. The considered problem is a multiagent pol-
icy optimization problem, where each agent needs to
cooperate with other agents and makes a sequence of
actions to maximize the long-term reward. Since the
traditional methods, such as static optimization the-
ory, aim to search the optimal/suboptimal solution to
maximize the short-term reward according to the current

observation, they are not feasible. Besides, to avoid curse
of dimensionality caused by traditional DRL methods
when the number of agents is large, we adopt MAAC to
solve the problem. In MAAC, an attention mechanism is
utilized to pay attention to other agents, which enables
the agents to coordinate with each other effectively and
makes the learning process more scalable.

4) A Python-based simulator is developed to implement
the proposed algorithm and other baseline methods.
Extensive simulation results show the effectiveness of
the proposed scheme.

The remainder of this article is organized as follows. The
related work is discussed in Section II. The system model
and assumptions are presented in Section III. We formulate
the optimization problem in Section IV, which is subse-
quently reformulated as a Markov game (MG). In Section V,
we adopt MAAC to solve the MG. We present the simula-
tion results and related discussions detailedly in Section VI.
Finally, Section VII gives the conclusion and future
works.

II. RELATED WORK

We discuss the related work of video streaming services
in eMBMS systems, UAVs-assisted ITS, and DRL-based
resource optimization, respectively.

A. Video Streaming Services in eMBMS Systems

Live stream multicasting is the main application in eMBMS
systems and many excellent works have been done in lit-
erature. For example, Montalban et al. [11] proposed a
layer-division multiplexing (LDM)-based subgrouping method
for multimedia multicasting services in cellular networks.
Araniti et al. [12] presented an original multicast resource
allocation method based on subgroup formation and applica-
tion layer joint coding to improve the performance of live
streaming in satellite-eMBMS systems in terms of through-
put and video Quality of Experience (QoE). Zhang et al. [13]
proposed a novel multicast framework by taking advantage of
dynamic adaptive streaming over HTTP (DASH) and cloud
radio access networks (CRANs), and then, user grouping,
bitrate selection, and spectrum allocation were jointly opti-
mized to enhance the QoE of multicasting services. However,
the spectrum efficiency of these works [11], [12], [13] can be
further improved by leveraging the advanced stream splitting
techniques.

For multicast live stream applications, group splitting could
draw support from stream splitting techniques. For example,
Condoluci et al. [14] proposed a novel group splitting-based
spectrum resource allocation scheme for SVC stream multi-
casting services in a single-cell scenario. A QoE driven power
allocation algorithm was proposed for scalable video multicast
services in a nonorthogonal multiple access (NOMA)-based
single-cell scenario [15]. Zhu et al. [16] proposed a NOMA
enhanced SVC multicast method to improve the video QoE
in cellular networks. The results of [14], [15], and [16] show
that by jointly leveraging group splitting and stream splitting
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techniques, eMBMS systems have better performance in terms
of fairness and efficiency in video multicasting applications.

Nevertheless, most of the existing works [11], [12], [13],
[14], [15], [16] considered single-cell scenarios, where inter-
cell interference caused by neighbor cells was ignored. In
addition, all aforementioned works are dealing with resource
optimization problem for live stream multicasting services
in traditional wireless networks, which cannot be directly
utilized in UAVs-assisted ITS, since both the wireless chan-
nel and network topology are highly dynamic and more
complicated.

B. UAVs-Assisted ITS

Menouar et al. [5] first introduced the concept of UAVs-
assisted ITS in 2017, which hereupon induced widely dis-
cussion in industry and academia. These existing works are
developed from the following perspectives.

First, thanks to the flexibility and mobility, UAVs can serve
as temporary base stations/edge servers, to provide emergence
communications [17], [18], edge computing [19], and caching
services for vehicles [20], in areas where terrestrial infras-
tructure is temporarily unavailable or insufficient, such as
highways [17], hot spots [18], disaster areas [21], etc. For
example, Samir et al. [17] presented a DRL based UAVs’
trajectory planning scheme aiming to provide full coverage
for vehicles on highways. Oubbati et al. [18] proposed a
UAV-assisted routing strategy to improve the connectivity of
vehicular ad hoc networks in urban areas. Han et al. [22]
introduced a novel bilevel optimization method to jointly
optimize UAV deployment and path planning for UAV-enabled
networks. Besides, since autonomous vehicles require a huge
amount of computing and caching resources to process traffic
data and make decisions, UAVs can act as flying mobile-edge
computing (MEC) servers to provide computing and caching
services for vehicles. For example, Zhao et al. [19] proposed a
UAV-enabled vehicular computation offloading scheme, where
UAVs acted as MEC servers to execute computing intensive
and time sensitive tasks for ground vehicles. Al-Hilo et al. [20]
presented a UAV caching system, where the UAV served as
an MEC server to help vehicles downloading/storing the target
contents.

Second, UAVs can carry sensors to collect and pro-
cess real-time traffic information for vehicles. For example,
Jian et al. [23] proposed a UAV enabled traffic data collection
and congestion recognition system. To guarantee the fresh-
ness of traffic data gathered by UAVs, an Age of Information
(AoI) aware trajectory optimization algorithm was proposed
for UAVs enabled ITS [24]. A lightweight blockchain-based
data sharing scheme was proposed to guarantee the security
of data perceived by UAVs and vehicles in disaster area [21].
Khan et al. [25] presented a framework for processing and
analyzing the traffic flow at urban roundabouts based on the
images captured by the UAV.

However, when UAV provide live traffic multicasting
services for vehicles, how to jointly optimize user group-
ing and resource allocation problems in multi-UAV scenarios
remains an open issue, which motivates this article.

C. DRL-Based Resource Optimization

Deep reinforcement learning (DRL) methods are widely
used in resource allocation and UAV path planning fields [26],
[27], [28]. For instance, Du et al. [26] presented an
asynchronous advantage actor–critic (A3C) based commu-
nication and computing resources allocation algorithm to
maximize miners’ profits in MEC-assisted blockchain systems.
Fu et al. [27] introduced a soft actor–critic based resource
optimization scheme for live video transcoding and trans-
mitting tasks in fog computing enabled vehicular networks.
Zhang et al. [28] proposed an energy-efficient video trans-
mission scheme for UAV-assisted wireless networks, where a
safe deep Q-learning network (safe-DQN) was leveraged to
optimize the UAV’s trajectory, video version selection, and
power control. Since all agents are collectively treated as a
single agent in these methods [26], [27], [28], which results
in the action space increasing exponentially w.r.t. the number
of agents, the scalability is poor [29].

To overcome the above weakness of the single-agent
DRL methods, MADRL is widely used in wireless resource
optimization recently. Dai et al. [30] proposed a MADRL-
based UAV deployment and resource allocation scheme for
UAV networks, where each UAV was considered as an
independent agent to optimize the policy individually based
on partial observations. A joint subchannel allocation and
power control algorithm based on MADRL was proposed
to maximize the total throughput of V2I links in vehicular
networks [31], in which each agent made decision based on
local channel state information. Zhang et al. [32] introduced
a multiagent Q-learning algorithm based on Stackelberg game
framework to optimize power control of wireless networks.
The reinforcement learning methods used in [30], [31],
and [32] are simple ways to execute multiagent tasks. In these
approaches, each agent makes decision independently based
on its local observations, where the actions of other agents
are treated as part of environment. Nevertheless, considering
the changing policies of opponents, the environment of each
agent may be dynamic and non-Markovian, which violates
the basic assumption of DRL and makes the learning process
inefficient [33], [34], [35], [36].

MAAC combines the strong points of single-agent
DRL [26], [27], [28] and independent reinforcement learn-
ing [30], [31], [32], where a critic evaluates state/state-action
values in a global view based on the information from all
agents and the actors, however, train the policy networks
and take actions solely according to their own local obser-
vations. Since each agent does not need other agents’ actions
information in MAAC when training and executing the poli-
cies, the challenges of nonstationary and non-Markovian can
be circumvented. As an improvement of multiagent deep deter-
ministic policy gradient (MADDPG) [37], MAAC has the
following advantages.

1) A multiagent DRL framework is employed, in which
actors (UAVs) are trained distributedly based on cen-
trally computed advantage function by a shared critic
[the roadside units (RSUs)] and the critic is trained
centrally to avoid the nonstationary and non-Markovian
environment states caused by other agents’ time-varying
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Fig. 1. UAV-assisted ITS scenario.

policies. And then, each actor executes its own pol-
icy based on the local observation that reduces the
communication overhead with other agents.

2) An attention mechanism is utilized to select relevant
information for each agent. Paying attention to spe-
cific agents, such as their neighbors, makes the learning
process more effective and scalable [38], [39].

3) Soft actor–critic is leveraged by each agent, which aims
to maximize the long-term entropy objective to ensure
stability and exploration.

4) A counterfactual baseline function is employed to cal-
culate the advantage function to reduce the variance
and solve the credit assignment problem in multiagent
settings.

Above all, we will employ MAAC to solve the user
grouping and PRBs assignment problem in this article.

III. SYSTEM MODEL AND ASSUMPTIONS

Fig. 1 is the UAV-assisted ITS scenario considered in this
article. Multiple UAVs equipped with HD cameras and com-
munication modules are hovering above the road to provide
traffic information for vehicles. The road is split into several
segments and each UAV is responsible for providing real-time
traffic video multicasting services for the vehicles located on
a road segment. Time is slotted equally and the duration of
one time slot is �t s. Let T = {1, . . . , T} denote the set
of time slots. We denote N = {1, . . . , N} as the set of UAVs
and the coordinate of UAV n is [Xn, Yn, Zn] (∀n ∈ N ). The set
Vn = {v|v = 1, . . . , Vn} is vehicles on the road segment served
by UAV n and [Xn,v(t), Yn,v(t), Zn,v(t)] (∀v ∈ Vn) is the coor-
dinates of vehicle v at the tth time slot. RSUs are deployed
along the road that can provide computing services for UAVs.

A. SVC Streaming Model

The traffic video captured by the UAV is encoded by a SVC
encoder, where the stream is composed of a series of video

sequences, and the duration of each sequence is ι = �t s. In
SVC standard, the video sequence is encoded into a group of
picture (GOP), each GOP contains I numbers of layers: a BL
and (I − 1) ELs. The BL stream is able to decode itself and
several ELs data can be appended to the BL stream to enhance
the video quality, i.e., videos with more ELs means higher
video quality. Correspondingly, the video qualities of SVC
streams are classed into I levels. Vehicles with harsh channel
conditions can only receive the BL data of traffic videos and
vehicles with good channel conditions can receive a BL and
all/a portion of ELs.

B. User Grouping Model

To save the spectrum resource, we employ the eMBMS
technology to multicast streams. Considering that the video
qualities have I levels, vehicles will be clustered into I groups,
vehicles in each group can receive the same layer stream data.
To be specific, let Gn = {Gn,i|i ∈ I} denote the set of groups
served by UAV n, where I = {1, . . . , I} and vehicles in group
Gn,i can only receive the ith layer data multicasted by the UAV.
Let Ct

n = {cv
n,i|∀i ∈ I, v ∈ Vn} denote vehicle association strat-

egy of UAV n, the element cv
n,i = 1 represents that vehicle v

is in group Gn,i, and cv
n,i = 0 otherwise. Since a vehicle may

receive multilayers data, the vehicle will be in multiple groups
correspondingly. Fig. 2 is an example of vehicle grouping dia-
gram, where vehicle v1 with high channel quality is associated
with G1, G2, and G3 and can receive BL, EL1, and EL2 data
at the same time slot, respectively, and these different layers
are combined together to produce the final stream by vehi-
cles [40]. On the other hand, vehicle v5 with a harsh channel
condition is classified uniquely with G1 and receives the BL
data. Considering fairness and efficiency, we try to guarantee
that each vehicle can receive the BL data, i.e., all vehicles are
in G1 as shown in Fig. 2, while the vehicles with good channel
conditions may also be in other groups to acquire higher layer
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Fig. 2. Vehicle grouping diagram.

data. Therefore, cv
n,i should satisfy the following condition:

1 ≤
I∑

i=1

cv
n,i ≤I ∀cv

n,i ∈ {0, 1}, v ∈ Vn, n ∈ N . (1)

C. UAV to Vehicles Channel Model

The channel from UAV n to vehicle v is denoted by gn,v

that is calculated by [22]

gn,v = 20 log
(

4π fcdn2vc−1
)
+ ξLoSPLoS + ξNLoS(1− PLoS)

(2)

where fc is the carrier frequency, c is the speed of light, and
dn2v is the distance from UAV n to vehicle v and calcu-

lated by dn2v =
√

(Xn − Xn,v(t))2 + (Yn − Yn,v(t))2 + (Zn)
2.

ξLoS and ξNLoS are the additional mean losses of Line-of-
Sight (LoS) and non-LoS (NLoS) links, respectively [41].
The probability of LoS is calculated by a Sigmoid func-
tion, i.e., PLoS(β) = [1+ δ exp(−μ(β − δ))]−1, where δ and
μ are S-curve parameters [42], and β is given by β =
(180/π) arctan(Z−1

n

√
(Xn − Xn,v(t))2 + (Yn − Yn,v(t))2).

D. Multicasting Transmission Model

As we have stated previously, UAVs act as aerial base sta-
tions to multicast the traffic videos to vehicles to enhance
their automatic driving abilities. All vehicles in a multicast
group are treated as a single entity by the UAV and served on
the same channels. To avoid intracell interference, we adopt
orthogonal frequency division multiple access (OFDMA) tech-
nology. Let K = {1, . . . , K} represent the set of available
PRBs of the system. We employ Ht

n (n ∈ N ) to denote the
PRB allocation strategy of UAV n, which is an I × K matrix
with binary variables ηk

n,i (∀i ∈ I, k ∈ K). Since each PRB
can only be utilized by at most one group associated with UAV
n during each time slot, the variable ηk

n,i satisfies

ηk
n,i ∈ {0, 1} ∀i ∈ I, k ∈ K, n ∈ N (3)

I∑

i=1

ηk
n,i ≤ 1 ∀k ∈ K, n ∈ N (4)

where ηk
n,i = 1 denotes that PRB k is occupied by group Gn,i

and ηk
n,i = 0 conversely.

Let Ht−n = {Ht
m|∀m ∈ N , m �= n} denote the set of PRB

allocation strategies of all UAVs with the exception of UAV n,
where Ht

m is the strategy of UAV m. The interference suffered
by vehicle v of UAV n on PRB k is denoted as

	k
n,v

(Ht−n

) =
N∑

m=1,m�=n

ηk
m · pk

mgm,v (5)

where ηk
m =

∑
i∈I ηk

m,i represents whether PRB k is occupied
by UAV m or not, i.e., ηk

m = 1 denotes that PRB k is occupied
by UAV m and ηk

m = 0 otherwise. pk
m denotes the transmit

power of UAV m on PRB k and gm,v is the channel gain
between UAV m and vehicle v (∀v ∈ Vn).

The maximal downloading rate achieved by vehicle v on
PRB k is calculated by

Rk
n,v

(
Ht

n;Ht−n

) = ηk
n,i · ωlog2

(
1+ pk

ngn,v

σ 2 + 	k
n,v

(Ht−n

)
)

(6)

which is a function of Ht
n and Ht−n. In (6), ω is the frequency

bandwidth of each PRB, pk
n and gn,v are the transmit power

of UAV n on PRB k and channel gain between UAV n and
vehicle v, respectively. σ 2 is the additive white Gaussian noise
power. Since the transmit rate of multicasting services depends
on the worst link [13], the data rate of vehicles associated with
group Gn,i on PRB k is calculated by

Rk
n,i

(
Ht

n, Ct
n;Ht−n

) = min
v∈Vn

{
cv

n,i ·Rk
n,v

(
Ht

n;Ht−n

)}
. (7)

Therefore, the total transmit rate of vehicles in group Gn,i is
calculated by

Rn,i
(
Ht

n, Ct
n;Ht−n

) =
K∑

k=1

Rk
n,i

(
Ht

n, Ct
n;Ht−n

)
. (8)

E. Validity Function

As we have stated above, vehicles in group Gn,i can receive
the ith layer data, we define the indicator en,i to show the
validity of the ith layer data received by these vehicles from
the perspective of the physical layer,

en,i
(
Ht

n, Ct
n;Ht−n

) =
{

1, if Rn,i
(
Ht

n, Ct
n;Ht−n

) ·�t ≥ D̂i

0, otherwise
(9)

where D̂i is the size of the ith layer data of a GOP. en,i = 1
means that vehicles in group Gn,i can receive the ith layer data
successfully and en,i = 0 otherwise.

In the process of decoding SVC videos, the ith layer
data can be correctly decoded if and only if the data
from the 1st layer to the ith layer have been successfully
received [15], [16]. Therefore, it is necessary to define a valid-
ity function to measure whether the received data is valid or
not.

The Validity Function: Let �v
n,i denote the effectiveness of

the stream data received by vehicle v (∀v ∈ Vn) calculated by

�v
n,i

(
Ht

n, Ct
n;Ht−n

) =
i∏

i∗=1

en,i∗
(
Ht

n, Ct
n;Ht−n

)
. (10)
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�v
n,i = 1 means that vehicle v receives the data from the 1st

layer to the ith successfully, i.e., the ith layer data can be
decoded; �v

n,i = 0 otherwise.

IV. MARKOV GAME-BASED PROBLEM FORMULATION

In this study, we aim to maximize all vehicles’ long-term
traffic video quality while guaranteeing that each layer data
received can be decoded successfully. Considering (10), the
optimization problem is formulated as

Maximize:
Ht

1,...,H
t
N ;Ct

1,...,C
t
N

T∑

t=1

N∑

n=1

I∑

i=1

Vn∑

v=1

κi�
v
n,i

(
Ht

n, Ct
n;Ht−n

)
(11)

subject to (1), (3), and (4)

where κi (κi ≥ 0) (dollars per vehicle) is the price of the
ith layer data, which can be used to balance the fairness and
efficiency in terms of video layers. We have the following
observations on the problem.

1) The problem (11) is a long-term optimization problem,
which needs a sequence of actions to be taken over time.
The traditional methods, such as static optimization aim
to search the optimal/suboptimal solution to maximize
the short-term reward according to the current observa-
tion, so they are not feasible approaches.

2) The reward of each UAV depends on not only its own
actions, but also other UAVs actions, i.e., there exists
complicated interactions among agents.

According to the above observations, the problem (11) is
reformulated as a multiagent coordination problem in the form
of an MG [43], [44]. The MG is defined by N agents (UAVs)
with a tuple 〈S,A,P, r〉. In the following statement, the terms
“agent” and “UAV” are used interchangable. At each time
slot, agent n (∀n ∈ N ) selects an action based on its pol-
icy πn and local observation on to maximize its long-term
reward, and then, agent n obtains a reward rn from the envi-
ronment and local observation of the next time slot on+1. At
the same time, the environment transits into the next state
based on the state transition function. It should be noted that
all agents take actions synchronously. The details of the MG
are as follows.

1) S is the state feature space of the environment. In this
study, S is made up of the observation from all UAVs,
i.e., S = {On|∀n ∈ N }, where On is the observation
space of UAV n. The space On includes: the UAV’s coor-
dinate [Xn, Yn, Zn] (∀n ∈ N ), the vehicle’s coordinate at
the starting of the tth time slot [Xn,v(t), Yn,v(t), Zn,v(t)]
(∀v ∈ Vn). Let s = [o1, . . . , on, . . . , oN] denote the cur-
rent state feature of the environment, where on is the
current observation of UAV n.

2) A is the action space for all agents that is written as
A = {An|∀n ∈ N }, where An = (Ht

n, Ct
n) is the action

set of UAV n, Ht
n is the PRB allocation strategy, and

Ct
n is the vehicle association strategy of UAV n. Let

a = [a1, . . . , an, . . . , aN] denote the current action of all
UAVs, where an is the action of UAV n selected from πn.
To decrease communication overhead of the system, the
local observation of UAVs are not interchanged among
them, therefore, each UAV learns its own policy based

on the local observation πn: On → P(an), where P(an)

is the action probability of UAV n.
3) P is the state transition function. To be specific, the

vehicle’s coordinate at the next slot is determined by the
vehicle’s current location, speed, and accelerated speed.

4) r is the immediate reward sets r = {rn|∀n ∈ N }, where
rn is the reward of UAV n given by the environment. It is
found from (11) that the reward of each UAV depends on
not only its own action but also actions of other UAVs,
consequently, the immediate reward function of UAV n
is a mapping S×A1×· · ·×AN → rn, which is written as

rn =
I∑

i=1

Vn∑

v=1

κi�
v
n,i

(
Ht

n, Ct
n;Ht−n

)
. (12)

Centralized reinforcement learning (CRL) can be utilized
to solve the MG, where all agents are treated as a single
agent. However, since the joint action space of CRL grows
exponentially with the number of agents, the scalability of
CRL is poor. Independent multiagent reinforcement learning
(IMARL), such as independent Q-learning [45], is a sim-
ple method to solve the MG. Since each agent takes action
independently to maximize its reward while other agents are
considered as a part of the environment in IMARL, commu-
nication overhead among agents can be ignored. However,
IMARL may induce the variance for environment of each
agent, which makes the environment nonstationary and non-
Markovian. Consequently, the convergence performance can-
not be guaranteed.

To overcome the above drawbacks, the study employs a
novel multiagent DRL approach, namely, MAAC, to deal with
the MG in the next section.

V. PROBLEM SOLUTION WITH MULTIACTOR ATTENTION

CRITIC APPROACH

The base idea of MAAC is to centrally train the critic for
each agent by selectively paying attention to information from
other agents while distributedly training and executing policy
in each agent. The framework of the MAAC-based scheme is
shown in Fig. 3.

A. Entropy Objective

Similar to our previous work [27], to enhance the explo-
ration ability of the agents, an entropy item H(π(a|s)) =
− log π(a|s) is added to the reward. Correspondingly, the
objective with the entropy item is named as the entropy
objective [46], which is given by

J(π) = E

{ ∞∑

t=0

γ t[rt − λ log π(at|st)
]|π

}
(13)

where γ ∈ [0, 1] is the discount factor and λ is the temperature
parameter used to adjust the stochasticity of the policy. For the
given ∀s0 and a0, the entropy objective (13) is evolved into
the Q-value function

Q(s, a) = E

{ ∞∑

t=0

γ t[rt − λ log π(at|st)
]|s0 = s, a0 = a, π

}
.

(14)
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Fig. 3. (a) Framework of MAAC-based scheme. (b) Attention mechanism.

B. Critic Part

From (12), it is observed that the reward of agent n is
determined not only by agent n’s action an, but also influenced
by other agents’ actions denoted by a−n, where −n denotes
the set of all agents with the exception of agent n, i.e.,
−n = [m|∀m ∈ N , m �= n]. Therefore, in MAAC framework
shown in Fig. 3, all critics are considered as a joint critic that
share the global state s and action a and are trained together
by the RSU when evaluating Q-values Qθ

n(s, a) (∀n ∈ N ). The
Q-value of agent n is calculated by

Qθ
n(s, a) = Fn(zn(on, an), χn) (15)

where Fn is a two-layers multilayer perceptron (MLP) network
and zn(on, an) is a one-layer MLP network embedding func-
tion. χn represents the contribution to Qθ

n(s, a) from the rest of
agents, where s = (on, o−n) and a = (an, a−n), respectively.
To utilize other agents’ information effectively, we attend to
selectively pay special attention to certain agents. In this study,
an attention mechanism is leveraged to calculate χn [47]

χn =
∑

m∈−n

ωn,m · LeakyReLU(M · zm(om, am)) (16)

where zm(om, am) is the embedding function of agent m that
is linearly transformed by a shared matrix M and activated
by a nonlinearity activation function named LeakyReLU(·).
ωn,m is an attention coefficient used to measure the contri-
bution weight of agent m to agent n that is obtained after
the following two stages as shown in Fig. 3(b). First, we
employ a query-key system with a set of attention hyper-
parameters (Wn,q, Wn,key, M) to calculate the similarity value
of embedding functions between agent n and agent m, i.e.,
∫n,m = zT

mWT
n,keyWn,qzn, where the linear transformation matrix

Wn,key transforms zm into a “key” while Wn,q transforms zn

into a “query,” and then, the scaled dot product of the “key”
and the “query” is the similarity. Second, the similarity values
of each agent m (∀m ∈ −n) with agent n are combined as a
vector and softmaxed

ωn,m =
exp

(
zT

mWT
n,keyWn,qzn

)

∑
m∈−n

exp
(

zT
mWT

n,keyWn,qzn

) (17)

where ωn,m satisfies 0 ≤ ωn,m ≤ 1 and
∑

m∈−n ωn,m = 1.

The shared parameter of Q-value networks θ is renewed by
minimizing a joint loss function

Loss(θ) =
N∑

n=1

E(s,a,r,s′)∼D

[(
Qθ

n(s, a)− yn
)2

]
(18)

where yn = rn + γEa′∼πϕ(s′)[Qϑ
n (s′, a′)− λ log(πϕn(a′n|s′n))]

is the target value of agent n in which ϑ and ϕ are the
parameters of target critic and target actors, respectively. θ is
renewed by

θ(t + 1)← θ(t)− αc,t∇θ Loss(θ) (19)

where αc,t is the critics’ learning rate. The target critic parame-
ter ϑ is updated by an exponentially weighted moving average
of the current critic parameter θ

ϑ(t + 1)← ρϑ(t)+ (1− ρ)θ(t + 1) (20)

where ρ satisfies 0 ≤ ρ ≤ 1.

C. Actor Part

The target of each actor is to acquire the best parameter φn

to maximize J(πφn). Policy gradient methods are widely used
to solve this kind of optimization problems, which seek for
a local maximum in J(πφn) by ascending the gradient of the
policy w.r.t. its arguments φn

φn(t + 1)← φn(t)+ αa,t∇φn J
(
πφn

)
(21)

where αa,t is the actor’s learning rate. The policy gradient
∇φn J(πφn) is calculated by

∇φn J
(
πφn

) = E(s,a,r,s′)∼D
[∇φn log

(
πφn(an|on)

)
(−λ log

(
πφn(an|on)

)+ An(s; an, a−n)
)]

(22)

where An(s; an, a−n) is an advantage function that is used to
evaluate whether action an can induce an increase in Q-value
or whether the increase is caused by other agents’ action a−n.
This advantage function encourages the actions that directly
improve an agent’s rewards, i.e.,

An(s; an, a−n) = Qθ
n(s; an, a−n)− B(s, a−n) (23)
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where B(s, a−n) is a counterfactual baseline function [48] that
marginalizes out action an from Qθ

n(s; an, a−n) while a−n is
fixed and is calculated by

B(s, a−n) = Ean∼πn(on)

[
Qθ

n(s; an, a−n)
]
. (24)

Since the action space of the MG is discrete, B(s, a−n) is
given by

B(s, a−n) = Ean∼πn(on)

[
Qθ

n(s; an, a−n)
]

=
∑

a′n∈An

π
(
a′n|on

)
Qθ

n(s; an, a−n). (25)

Similar with (20), the target policy parameter ϕn is
renewed by

ϕn(t + 1)← ρϕn(t)+ (1− ρ)φn(t + 1). (26)

D. MAAC-Based Algorithm

Fig. 3 is the architecture of MAAC-based algorithm, the
details of which are given in Algorithm 1. At each step,
all agents synchronously interact with the environment based
on their own local observation. After an is taken, agent n
receives the reward rn and obtains the next local observa-
tion o′n. The samples generated by all agents are combined
together as (on, an, rn, o′n)1,...,N and stored in the experience
replay memory D. After Tmin steps, the RSU (critics) ran-
domly samples a minibatch Bc records from D and updates
the critic parameter θ by minimizing the joint regression loss
function Loss(θ). Each actor trains its policy networks based
on the samples drawn from D and the advantage function
calculated by the RSU. Finally, the target parameters ϑ(t)
and ϕn(t)(n ∈ N ) are updated by employing an exponen-
tially moving average method. The learning rates αc,t and αa,t

satisfy [49]
∞∑

t=0

αc,t = ∞,

∞∑

t=0

α2
c,t <∞

∞∑

t=0

αa,t = ∞,

∞∑

t=0

α2
a,t <∞, lim

t→∞
αa,t

αc,t
= 0. (27)

VI. SIMULATION RESULTS AND DISCUSSIONS

In the section, simulation results of the MAAC-based algo-
rithm and baseline approaches are presented. The simulations
are implemented on a Python-based simulator, where the soft-
ware environment is TensorFlow 1.15.0 with Python 3.6.5
and the hardware environment is a CPU-based server that has
8 GB 3200 MHz DDR4, 3.0 GHz AMD Core R5, and 512G
memory.

In the simulation, vehicles are randomly generated on a
500 m urban road and the trajectories of vehicles are produced
by simulation of urban mobility (SUMO). UAVs are deployed
right above the road to capture and multicast the traffic videos
to vehicles and the hovering altitudes range from 50 to 125 m.
An RSU is deployed in the middle of the road that is used to
assist UAVs to train the policy. The number of UAVs ranges
from 1 to 6. The carrier frequency fc is 5.9 GHz and the total
bandwidth is 20 MHz [41]. The transmission power of UAV n

Algorithm 1: MAAC-Based Algorithm

1 begin
2 Initialize environment parameters;
3 Initialize T , Tmin, Tc, and Tp;
4 Initialize θ , ϑ , φn, and ϕn (n ∈ N );
5 Initialize experience replay buffer D;
6 Tupdate ← 0;
7 for each episode do

// Generate training data by
agents

8 for t = 1, · · ·, T do
9 Choose action an ∼ πn(on) for each agent n;

10 Take action an, observe o′n and reward rn for
each agent;

11 Save the samples of all agents in D by the
RSU D← (on, an, rn, o′n)1,···,N ∪ D;

12 Tupdate ← Tupdate + 1;
13 end
14 if Tupdate ≥ Tmin then

// Training critics by the RSU
15 for tc = 1, · · ·, Tc do
16 Sample minibatch Bc ∼ D;
17 Update Q-value according to (15);
18 Renew θ according to (19);
19 end

// Training policy by each
agent

20 for tp = 1, · · ·, Tp do
21 Sample minibatch Bp ∼ D;
22 Calculating the advantage function by the

RSU according to (23) and transmitting
the result to each agent;

23 Each agent updates φn based on (21);
24 end
25 Update the target parameters according

to (20) and (26), respectively;
26 Tupdate ← 0
27 end
28 end
29 end

is set as pk
n = 20 mW (∀n ∈ N ). The length of each time slot

�t = 0.5 s. The number of video layers is I = 3. The values
of channel parameters are δ = 9.61, μ = 0.16, ξLoS = 1dB,
and ξNLoS = 20dB [41]. D̂1 = 49.3 Kb, D̂2 = 79 Kb,
and D̂3 = 187 Kb [50]. The learning parameters are set as
λ = 5 × 10−3 and γ = 0.95, respectively. The learning rates
αa,t and αc,t satisfy (27) and are set by trial-and-error [51],
[52], [53], which are αa,t = 3 × 10−3 and αc,t = 3 × 10−2

in this article, respectively. The details can be found in the
supporting document.

Fig. 4(a)–(f) shows the percentages of vehicles with differ-
ent video layers w.r.t. the number of PRBs of the MAAC-based
algorithm when the video layer price parameters κi and UAVs’
altitudes H are varying. Fig. 4(a) acts as a baseline, where all
layers have equal prices, i.e., κ1 = κ2 = κ3 = 0.5. From the
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Fig. 4. Percentages of vehicles with different video layers w.r.t. the number of PRBs of the MAAC-based algorithm when the video layer price parameters κi
and UAVs’ altitudes H are varying (a) κ1 = 0.5, κ2 = 0.5, κ3 = 0.5, H = 100 m. (b) κ1 = 5, κ2 = 0.5, κ3 = 0.5, H = 100 m. (c) κ1 = 0.5, κ2 = 5, κ30.5, H = 100 m.
(d) κ1 = 0.5, κ2 = 0.5, κ35, H = 100 m. (e) κ1 = 0.5, κ2 = 5, κ3 = 5, H = 100 m. (f) κ1 = 0.5, κ2 = 0.5, κ3 = 0.5, PRBS = 5.

Fig. 5. Performance comparisons among the MAAC-based algorithm and
traditional schemes.

figure, it is observed that the video quality has a steady growth
with the rising of the number of PRBs. Fig. 4(b)–(e) shows
the effectiveness of video layer price parameters κi on video
quality when the flight height H = 100 m. From Fig. 4(b), it is
found that for the fixed the number of PRBs, the percentage of
vehicles with the BL data is increased to 100% compared with
Fig. 4(a) when κ1 rises from 0.5 to 5, while the percentages
of the vehicles with BL+EL1 and BL+EL1+EL2 data are
significantly decreased. The similar phenomenons can also be
observed from Fig. 4(c)–(e), i.e., the increase of a layer price
will induce the rising of the percentage of the corresponding
video layer. Therefore, by adjusting the video price parameters,
the MAAC-based algorithm can get a balance between fairness

and efficiency, which is particularly vital for traffic multicast
services in UAV-assisted ITS. Fig. 4(f) shows the percentages
of vehicles with different video layers w.r.t. the UAV’s alti-
tude when κ1 = κ2 = κ3 = 0.5 and the number of PRBs is 5.
From the figure, it is found that the video quality decreases
when the UAV altitude is rising from 50 to 125 m. That is,
because the higher altitude results in worse channel quality
and lower transmit rate, consequently, lower quality videos
are multicasted.

Fig. 5 shows the average reward per vehicle of the MAAC-
based algorithm, CMS, and OMS, in which ε = 80% vehicles
are selected to be served. Since the multicast rate is bounded
by the worst channel user in each group, for the sake of
fairness, the above schemes are run under the same simu-
lation environment. From the figure, it is observed that the
MAAC-based algorithm has the best performance compared
with CMS and OMS, even though OMS has slight advantage
in a few cases. There are two reasons for the phenomenon.
First, the MAAC-based algorithm tries to provide full cov-
erage for all vehicles while 20% vehicles with bad channel
conditions are not served in OMS. Second, the MAAC-based
algorithm jointly leverages user grouping and stream splitting
techniques, which can help UAVs to multicast multiple ver-
sion videos to vehicles that are classed into different groups
according to channel conditions. Vice versa, from the figure, it
is found that the curves of CMS and OMS are stair stepping.
The reason is that compared with the MAAC-based algorithm,
group splitting and stream splitting techniques are not utilized
in both CMS and OMS. Therefore, all vehicles are sharing
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Fig. 6. Consumed PRBs comparisons between the MAAC-based algorithm
and the unicast scheme.

the same channel and with the same communication rate,
besides, a live video with a sole version is multicasted to all
or ε = 80% vehicles. Hence, the MAAC-based algorithm has
excellent performance in terms of video quality compared with
the existing schemes, which indirectly improves the spectrum
efficiency.

Fig. 6 shows the consumption of PRBs of the MAAC-based
algorithm and the unicast scheme, where κ1 = κ2 = κ3 = 0.5,
H = 100 m, and V = 10 in each road segment. From the
figure, it is observed that the consumed PRBs of the MAAC-
based algorithm is significantly low compared with the unicast
scheme. For example, around 15 PRBs are consumed by the
unicast scheme while merely 2 PRBs are required in the
proposed scheme, when BL = 10, BL + EL1 = 0, and
BL + EL1 + EL2 = 0. Besides, it is found that higher
quality videos are transmitted, more PRBs are saved by the
MAAC-based algorithm in comparison to the unicast scheme.
Therefore, the MAAC-based algorithm is an effective method
for traffic video transmission services in UAV-assisted ITS
when spectrum resource is limited.

To verify the effectiveness of the attention mechanism,
the MAAC-based algorithm (Uniform) is also simulated for
comparison, which is an ablated version of the proposed
MAAC-based algorithm. In this approach, the attention coef-
ficient ωn,m of (16) is uniformly set as 1/(N − 1), which can
avoid paying more attention on specific agents. The simula-
tion results are shown in Fig. 7. From the figure, we find that
the reward of the MAAC-based algorithm nearly keeps con-
stant when the number of agents is increasing, while that of
the MAAC-based algorithm (Uniform) decreases significantly
when the number is rising. Since each agent has its own indi-
vidual reward function, i.e., (12), which is tied to other agents’
observations and actions, an agent needs to collect information
from other agents to calculate its reward. Taking the advan-
tages of the attention mechanism, the MAAC-based algorithm
is able to pay more attention to specific agents, which can
help to coordinate with other agents more effectively to reduce
interference and obtain higher reward than the MAAC-based
algorithm (Uniform) does.

Fig. 8 shows convergence and reward performance compar-
isons among the MAAC-based algorithm, the MAAC-based

Fig. 7. Performance comparisons between the MAAC-based algorithm and
the MAAC-based algorithm (Uniform).

Fig. 8. Performance comparisons among the MAAC-based algorithm, the
MAAC-based algorithm (Uniform), CAC, IAC, MADDPG, and the without
learning scheme.

TABLE I
ACTION SPACE DIMENSIONS W.R.T. THE NUMBER OF AGENTS (UAVS)

algorithm (Uniform), independent actor–critic (IAC) [48],
centralized actor–critic (CAC) [46], MADDPG, and without
learning schemes. The comparisons among these methods also
have been listed in Table II. The idea of IAC is derived from
independent Q-learning [45] that each agent trains the policy
independently to maximize its individual reward while other
agents are treated as part of the environment, i.e., no cooper-
ation occurs between different agents. In contrast, all agents
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TABLE II
COMPARISONS AMONG THE MAAC-BASED ALGORITHM AND OTHER BASELINE METHODS

are collected and considered as a single agent whose action
space is the joint action space of all agents in CAC. This
approach can obtain the global optimal policy, however, it is
not scalable due to the size of action space increasing expo-
nentially w.r.t. the number of agents, which can be observed
from Table I. Thus, in multiagent settings, curse of dimen-
sionality of the action space will make CAC not applicable.
In this part, we take the reward of CAC as an upper bound-
ary for comparison when N = 3. Besides, to guarantee the
fairness, similar with MAAC, both IAC and CAC add entropy
term in the objective function [like (13)] to ensure stability and
exploration.

In Fig. 8, the darker lines denote the average values and
the shaded area is the average values ± the standard error.
From the figure, we find that the proposed MAAC-based algo-
rithm has a slight loss on reward compared to CAC. However,
CAC suffers higher variance and requires more episodes to
reach convergence than the MAAC-based algorithm. The main
reason is that the action space size of CAC reaches 944 784
when N = 3 (please refer to Table I), it requires more time to
explore the optimal policy. On the other hand, in the MAAC-
based algorithm, each agent trains its policy based on the local
observation and only the advantage function trained by the
RSU is transmitted to the agent, which has great advantage of
scalability over CAC. It is observed from the figure that IAC
suffers higher variance and obtains significantly lower reward
than the MAAC-based algorithm. The reason is that IAC treats
other agents as a part of the environment, which increases the
uncertainty of the state space, besides, there is no coopera-
tion among agents, which results in suboptimal solution. The
MAAC-based algorithm has significantly better performance
than MADDPG-based algorithm in terms of reward, vari-
ance, and learning speeds. Since the critics of MADDPG
concatenate states and actions information of all agents into
a single input vector for each critic, the input dimensions
of the critic networks are extremely high which causes high
computing complexity, low learning efficiency, and low scal-
ability. However, the MAAC-based algorithm can pay more
attention to specific agents and compress states and actions
data into a constant-sized vector by the attention model,
which can make the learning more efficient and scalable. The

detailed information of the dimensions of input/output and
time complexities is shown in Table II.

VII. CONCLUSION AND FUTURE WORKS

This article proposed a real-time traffic video multicas-
ting scheme for UAVs-assisted ITS, which took advantage
of stream splitting and group splitting techniques. The study
tried to maximize the long-term video quality of the system
by jointly optimizing vehicle grouping and PRB allocation
strategies. Considering the interactions among the UAVs, the
above optimization problem was subsequently modeled as a
MG. Thereafter, a novel multiagent DRL algorithm, namely,
MAAC, was employed to solve the MG, in which an atten-
tion mechanism was leveraged to make the learning process
more effective. Finally, extensive simulation results of the
MAAC-based algorithm and the baseline algorithms were
presented and discussed. The robustness and scalability of
the MAAC-based algorithm will be further considered in our
future work.
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