
1

A Survey of Graph-Based Resource Management in
Wireless Networks - Part I: Optimization

Approaches
Yanpeng Dai, Member, IEEE, Ling Lyu, Member, IEEE, Nan Cheng, Senior Member, IEEE, Min Sheng, Senior

Member, IEEE, Junyu Liu, Member, IEEE, Xiucheng Wang, Shuguang Cui, Fellow, IEEE, Lin Cai, Fellow, IEEE,
Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—The evolution of wireless communications and net-
working technologies has led significantly expansion of the
dimensionality of network resources, which compels innovations
in resource management. Graphs, a classic discrete mathematical
tool, have long been widely used for resource management thanks
to their capabilities to model complex relationships and inter-
actions among elements in wireless networks. Recently, resource
management over graphs embraces various advanced approaches
of graph optimization and graph learning, aligned with evolving
demands in future wireless networks. To better learn recent
research landscape and explore important trends, this two-
part survey provides a comprehensive overview for resource
management via graph optimization and learning. Part I presents
the fundamentals of graph optimization and provides a recent
literature review of graph optimization for resource management
in various wireless communication scenarios, including cellular
networks, device-to-device communications, multi-hop networks,
multi-antenna systems, edge caching and computing, and non-
terrestrial networks. Part II gives the basics of graph learning
and provides a state-of-the-art literature review of graph learning
in wireless networks for addressing various resource management
issues, covering power control, spectrum management, beam-
forming design, task scheduling, and aerial coverage planning. A
discussion of technical challenges and future research directions
is covered in Part II.
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I. INTRODUCTION

Wireless communication and networking technologies have
undergone rapid advancements in the past few decades, sub-
stantially augmenting available dimensions of network re-
sources [1]. Developments in radio transmission techniques
facilitate the adequate exploitation and unified scheduling of
multi-dimensional resources in spatial, time, frequency, code,
and power domains, which substantially enhances network
capacity and connectivity. Furthermore, advancements in wire-
less networking techniques enable hybrid usage and planning
of communication and computation resources, terrestrial and
aerial resources, etc., which effectively improves network
coverage and service provision. While all these technical in-
novations promote various performance indicators of wireless
networks, they increase the difficulty and complexity of re-
source management [2]. Consequently, designing effective and
efficient resource management schemes to adapt to the rapid
technical transformation of wireless networks has attracted
intensive research interest in both academia and industry.

Numerous theories have been applied to resource manage-
ment in wireless network, such as optimization theory, queue
theory, game theory, etc. Among them, graph theory has been
used extensively over a long period to define and handle many
different kinds of operation problems in wireless networks.
Wireless nodes, such as devices and infrastructures, and their
relationships, such as connection and interference, can be
represented by vertices and edges in a graph, respectively.
In this light, resource management problems can be modeled
as different optimization problems over graphs, such as graph
coloring, maximum flow, shortest path, etc. As a major branch
of combinatorial optimization and discrete mathematics, graph
optimization has developed many practical algorithms directly
applicable for resource management. Recently, graph learning,
also known as graph representation learning, has emerged as
an effective approach in machine learning and has been applied
to resource management in wireless networks. It is capable of
capturing the structure and features of graph data to gener-
ate representation vectors to support resource management.
Particularly, the graph neural network (GNN) is the latest
research outcome in graph learning, which has been utilized to
devise many resource management methods [3]. Compared to
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traditional graph optimization and learning methods [4], [5],
GNN-based methods offer superior scalability, generalization,
and computational efficiency. Therefore, graph-based resource
management remains a promising and attractive research field.

A. Background: From Graph Optimization to Graph Learning

Graph optimization has been widely employed in resource
management of wireless networks, thanks to its adaptability
and efficiency. As early as 1999, Chawla and Qiu adopted
graph coloring to address beam switching issue in cellular
networks for interference avoidance [6]. Since 2000, a large
amount of research literature has applied various graph op-
timization approaches to resource management in wireless
networks. Helmy proposed small world graphs for wireless
networks to analyze and improve network connectivity [7].
Jain et al. [8] and Kodialam et al. [9] innovatively introduced
the interference graph which is regarded as a foundational
graph model for many optimization algorithms, such as graph
coloring and maximum independent set, in wireless link
scheduling and resource allocation. After 2010, advanced
graph theoretical models and methods, such as hypergraphs
[10]–[12], are utilized to model and depict wireless network
for emerging network architecture and radio access technolo-
gies (RATs). Graph optimization for resource management
features the following advantages.

1) Adaptability: The topology of wireless networks as well
as relationships between network elements can be di-
rectly or easily represented as graph models to facilitate
the implementation of graph optimization algorithms.

2) Theoretical foundation: Graph optimization has devel-
oped a lot of achievable algorithms which can balance
the optimality and efficiency of dealing with various
resource management problems.

However, graph optimization still faces challenges in man-
aging multi-dimensional resources. First, as network scale
increases, the size of graph model grows as well, which aggra-
vates burdens of graph data storage and processing. Second,
most of graph optimization problems are combinatorial opti-
mization problems that usually cannot be solved in polynomial
time. Hence, the overhead of graph optimization algorithms
may not favor the timeliness of scheduling, especially for low-
latency requirements of future wireless communications.

Recently, graph learning has been applied to resource man-
agement in wireless networks to enhance computational effi-
ciency while maintaining optimality, where GNN is a promi-
nent technique. Due to graph-in-graph-out architecture and
message passing mechanism, GNN can extract useful infor-
mation from topological structure and features of graph model
to achieve problem solution. Eisen and Ribeiro first employed
GNN in wireless networks to solve link scheduling problems
in multi-hop networks and multiple access scheduling prob-
lems in cellular networks [13], [14]. Shen et al. demonstrated
that GNNs converge faster and exhibit superior generalization
in large-scale wireless networks compared to traditional deep
neural networks, such as multi-layer perceptron [15]–[18].
Chowdhury et al. [19] and Yang et al. [20] integrated GNNs
with existing iterative algorithms for power control, which

leverages the efficiency of GNNs and the accuracy of iterative
algorithms at the same time. In recent years, many studies have
combined GNNs with advanced learning frameworks, such
as reinforcement learning (RL), aiming to adapt to dynamic
changes and randomness in wireless networks [21], [22].
Apart from GNNs, deep learning-powered graph embedding
techniques are used for access control and link scheduling
in wireless networks to improve model generalization and
training efficiency [23], [24]. Graph learning for resource
management has the following advantages.

1) Scalability: Graph learning, particularly GNNs, can be
applied to large-scale wireless networks because the
number of parameters in GNN models is independent
of network size.

2) Efficiency: GNNs have high training efficiency and can
achieve the expected performance with a less number of
network samples.

3) Generalization: GNNs offer good generalization capa-
bility for different network statuses and configurations,
such as quality of service (QoS) settings, the number of
users or channels, etc., due to their permutation-invariant
property.

4) Compatibility: Graph learning methods can be easily im-
plemented and fine-tuned on graph models constructed
for resource management issues.

Graph learning-based resource management is still an emerg-
ing research direction, whose optimality and efficiency have
substantial potential to be improved. Therefore, many related
research topics have emerged, e.g., integrating domain knowl-
edge from wireless communications and networking with
GNN design.

B. Motivation and Contributions

There have been several outstanding surveys on graph
optimization and learning for wireless communications and
networking, which are summarized in Table I. First cate-
gory of these surveys focused on the application of graph
optimization for wireless networks. Cardieri comprehensively
reviewed graph optimization approaches for interference mod-
eling in wireless ad hoc networks and emphasized its ap-
plication domains [25]. Pathak et al. thoroughly investigated
graph optimization for cross-layer designs in wireless mesh
networks [26]. Majeed et al. surveyed the application of
graph theory to model various issues in computer networks
including Internet of Things (IoT), web page ranking, network
topology generation, and encryption [27]. Second category
of the literature is dedicated to investigating graph learning
approaches for wireless communications and networking. He
et al. presented several applications of GNNs to resource
allocation in wireless networks as well as other emerging
problems such as channel estimation and traffic prediction
[28]. Jiang comprehensively reviewed diverse GNN models
applied to operation management and optimization of commu-
nication networks involving both wired and wireless scenarios
[29]. Tam et al. mainly reviewed the application of GNNs to
network management of core systems and networks, especially
for software defined networking (SDN) control and network
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Table I
COMPARISON WITH SELECTED SURVEYS.

References Methodology† Networks Subjects ContributionsGO GL

[25] ✓ Wireless ad hoc networks Interference modeling
This paper surveyed graph optimization for interference
modeling in wireless ad hoc networks, emphasizing its
application domains and illustrated with examples.

[26] ✓ Wireless mesh networks Cross-layer designs
This paper surveyed fundamental design problems in
wireless mesh networks and their joint designs, where
graph optimization is a crucial methodology.

[27] ✓ Computer networks Network modeling
This survey reviewed the application of graph theory
for computer networks including IoT, web page
ranking, network topology generation, and encryption.

[28] ✓ Various wireless networks Resource management

This work reviewed the application of GNNs to
resource allocation in various wireless networks, i.e.,
mesh/ad hoc networks, cellular networks and WLAN,
as well as several other issues, such as channel
estimation and traffic prediction.

[29] ✓ Wired and wireless networks Network management
This paper surveyed different GNN models applied to
network operation management and optimization in
wired and wireless networks as well as SDN.

[30] ✓ Core networks SDN and NFV
optimization

This work reviewed GNN for intelligent network
management and orchestration to optimize control
policies in SDN and NFV enabled core networks for
wired and wireless communications.

[31] ✓ IoT Network security and
management

This survey reviewed related research and summarized
the progress of using graph learning to network
anomaly detection, malware detection, IoT device and
service management, etc.

[32] ✓ IoT Sensing application
This survey presented a deep dive analysis of GNN
designs in various IoT sensing scenarios and an
overarching list of public data and source codes.

[33] ✓ ✓ NTN Resource management

This paper reviewed resource allocation methods based
on both graph optimization and graph learning, and
proposed a graph-based resource management
framework for NTN and its integration with terrestrial
networks.

Ours ✓ ✓ Various wireless networks Resource management

A survey comprehensively and systematically reviewed
resource management issues and solutions from the
perspectives of both graph optimization and graph
learning in various advanced wireless networks.

†GO: Graph optimization. GL: Graph learning.

function virtualization (NFV) orchestration [30]. Li et al.
surveyed graph learning methods for network security and
management in IoT scenarios [31]. Dong et al. presented a
comprehensive overview of GNN applications in various IoT
sensing environments with a list of public data and source
codes [32]. In addition to the above two categories, Ivanov et
al. reviewed resource allocation methods based on the graph
optimization and learning from perspective current wireless
networks and future non-terrestrial networks (NTNs) [33].

In summary, the majority of existing surveys have focused
exclusively on either graph optimization or graph learning
for wireless communications and networking. Although some
literature provides an overview of both graph optimization
and graph learning, the discussed wireless communication
scenarios and network types are often incomplete, particularly
for emerging cellular and cell-free networks, edge caching and
edge computing. Additionally, few surveys specifically address
resource management issues using graph optimization and
learning. These gaps motivate us to conduct a comprehensive
and systematic literature review of the latest resource man-
agement techniques over graphs, considering both perspectives
of graph optimization and graph learning. We summarize the
contributions of this two-part survey as follows.

• We introduce key fundamentals of graph theory and graph
optimization problems with typical algorithms in Part I as
well as basics of graph learning and several modern GNN
models in Part II. This demonstrates how knowledge of
graph optimization lays the foundation for implementing
graph learning.

• We categorize and discuss graph optimization approaches
for resource management across different scenarios of
wireless communications in Part I. In each scenario, typ-
ical resource management issues are distinctly presented,
meanwhile the literature of practical graph optimization
algorithms for each issue is systematically reviewed.

• We classify and review the application of graph learning
methods according to different resource management
issues in Part II. In this way, the characteristics and
components of each issue is demonstrated and the ap-
plicable graph learning approaches in the literature are
comprehensively reviewed.

• We summarize technical challenges and future directions
of graph optimization and learning methods for resource
management in Part II. These challenges are primarily
centered around new features brought by the evolution
of wireless networks. Future directions align with the
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development of advanced graph optimization and learning
techniques.

C. Paper Organization

Fig. 1 shows the organization of the remainder of this two-
part survey which comes in two parts. In Part I, Section II first
presents the basics of graph theory and various graph optimiza-
tion problems along with their relevant algorithms. Section III
then provides a recent literature review of graph optimization
for resource management in wireless networks, categorized
by different scenarios including cellular networks, device-to-
device (D2D) communications, multi-hop networks, multi-
antenna systems, edge caching and computing, and NTNs. Part
II introduces the fundamentals of graph learning and provides
a state-of-the-art literature review of graph learning approaches
for resource management in wireless networks. Furthermore,
a discussion of technical challenges and future directions in
this field is presented in Part II.

II. FUNDAMENTALS OF GRAPH OPTIMIZATION AND
GRAPH LEARNING

In this section, we first provide the basic knowledge of graph
theory. Then, several graph optimization problems and their
methods are presented.

A. Basics of Graph

In mathematics, a graph is defined by a pair G = (V, E)
[34]. V = V (G) = {v1, v2, . . . , vm, . . .} is a vertex set where
the elements are called vertices representing objects in a graph.
E = E (G) = {e1, e2, . . . , en, . . .} is an edge set where the
elements are called edges representing relationships between
vertices. Fig. 2a illustrates an example of a graph. If vi and vj
are the endpoints of an edge en, en is incident on vi and on vj
meanwhile vi and vj are adjacent. The loop is a special edge
whose two endpoints are one vertex. All the vertices adjacent
to vi are called its neighbours NG (vi). If graphs G and H
meet V (H) ⊆ V (G) and E (H) ⊆ E (G), H is a subgraph of
G, i.e., H ⊆ G. In particular, H = G if V (H) = V (G) and
E (H) = E (G).

1) Numeric: There are two fundamentally numerical values
in a graph, i.e., the degree and the weight. The degree of a
vertex dG (vm) denotes the number of edges connecting this
vertex. As per Fig. 2a, dG (v1) = 2 because there are 2 edges
connecting v1 to v2 and to v3, respectively. The weight can
be associated with either a vertex or an edge. In this case,
the graph is called a weighted graph. The weight of an edge
wG (en) is often referred to as the cost of the edge, such as
the distance of a path, the length of a link, the capacity of
a channel, etc. The weight of a vertex wG (vm) is used to
measure a cost of the vertex, such as the priority of a user,
the data stored by a device, the transmit power of a node, etc.

2) Direction: In a graph G, the edge set E consists of either
undirected edges or directed edges. If all the elements in E
are undirected edges, the graph is called undirected graph.
If all the elements in E are directed edges, the graph is
called directed graph. Figs. 2a and 2b illustrate examples of
undirected graph and directed graph, respectively.

In an undirected graph, an edge en connects the unordered
pair of vertices, e.g., vi and vj , which is be expressed as
en = vivj . Hence, the relationship of vertices connected by
one edge is symmetric. The bipartite graph is a special type of
undirected graph which consists of two disjoint vertex subsets
and there is not any edge connecting vertices in the same
vertex subset. Fig. 2c shows an example of bipartite graph. In
a directed graph, each edge, also called the arc, has a direction
with an arrow. A directed edge en is expressed as en = (vi, vj)
from vi to vj , e.g., e1 = (v1, v2) in Fig. 2b. Thereby, en is the
out-arc of vi and the in-arc of vj . vi is called in-neighbour of
vj . vj is called out-neighbour of vi. N+

G (vm) and N−
G (vm)

are out-neighbour set and in-neighbour set of v, respectively.

3) Representations: There are several approaches to repre-
sent a graph. The most straightforward representation approach
is the diagram form, as per Fig. 2. In order to facilitate
mathematical operations and storage, the matrix has become
an efficient and common form for graph representation.

• Incidence matrix: I (G) = [in,m], vm ∈ V , en ∈ E , is a
|E| × |V| matrix which encodes the relations of vertices
and edges in G = (V, E) without loops. |·| expresses the
cardinality of a set, i.e., the number of elements in the set.
For an undirected graph, in,m = 1 if vertex vm is incident
with edge en, otherwise in,m = 0. For a directed graph,
in,m = 1 if vertex vm is the head of edge en. in,m = −1
if vertex vm is the tail of edge en. Otherwise, in,m = 0.

• Adjacency matrix: A (G) = [ai,j ] for G = (V, E) is a
square matrix of order |V| where each element indicates
the adjacency relation between a pair of vertices. For an
undirected graph, ai,j is equal to the number of edges
between vertices vi and vj . For a directed graph, ai,j
is equal to the number of edges directed from vi to
vj . Besides, the weight matrix is an extension of the
adjacency matrix to represent the edge-weighted graph
without multiple arcs and edges.

• Weight matrix: W (G) = [wi,j ] is an extension of the
adjacency matrix and represents the edge-weighted graph
without multiple arcs and edges. In a weight matrix,
wi,j = wG (en) where en is an existing edge or arc
between vertices vi and vj . If i = j, wi,j = L. Otherwise,
wi,j = K. L and K are definable values and equal to ∞,
−∞, 0, etc., according to the actual requirements.

4) Hypergraph: Hypergraphs are a generalization of a
graph where an edge joins any number of vertices instead
of at most two vertices in the ordinary graph. The edge in
hypergraphs is called hyperedge. Each hyperedge is a non-
empty subset of vertices. The number of vertices is called
the order of the hypergraph. The number of hyperedges is
called the size of the hypergraph. An undirected hypergraph
H is expressed as H = (X , E), where X is a set of vertices
and E is a set of hyperedge. Fig. 2d shows an example of
an undirected hypergraph. A directed hypergraph contains the
hyperedge set E where each hyperedge is an ordered pair
of subsets of X . Incidence matrix and adjacency matrix are
common representation matrices for hypergraphs.
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Figure 2. Examples of graphs.

B. Graph Optimization: Problems and Methods

Graph optimization, as a primary branch of combinatorial
optimization, uses the graph to model optimization problems
and utilizes the characteristics of constructed graph to design
corresponding solutions and algorithms. In this subsection, we
introduce several graph optimization problems and methods
applicable in wireless communications and networking.

1) Graph Coloring: It is essentially a generalization of
assignment problem. It aims to assign colors to vertices or
edges in an undirected graph so that no two adjacent vertices
or edges are of the same color. For example, Fig. 2c is stained
with two colors. Colors can be used to represent resources in
wireless networks. Taking vertex coloring as examples, three
graph coloring problems are introduced as follows.

• K-coloring judgment: It is to judge whether one undi-
rected graph G can be completely painted by given at
most k colors. k is an integer. G is k-colorable, also called
a k-coloring, if it can be painted by k colors. Existing
k-coloring algorithms include Grover’s algorithm [35],
DSatur algorithm [36], etc.

• Chromatic number: As one of NP-complete problems, it
is to find the minimum chromatic number of an undi-
rected graph. Various algorithms based on backtracking
and recurrence are developed with exponential computa-
tional complexity. Moreover, many greedy and heuristic
algorithms are proposed, such as Welsh–Powell algorithm
[37], Brélaz’s heuristic algorithm [38].

• Greedy coloring: It considers vertices in a given order
and in order assign each vertex with the smallest available
color not used by its neighbours, appending a new color
if required [39]. Different from k-coloring algorithms,
the greedy coloring is not given the number of available
colors.

2) Shortest Path: This problem aims to find a path between
two vertices which has the minimum sum of edge weights.
The shortest path problem can be defined over an undirected
graph or a directed graph. A path in an undirected graph is a
sequence of vertices, e.g. v1 − v2 − v4 in Fig. 2a. A path in
a directed graph is a lineup of consecutive vertices connected
by corresponding directed edges, e.g. v1 → v3 → v5 in Fig.
2b. There are three classic shortest path algorithms, i.e., Dijk-
stra’s algorithm, Bellmen-Ford algorithm, and Floyd–Warshall
algorithm. Based on these three algorithms, many advanced
algorithms are proposed, such as goal-directed algorithm and
contraction hierarchies algorithm [40].

3) Flow Network: A flow network is a directed graph D =
(V, E) where there exist two special vertices of the source and
the sink. Each arc en in a flow network has a capacity c (en)
and a flow f (en) which are non-negative reals. The source
only has the outgoing flow. The sink only has the incoming
flow. Except for the source and the sink, the amount of a flow
into each vertex must equals that out of it. A flow network
can be defined by a tuple N = (D, c, vs, vk) where vs and vk
represents the source and the sink, respectively. c is a vector
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Figure 3. An example of flow network.

including the capacity of each edge. In general, a flow network
does not include multiple arcs. Most of flow networks can be
formulated by the integral linear programming problem. Fig. 3
illustrates an example of flow network. There are two typical
problems for flow network.

• Maximum flow: It aims at finding the maximum accept-
able flow from the source to the sink. The max-flow min-
cut theorem, a well-known theorem in the flow network,
states the maximum amount of flow passing through the
source to the sink is equivalent to the sum weight of
edges in a minimum cut. The minimum cut is defined as
the smallest sum weight of edges which can disconnect
the source and the sink if removed. Based on the max-
flow min-cut theorem, many efficient optimization algo-
rithms are proposed such as Ford-Fulkerson algorithm,
Edmonds-Karp algorithm, Dinic’s algorithm [41].

• Minimum-cost flow: It aims at finding the lowest possible
price to send a certain amount of flow from the source
to the sink. Besides c (en) and f (en), each arc has a
specific weight u (en) representing the cost per unit of
flow. The cost of a flow along en equals f (en) · u (en).
There are many efficient algorithms based integral linear
programming for solving this problem [42].

In addition, there are derivative problems in the flow network,
i.e., double-capacity flow problem, multi-source (or sink) flow
problem, etc., some of which are still open problems.

4) Bipartite Matching: In a bipartite graph, the bipartite
matching, also called two-sided matching, is to find a subset
of edges where any two of edges do not have the same vertex.
Obtained edge subset is called a matching. If a matching
covers all the vertices, it is a perfect matching. Maximal
matching, maximum-weight matching and stable matching are
representative bipartite matching problems.

• Maximal matching: The maximal matching is to find a
matching including edges as many as possible. If the
matching contains the largest number of edges, it is a
maximum matching. The Hopcroft-Karp algorithm is an
efficient solution for this problem [43].

• Maximum-weight matching: In a weighted bipartite
graph, it aims to find a matching in which the sum weight
of edges is maximized. The Hungarian algorithm, also
known as the Kuhn-Munkres algorithm, is the best-known
algorithm for solving this problem [43].

• Stable matching: In this problem, each vertex has an
ordering of preference for vertices in the opposite side. A
matching is stable if there is not any pair of vertices that
both prefer each other to their current partner under the

matching. The Gale-Shapley algorithm is well-known to
find the one-to-one stable matching [43]. Matching game
theory is efficient to find a stable result in many-to-one
matching and many-to-many matching where each vertex
is allowed to have two or more partners [44].

5) Independent Set and Clique: The independent set and
the clique are complementary. An independent set is a vertex
subset in an undirected graph, any two of which are not
adjacent. In contrast, a clique is a vertex set where any
two vertices are adjacent. Actually, the graph coloring is
to partition vertices into different independent sets. Taking
independent set as example, there are two typical problems
as follows.

• Maximal independent set: It aims to find an independent
set including vertices as many as possible. If the inde-
pendent set includes the largest number of vertices, it is
a maximum independent set. For example, {v1, v4, v5} is
a maximum independent set in Fig. 2a. As a NP-hard
problem, its optimal solution can be achieved by the
brute force algorithm. There are greedy solutions such
as Luby’s algorithm and Blelloch’s algorithm [45].

• Maximum-weight independent set (MWIS): It aims to find
an independent set in which the sum weight of vertices
is maximized. There are customized branch-and-bound
(BnB) approaches and greedy algorithms proposed for
solving this problem [46].

Due to the complementarity, the maximal clique and the
maximum-weight clique are defined to find a clique as large as
possible and a clique with maximum sum weight, respectively.
If a clique contains the largest number of vertices, it is a
maximum clique. The problem solutions about cliques are
compatible with corresponding problems for independent sets.

III. GRAPH OPTIMIZATION FOR RESOURCE MANAGEMENT
IN WIRELESS NETWORKS

Many aspects of wireless networks can be modeled by
graphs due to their powerful representation ability. For in-
stance, the network topology can be represented as an undi-
rected graph. In this graph, each vertex represents a network
node or a communication link, while each edge represents the
connection or interference between vertices [47]. On this basis,
different colors can be used to represent available wireless
channels to be assigned to different vertices [6]. Consequently,
different graphs can be constructed to serve different moti-
vations and objectives. Suitable graph optimization methods
are then employed to solve corresponding problems on these
constructed graphs. This section provides a review of the
application of graph optimization for resource management
in the following scenarios of wireless networking.

• Cellular networks: The base station (BS) is a vital net-
work infrastructure in cellular communications to provide
a cell with the network coverage. Each user needs to
associate with at least one BS to access the network.
A variety of graph optimization approaches are used
to formulate and solve resource management issues in
cellular networks.
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• D2D Communication: The proximity service enables two
or more users to communicate with each other without
the assist of BSs, which is called D2D communication
technique. Graph optimization can be used as an effective
tool to schedule D2D communications.

• Multi-hop networks: A multi-hop network comprises a
group of nodes able to communicate with or relay for
each other. Multi-hop networks serve as a crucial foun-
dation for implementing graph optimization methods in
resource management.

• Multi-antenna systems: In multi-antenna systems, the
transmitter and/or the receiver is equipped with the multi-
antenna array to form new transmission dimensions for
increasing link capacity. Graph optimization is applied to
channel and pilot allocation in multi-antenna systems.

• Edge caching and computing: The computation and
storage resources at the edge of wireless networks are
as important as the communication resources, which
motivates emerging applications and use cases. Recently,
various graph optimization approaches are employed to
tackle resource management issues in edge caching and
computing.

• NTNs: Satellites and aerial infrastructures play primary
roles in NTNs. There are many novel resource manage-
ment issues in NTNs and their integration with terrestrial
networks. Graph optimization is mainly used to link
scheduling and resource allocation in NTNs.

All the above six scenarios cover almost all primary use
cases in current and future wireless networks. Meanwhile,
graph optimization has been widely and effectively applied
to resource management in these six scenarios.

A. Cellular Networks

Cellular networks are currently the most dominant wireless
networking technology. Graph optimization has been applied
to resource management in cellular networks for a long time.
In the early works, a max k-cut based resource allocation
algorithm is designed for a multi-cell downlink orthogonal
frequency division multiple access (OFDMA) network [48].
The maximal matching over random bipartite graph is used for
subcarrier assignment in a single-cell OFDMA network [49],
[50]. The minimum-cost flow is applied to resource allocation
for a frame-based OFDMA network with the consideration
of QoS [51]. This subsection focuses on research efforts
over the past decade and review recent literature on resource
management in single-cell networks and multi-cell networks,
respectively, with different RATs.

1) Single-Cell Networks: Graph optimization is mainly
used for channel allocation to enhance spectrum efficiency
of single-cell networks that typically consist of one BS and
multiple users, as per Fig. 4.

For orthogonal multiple access (OMA) networks where each
channel is only assigned by at most one user, a graph labeling
algorithm is designed for consecutive-block channel allocation
in an uplink single-carrier frequency division multiple access
(SC-FDMA) system, in the graph underlying which each ver-
tex represents a user and each edge represents a channel block

OMA NOMA

ChannelTransmission Allocation

Figure 4. Channel allocation in the single-cell network.

associated with multiple weights to specify the performance
metric, i.e., utility, power, or the number of channels. This
algorithm is a variant of graph coloring and can achieve the
near-optimal solution [52]. A maximal matching algorithm is
applied to channel allocation in a downlink OFDMA system
that is modeled as a multi-queue system with as many servers
as the number of frequency channels. A random bipartite
graph is exploited to formulate queue lengths, traffic arrival,
and other external randomness of users as well as matching
relationship between user vertices and channel vertices [53].
Moreover, bipartite matching algorithms are also performed
to tackle channel allocation in single-cell networks with other
specific OMA techniques and applied scenarios [54]–[56].

For non-orthogonal multiple access (NOMA), matching
game theory is usually used for channel allocation. Since each
channel is allowed to be reused by multiple users, channel
allocation problems in NOMA systems can be formulated
as many-to-one matching or many-to-many matching over
bipartite graphs. A many-to-many matching algorithm is pro-
posed for channel allocation in a downlink single-cell NOMA
network, which can achieve the maximum network capacity
with sufficiently large iterations [57]. In the same scenario, the
quality of service for users is further considered in the process
of many-to-many matching [58]. A many-to-one matching
algorithm is designed for channel allocation in uplink single-
cell NOMA network, which can converge to stable matching
with limited iterations [59]. Besides matching game theory,
an MWIS based algorithm is proposed for channel allocation
in an uplink single-cell NOMA network to maximize network
capacity. In its graph, each vertex represents a combination of
two users and one channel and each edge connects two vertices
including the same user or channel [60]. Based on this work, a
maximum independent set based algorithm is further designed
to jointly optimize access control and channel allocation [61].

Recently, graph optimization is applied to channel allo-
cation in emerging mobile use cases and technologies. The
maximum-weight matching is exploited to propose channel
allocation and sharing scheme for ultra-reliable low latency
communications (uRLLC) in a single-cell IoT network to
increase spectrum efficiency [62], [63]. Greedy coloring is
utilized for channel allocation and user scheduling in single-
cell networks with in-band full-duplex (IBFD) technology to
maximize spectrum efficiency and promote frequency sharing
[64], [65].

2) Multi-Cell Networks: Different from single-cell net-
works, inter-cell interference is a dominating challenge for
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resource management of multi-cell networks that include mul-
tiple BSs and multiple users. The interference graph is an
explicit tool to characterize interference among users or cells,
in which each vertex represents a user or a BS and each edge
connects two vertices strongly interfering with each other.

By means of interference graph, several low-complexity
heuristic algorithms are proposed to allocate frequency chan-
nels for inter-cell interference mitigation [66], [67]. Game-
theoretic approaches are also proposed to operate on interfer-
ence graph for user scheduling and channel allocation to re-
strain interference multi-cell networks [68], [69]. To accelerate
the implementation of interference graph, a machine learning-
based graph construction method is proposed to improve the
accuracy and practicability [70]. It is worth noting that due
to good compatibility, greedy coloring is popularly applied
on interference graph to interference mitigation in wireless
networks [71], as per Fig. 5. A partially-distributed resource
allocation algorithm is proposed to apply greedy coloring
for spectrum channel allocation among small cells [72]. For
moving small-cell networks, the time interval dependent inter-
ference graph is exploited to design a greedy coloring based
resource block (RB) allocation algorithm for alleviating time-
varying interference [73]. To further mitigate inter-cell inter-
ference, a modified k-coloring algorithm is designed for chan-
nel allocation in interference alignment (IA) enabled OFDMA
multi-cell networks [74]. A joint IA and subchannel allocation
scheme is further proposed which utilizes a greedy k-coloring
algorithm to find the smallest number of subchannels required
[75].

Various graph optimization methods have been applied
for resource management in multi-cell networks except for
interference graph. A minimum-cost flow algorithm is devel-
oped to switch on/off BSs dynamically in multi-cell networks
for energy saving [76]. The maximum independent set is
exploited to formulate link scheduling problem and propose a
computationally efficient algorithm for a two-tone spectrum-
sharing heterogeneous cellular network (HetNet) [77]. A
maximum-weight clique-based algorithm is proposed for joint
link scheduling and power control in a cloud-radio access
network (C-RAN), which can find optimal solution with low
complexity [78]. The bipartite matching is as well utilized to
manage spectrum resource in multi-cell networks [79]–[81]. A
bipartite stable matching based network selection algorithm is
designed to optimize overall quality of experience of users
under fairness assurance in an ultra-dense HetNet [82]. A
maximum matching-based subchannel allocation algorithm is
proposed for non-coherent joint transmission to restrain multi-
cell interference [83]. Furthermore, hypergraph is utilized to
design resource allocation algorithms for multi-cell networks
with advanced RATs and application scenarios. An interfer-
ence hypergraph is established to design a greedy spectrum re-
source allocation algorithm in a NOMA-enabled dense HetNet,
where each vertex represents the usage of a subchannel by an
user pair and each hyperedge contains vertices corresponding
to the same user pair [84]. A hypergraph-based maximum-
weight clique method is proposed for channel allocation to
improve spectrum efficiency in a NOMA-based industrial IoT
network [85].
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Figure 5. Inter-cell interference coordination by graph coloring

Lessons learned 1: Graph optimization is an effective and
long-standing theoretical tool for resource management in
cellular networks. In single-cell networks, graph optimization
approaches are mainly used for channel allocation to enhance
spectrum efficiency. Among them, graph coloring and bipartite
matching are two common methods. Results in literature
show that a graph coloring-based algorithm can achieve a
near-optimal solution in an uplink OMA single-cell network.
For NOMA single-cell networks, matching game theory and
independent set-based algorithms are effective for channel
reuse to promote resource utilization. In multi-cell networks,
interference coordination is the primary challenge of resource
management. To tackle this challenge, various interference
graph-based algorithms are proposed. Greedy coloring is suc-
cessfully applied spectrum channel allocation among small
cells. Furthermore, minimum-cost flow, independent set and
clique-based algorithms, bipartite matching, and hypergraph
are utilized for different resource management problems to
mitigate interference and improve resource utilization. Table
II summarizes the reviewed resource management approaches
using graph optimization in cellular networks along with
references. From the literature review, we can see that graph
optimization is promised to be applied to resource manage-
ment in future cellular networks, such as cell-free networks,
dense heterogeneous cellular networks, etc.

B. D2D Communication

As a complementary technique, D2D communication en-
ables direct communication between two mobile users in
close proximity without going through cellular BS or core
network [86], [87]. There are two typical working modes
that are underlay mode and overlay mode, as per Fig. 6. In
underlay mode, D2D communication reuses cellular frequency
resource to improve spectrum efficiency yet causing cross-tier
interference between cellular links and D2D pairs. In overlay
mode, D2D communication is not allowed to use cellular
frequency resource and only uses a dedicated frequency band.
Note that resource management of D2D communication is
controlled by cellular networks regardless of working modes.
Therefore, cross-tier interference and spectrum competition
become more severe in D2D and cellular hybrid networks
compared to cellular networks. This subsection reviews the
research literature on the application of graph optimization to
D2D communications in different working modes.
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Table II
A SUMMARY OF RESOURCE MANAGEMENT APPROACHES USING GRAPH OPTIMIZATION IN CELLULAR NETWORKS

Networks References Methods Graph Types Issues RATs
[52] Labeling Conflict graph Channel allocation SC-FDMA
[53] Maximal matching Bipartite graph Channel allocation OFDMA

[54] Maximum-weight
matching Bipartite graph Channel allocation OFDM-IDMA

[55], [56] Maximum-weight
matching Bipartite graph Channel allocation OFDMA

[57], [58] Many-to-many matching Bipartite graph Channel allocation NOMA
Single-Cell
Networks [59] Many-to-one matching Bipartite graph Channel allocation NOMA

[60] MWIS Conflict graph Channel allocation NOMA

[61] Maximum independent
set Conflict graph Access control and channel

allocation NOMA

[62], [63] Maximum-weight
matching Bipartite graph Channel allocation and

sharing OFDMA for uRLLC

[64], [65] Greedy coloring Conflict graph User scheduling and channel
allocation OMA with IBFD

[66] Heuristic Interference graph Channel allocation OFDMA
[67] Heuristic Interference graph Channel allocation TDMA
[71] Greedy coloring Interference graph Channel allocation OMA
[72] Greedy coloring Interference graph Channel allocation OFDMA

[73] Greedy coloring Time interval dependent
interference graph RB allocation OFDMA

[74] k-coloring Interference graph Channel allocation OFDMA with IA
[75] k-coloring Interference graph IA and channel allocation OFDMA
[76] Minimum-cost flow Flow network BS on/off switching OFDMA

[77] Maximum independent
set Conflict graph Link scheduling FDMA

Multi-Cell
Networks [78] Maximum-weight clique Conflict graph Link scheduling and power

control OFDMA

[79] Maximum-weight
matching Bipartite graph Channel and power allocation Spectrum aggregation

[80] Stable matching Bipartite graph Spectrum allocation OMA

[81] Maximum-weight
matching Bipartite graph User scheduling FDMA

[82] Stable matching Bipartite graph Network selection Hybrid access

[83] Maximum matching Bipartite graph Channel allocation Non-coherent joint
transmission

[84] Heuristic Interference hypergraph Spectrum channel allocation NOMA
[85] Maximum-weight clique Hypergraph Channel allocation NOMA

Cellular

spectrum

Cellular user

Overlay D2D pair

Cellular

spectrum

Interference AllocationTransmission

Underlay D2D pair

Figure 6. D2D communications in underlay and overlay mode.

1) Underlay D2D Communication: Graph optimization fo-
cuses on spectrum reuse among underlay D2D pairs and
cellular links. The spectrum reuse between one cellular user
and one D2D pair is first studied. Supposing that each cellular
user has been assigned to orthogonal spectrum channel, a
maximum-weight bipartite matching based scheme is proposed
to select a suitable cellular user as an optimal reuse partner for
each admissible D2D pair to maximize network capacity [88],
as per Fig. 7. The conflict graph is used to propose a heuristic
algorithm to match each cellular user’s codebook to one

1

1D2D pairs 2

2 3

.  .  . M-1 M

K-2 K-1 K
Cellular 

users
.  .  .

Figure 7. Bipartite matching between underlay D2D pairs and cellular users.

D2D pair in a D2D underlaying cellular network with sparse
code multiple access (SCMA) that is an emerging NOMA
technique [89]. In a NOMA-based D2D underlaying multi-cell
network, a hypergraph greedy coloring based channel reuse
algorithm is designed where the colors correspond to available
channels and each hyperedge consists of cellular links and
D2D pairs with a certain level of mutual interference [90].
Supposing that spectrum channels have not been assigned yet,
a hypergraph based BnB algorithm is developed to obtain the
optimal channel allocation and reuse in a D2D underlaying
cellular network [91].

Second, one-to-many spectrum reuse between cellular links
and D2D pairs is studied. A min-cut based transmission-
direction optimization scheme over interference graph is de-
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veloped to minimize total interference strength in a single-
channel D2D underlaying cellular network [92]. A minimum-
weight k-cut based spectrum reuse algorithm is proposed to
assign exactly one cellular link to each cluster of D2D pairs
to alleviate cross-tier interference [93]. A hypergraph greedy
coloring based channel allocation algorithm is developed for
both D2D pairs and cellular links to maximize network
capacity with low complexity, which is shown to achieve a
near-optimal performance [94]. Considering social ties among
users, a social-aware resource allocation scheme is proposed
which uses many-to-one matching to assign D2D pairs of
each community with cellular spectrum resources of one other
community [95].

Finally, many-to-many spectrum reuse between cellular
links and D2D pairs is studied. To balance the effectiveness
and the complexity, a k-coloring based spectrum resource
sharing algorithm is proposed over interference graph for a
D2D underlaying full-duplex cellular network to maximize
network capacity [96].

2) Overlay D2D Communication: Graph optimization is
usually applied to deal with resource allocation issues in
overlay D2D communications. Due to dedicated spectrum
resources, there is not any conflict between D2D pairs and
cellular links. Hence, a system consisting of multiple overlay
D2D pairs is also referred as a D2D network. A bipartite
stable matching based spectrum reuse algorithm is proposed to
match each secondary D2D pair to one primary D2D pair for
spectrum utilization enhancement in a cognitive radio (CR)-
assisted D2D network [97]. The bipartite stable matching is
further used to group several cooperative users with social
ties for data dissemination via D2D communications [98]. A
graph based heuristic frequency assignment and duplex mode
selection scheme is designed in a full-duplex D2D network
to improve spectrum efficiency [99]. A completion time min-
imization algorithm is proposed for a D2D-aided caching fog
radio access network (F-RAN), which uses the maximum-
weight clique to minimize the possible completion time in
downlink transmission and uses the maximum independent set
to maximize the number of active users in D2D pairs [100].

3) Mix-Mode D2D Communication: When several working
modes coexist and are optional for D2D pairs, the mode se-
lection becomes a required optimization dimension. A greedy
coloring based group partitioning algorithm over conflict graph
is proposed to maximize network capacity for both overlay
and underlay D2D communications in cellular networks [101].
The bipartite stable matching is combined with the coalition
formation game to design a joint mode selection and spectrum
access scheme in a D2D and cellular coexisting network
where D2D pairs have four specific working modes to select
[102]. The maximum-weight bipartite matching is exploited
to propose a joint mode selection and user association scheme
in a D2D enabled multi-cell network, where each user can
associate one BS by cellular mode or its own receiver by D2D
mode [103]. A mode selection and resource allocation scheme
is designed for energy saving in a D2D and cellular coexisting
network with hybrid multiple access techniques, which applies
the minimum-cost flow to resource allocation among overlay
D2D pairs and uses the interference graph to design a heuristic

resource allocation method for underlay D2D pairs [104].
A joint mode selection and resource allocation scheme is
proposed for a D2D-enabled NOMA cellular network, where
the interlay mode is developed as a special D2D working
mode in NOMA systems and coexists with the underlay mode.
This scheme utilizes a maximum-weight clique based BnB
approach to obtain the optimal solution [105]. The minimum-
cost flow is further applied to mode selection and power
control for D2D-enabled NOMA cellular networks to improve
network connectivity [106].

Lessons learned 2: Graph optimization is suitable for D2D
communications in all kinds of working modes to significantly
enhance spectrum efficiency. For underlay D2D communica-
tions, spectrum reuse is the primary resource management is-
sue addressed by graph optimization methods. The maximum-
weight bipartite matching can find the optimal solution for
channel reuse between one D2D pair and one cellular user
to maximize network capacity, if cellular users are assigned
to spectrum channels. If spectrum channels are not assigned,
a hypergraph-based BnB algorithm can achieve the optimal
channel allocation and reuse solution. Moreover, min-cut
based algorithms, matching game theory, and graph coloring
are applied to one-to-many spectrum reuse and many-to-
many spectrum reuse between cellular users and D2D pairs.
For overlay D2D communications, bipartite stable matching,
maximum-weight clique, and maximum independent set are
efficient for channel allocation among D2D pairs to promote
spectrum utilization. For mixed-mode D2D communications,
graph coloring, bipartite matching, and minimum-cost flow are
effective methods to design joint mode selection and resource
allocation algorithms in OMA-based systems. In NOMA-
based systems, the maximum-weight clique and minimum-
cost flow are applicable. Table III summarizes the reviewed
resource management approaches using graph optimization in
D2D communications along with references. We can observe
from the literature review that resource coordination for social-
aware and multi-hop D2D communications remains a worthy
issue for future investigation using graph optimization.

C. Multi-Hop Networks
Multi-hop networks leverage the cooperation among trans-

mission links to ensure network connectivity, which improves
networking flexibility and robustness. The development of
multi-hop networks facilitates the emergence of cooperative
cellular networks and multi-hop D2D communications. Tra-
ditionally, graph optimization methods focus on addressing
link scheduling and routing design in multi-hop networks
in forms of ad hoc networks, mesh networks, or sensor
networks [9], [47], [107], [108]. In recent research literature,
graph optimization concentrates on three specific scenarios of
multi-hop networks: self-organizing networks (SONs), relay
networks, and vehicular networks. Cooperative scheduling
among multiple links is primary feature as well as main
challenge for resource management in multi-hop networks. In
this subsection, we present an overview of the application of
graph optimization methods in multi-hop networks over the
past decade.
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Table III
A SUMMARY OF RESOURCE MANAGEMENT APPROACHES USING GRAPH OPTIMIZATION IN D2D COMMUNICATIONS

D2D Modes References Methods Graph Types Issues RATs

[88] Maximum-weight
matching Bipartite graph Channel reuse and power

allocation FDMA

[89] Heuristic Conflict graph Channel reuse SCMA
[90] Greedy coloring Hypergraph Channel reuse NOMA
[91] BnB Hypergraph Channel allocation and reuse FDMA

Underlay [92] Min-cut Interference graph Transmission direction TDD
D2D [93] Minimum-weight k-cut Undirected graph Spectrum reuse FDMA

[94] Greedy coloring Hypergraph Channel allocation OFDMA
[95] Many-to-one matching Social bipartite graph Channel allocation and reuse FDMA

[96] k-coloring Interference graph RB assignment and power
allocation

OFDMA with
full duplex

[97] Stable matching Bipartite graph Spectrum reuse FDMA with CR
[98] Stable matching Social-physical graph Data dissemination OMA

Overlay
D2D [99] Heuristic Directed weighted graph Duplex mode selection FDMA with full

duplex

[100]
Maximum-weight
clique/Maximum
independent set

Conflict graph
Access control, power

allocation, and network
coding scheduling

Network coding

[101] Greedy coloring Conflict graph Group partitioning OFDMA

[102] Stable matching with
coalition formation game Bipartite graph Mode selection and spectrum

access FDMA

[103] Maximum-weight
matching Bipartite graph Mode selection and user

association OMA

Mix-Mode
D2D [104] Minimum-cost

flow/Heurisitc
Flow network/Interference

graph
Mode selection and resource

allocation
SCMA and

OFDMA

[105] Maximum-weight clique Conflict graph Mode selection and resource
allocation NOMA

[106] Minimum-cost flow Flow network Mode selection and resource
allocation NOMA

1) SONs: The SON is a representative of multi-hop net-
works, where the nodes establish wireless connection with
each other in a distributed or decentralized manner. Graph
optimization is mainly used to design algorithms for link
scheduling and resource allocation in SONs. Over the conflict
graph, the MWIS is used to formulate the link scheduling
problem for SONs with deterministic channel models and then
exploited to study the cross-layer optimization in a distributed
way [109]. The maximum clique is used to describe and
analyze a decentralized link activation strategy in a Rayleigh
fading environment by means of random graph theory. In this
work, the existence of an edge between any two vertices is
set by a probability related to exponential distribution [110].
A k-coloring based distributed resource allocation algorithm
is further proposed to improve the efficiency of resource
reuse [111]. Given a topology graph, a greedy link scheduler
is designed for SONs with Gaussian multiple access and
broadcast channels [112], [113]. For an integrated sensing
and communications (ISAC)-aided SON, a shortest path based
resource allocation scheme is proposed over a random topol-
ogy graph to reduce transmission delay, where the weight of
each edge follows the exponential distribution [114]. Over
the bipartite graph, A many-to-one matching based spectrum
allocation scheme is proposed for a SON based on IEEE
802.15.4m to lower spectrum congestion and packet-dropping
probability [115]. A maximum matching policy is designed
for decentralized medium access control in wireless sensor
networks [116], which is further incorporated with double
auction game for spectrum allocation to increase the user
capacity [117]. In addition, time expanded graph (TEG) is
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Figure 8. Examples of graph optimization for relay networks.

used to study the cooperative link scheduling in a multi-hop
network with multiple channels and multiple slots [118].

2) Relay Networks: The relay is a specific infrastructure
in wireless networks to interconnect the source node and the
destination node by receiving information from the former
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and deliver it to the latter. It has numerous advantages on
coverage extension, link improvement and energy efficiency.
Decode-and-forward (DF) and amplify-and-forward (AF) are
two most common relaying strategies. A DF relay decodes,
remodulates, and retransmits the received signal, while an AF
relay just amplifies and retransmits the received signal without
decoding. Graph optimization methods are usually utilized to
relay selection and channel assignment for relay networks.

The max-flow min-cut theorem is utilized to devise a
directed acyclic graph (DAG) based analytical method, demon-
strating how DF relaying substantially enhances energy effi-
ciency in wireless multicasting networks, particularly focusing
on a single-source node scenario [119]. An optimal chan-
nel and relay assignment scheme is proposed which utilizes
maximum-weight matching to allocate each source-destination
pair one available relay for the sum-rate maximization in a
two-way AF relaying OFDMA network [120]. For a multi-
hop relaying network, a shortest path based DF cooperative
strategy is proposed to find a path with low bit error rate
from the source node to the destination node [121], as shown
in Fig. 8a. In Fig. 8a, each intermediate vertex represents a
relay node and each edge represents an existing transmission
link, whose weight represents the link quality. The bipartite
matching is utilized to further design a path selection algorithm
for a multi-hop relaying network with multiple source and
destination nodes to increase relaying link throughput [122].

Cooperative cellular networks are a cost-effective network
architecture to enhance cell coverage and link robustness by
deploying relay stations around the BS. To improve network
capacity, a maximum-weight clique based spectrum allocation
and relay selection scheme is proposed in a relay-assisted
bidirectional OFDMA cellular network [123]. Furthermore,
the minimum-cost flow based scheme is designed to asymp-
totically optimize relay selection and resource allocation in a
cooperative downlink OFDMA network [124], as per Fig. 8b.
In Fig. 8b, each vertex represents a subcarrier in different slots
and there are three types of edges, i.e., black solid, blue dotted,
and red dotted edges, which correspond to different subcarrier
and slot assignments for the relay node. For federated learning
in a NOMA relay-assisted IoT network, a greedy MWIS al-
gorithm is employed to efficiently allocate spectrum resources
and relay stations to each IoT device, thereby reducing energy
consumption during the upload of local model parameters
[125].

3) Vehicular Networks: Vehicular networks have been one
of the most advanced application of IoT, which are cur-
rently built on vehicular ad hoc network and vehicle-road
cooperation. The mobility of vehicles leads to temporal and
spatial changes of network topology, which presents new
challenges for resource management [126], [127]. Vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) are two pri-
mary categories of communication links in vehicular networks.

For V2V communications, the bipartite matching is widely
applied to resource allocation and sharing. A joint secure
relay selection and spectrum allocation algorithm is proposed
which exploits the maximum matching over a random bipartite
graph to assign each V2V pair with one subcarrier to reduce
the outage probability [128]. The maximum-weight bipartite

matching is further used to radio resource allocation for
vehicle platooning control [129] and spectrum sharing between
cellular uplinks and V2V communications [130]. In addition to
bipartite matching, the minimum-cost flow is utilized to realize
a decentralized link scheduling for data dissemination via V2V
links [131]. For V2V and V2I hybrid communications, the
interference graph is used to model the network through a
similar way for modeling cellular and D2D hybrid networks.
Based on constructed interference graph, a heuristic spectrum
sharing scheme is proposed between V2V and V2I links [132].
The maximum-weight bipartite matching is also utilized to
formulate spectrum sharing problem between V2V and V2I
communications for increasing spectrum efficiency [133]. The
k-coloring is applied to channel allocation for computation
offloading of V2I and V2V links in edge computing assisted
vehicular networks [134].

Lessons learned 3: Multi-hop networks are crucial for the
application of graph optimization in resource management. In
SONs, graph optimization approaches focus on link scheduling
and resource allocation. For link scheduling, MWIS, maximum
clique, and TEG-based algorithms are exploited to maximize
network connectivity. For resource allocation, graph coloring,
the shortest path, and bipartite matching are utilized for
improving transmission efficiency and resource utilization. In
relay networks, relay selection and channel assignment are
two main problems addressed by graph optimization methods.
Bipartite matching and the shortest path are two popular
algorithmic approaches in AF and DF relaying networks.
For cooperative cellular networks, minimum-cost flow is used
to asymptotically optimize relay selection and resource al-
location. Moreover, the maximum-weight clique and MWIS
are efficient graph optimization tools in cooperative cellular
networks. In vehicular networks, different graph optimiza-
tion methods are exploited for V2V and V2I communica-
tions. For V2V communications, bipartite matching is widely
used for resource allocation and sharing. For V2V and V2I
communications, interference graph-based algorithm and the
maximum-weight bipartite matching are utilized for spectrum
sharing to increase spectrum efficiency. Table IV summarizes
the reviewed resource management approaches using graph
optimization in multi-hop networks along with references.
From the literature review, we can see how to deal with
resource management problems in future multi-hop networks
to meet the requirements of high-mobility, high-reliability,
and low-latency applications is a crucial challenge for graph
optimization approaches.

D. Multi-Antenna Systems
Multi-antenna systems are known as multiple-input-

multiple-output (MIMO) systems as well, in which multi-
antenna array can smoothly be set up at the transmitter
and/or the receiver in diverse wireless networks to increase
transmission rate. Graph optimization approaches have been
applied to channel allocation and pilot placement in multi-
antenna systems.

For channel allocation in multi-antenna systems, the k-
clique is used to formulate the multi-channel sharing in a
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Table IV
A SUMMARY OF RESOURCE MANAGEMENT APPROACHES USING GRAPH OPTIMIZATION IN MULTI-HOP NETWORKS

Networks References Methods Graph Types Issues RATs

[109] MWIS Conflict graph Distributed link scheduling Deterministic channel
model

[110] Maximum clique Random graph Decentralized link activation Interference channel
access

[111] k-coloring Topology graph Distributed resource allocation Distributed access
[112],
[113] Heuristic Topology graph Link scheduling Gaussian multiple access

SONs [114] Shortest path Topology graph Resource allocation ISAC
[115] Many-to-one matching Bipartite graph Spectrum allocation CSMA/CA

[116] Maximum matching Bipartite graph Decentralized medium access
control Slotted random access

[117] Maximum matching with
double auction game Bipartite graph Spectrum allocation CR

[118] Max-flow min-cut TEG Cooperative link scheduling Network coding

[120] Maximum-weight
matching Flow network Channel and relay assignment AF

[121] Shortest path Directed graph Path selection and power allocation Ultra-wideband DF
Relay

Networks [122] Maximum-weight
matching Bipartite graph Path selection and power allocation DF

[123] Maximum-weight clique Conflict graph Spectrum allocation Cooperative bidirectional
OFDMA

[124] Minimum-cost flow Flow network Spectrum allocation, relay selection,
and transmission mode Cooperative OFDMA

[125] MWIS Conflict graph Spectrum and relay allocation Cooperative NOMA

[128] Maximum matching Random bipartite
graph

Secure relay selection and spectrum
allocation V2V with DF

[129] Maximum-weight
matching Bipartite graph Radio resource allocation for

vehicle platooning control LTE-V2V

Vehicular
Networks [130] Maximum-weight

matching Bipartite graph Spectrum sharing Underlay vehicular D2D
with OFDMA

[131] Minimum-cost flow Bipartite graph Decentralized link scheduling DSRC-V2V
[132] Heuristic Interference graph Spectrum sharing V2V and V2I

[133] Maximum-weight
matching Interference graph Spectrum sharing V2V and V2I

[134] k-coloring Interference graph Channel allocation V2V and V2I

Users Pilots Inter-cell interference

k-coloring for 

interference graph

Association

Figure 9. Pilot assignment via k-coloring in uplink massive MIMO networks.

single-cell multi-user MIMO (MU-MIMO) system, revealing
the non-deterministic polynomial-time hardness of this class
of problems [135]. To avoid high computational complexity,
a k-coloring based greedy spectrum sharing is proposed to
find near-optimal sum-rate of secondary users in a CR MIMO
network [136]. Furthermore, many-to-many matching over
bipartite graph is exploited to formulate the user-beam associa-
tion in a massive MIMO system for the sum-rate maximization
[137].

Pilot and other training resources are essential for channel
estimation in multi-antenna systems. To mitigate pilot con-
tamination due to pilot reuse in multi-cells massive MIMO
systems, the k-coloring is exploited to allocate orthogonal

pilots uplink users in different cells [138], as per Fig. 9.
A chromatic number based training resource allocation is
proposed to find the minimum number of colors required
for multi-cell MIMO systems to decrease the overall training
overhead [139]. To resolve pilot collision in a single-cell
massive MIMO system, the bipartite graph is used to propose
a pilot random access protocol with successive interference
cancellation for maximizing the number of active users [140].

Lessons learned 4: Channel allocation and pilot placement
are two main concerns for graph optimization in multi-
antenna systems. For channel allocation, clique-based algo-
rithms, graph coloring, and bipartite matching are utilized to
maximize the sum-rate of single-cell and multi-cell MIMO
systems. For pilots and other training resources, graph coloring
is the most popular approach to improve resource utilization
and decrease training overhead. The literature review demon-
strates that graph optimization is expected to handle resource
management in future massive MIMO systems and multi-
antenna systems at mmWave and THz bands.

E. Edge Caching and Computing

Computation and storage resources at the edge of various
wireless networks have been increasingly important for re-
source management in line with communication resources. On
the one hand, utilizing the storage resource of edge devices to
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Figure 10. An example of hypergraph model for edge caching.

cache popular contents is an effective approach to overcome
backhaul link congestion and reduce content delivery latency.
This facilitates the development of edge caching. On the other
hand, deploying computing resources close to end users is able
to accelerate the execution of compute-intensive tasks from
end users via offloading. This prompts the emergence of edge
computing. This subsection reviews the research literature on
the application of graph optimization to resource management
in edge caching and computing.

1) Edge Caching: Graph optimization approaches are
mainly applied to content placement/delivery scheduling in
edge caching. The interference graph is used to model the
content delivery in small-cell networks in which each vertex
represents one association between a user and a small BS with
one channel and an edge connects two vertices with strong
interference when delivering requested contents. Based on the
constructed interference graph, the maximal independent set is
used to propose joint user association and channel assignment
algorithm to maximize the system throughput on content
delivery [141]. The maximal independent set over interference
graph is further employed to optimize user association and
BS muting to maximize the number of users simultaneously
served by content delivery [142]. In a downlink F-RAN, the
MWIS is exploited to design a joint user association and power
control scheme for enhanced remote radio heads, i.e., small
cells, meanwhile a greedy coloring solution is devised for
channel allocation in the central cloud BS, i.e., the macro cell
[143]. Moreover, the hypergraph is used to formulate a three-
dimensional matching in a cache-enabled D2D underlaying
cellular network. In this work, there are three types of vertices
representing content holders, content requesters, and cellular
spectrum resources, respectively. A hyperedge consists of a
cellular spectrum resource, a content holder and a content
requester, which represents a feasible matching of them [144],
as per Fig. 10. The one-to-one stable matching is utilized to
spectrum allocation in cache-enabled vehicular networks for
maximizing the content delivery efficiency and transmission
rate [145].

For content placement, a hypergraph model is proposed to
describe the presence of social communities of users and then
used to develop a content placement framework in an overly
D2D network [146]. A chromatic number based algorithm
is proposed for content placement in HetNets for the hit
rate maximization, which aims to cache popular contents
using smallest memory of small BSs [147]. The minimum-

Or

Local exe.

Full offload

Binary offloading

Partial offloading

BS

Edge server

Figure 11. Binary offloading and partial offloading.

weight clique is utilized to a joint user scheduling and content
placement scheme in HetNets to optimize the end-to-end
throughput, in which a coded multicasting is used to reduce
the backhaul traffic load [148]. The maximum-weight perfect
matching is used to design a joint content placement and
delivery strategy in a cache-enabled NOMA cellular network,
aiming at minimizing the average system latency including
backhaul-link transmission delay and content delivery delay
[149].

2) Edge Computing: Graph optimization focuses on two
categories of computation resource managements at the edge
of wireless networks, i.e., baseband computing scheduling
and computation offloading. First, the baseband computing
scheduling aims to take full advantage of computation re-
sources at the baseband unit to support users’ access require-
ments. The maximum-weight bipartite matching is utilized to
assign each user or its task with available virtual machines
(VMs), where baseband computation resources are modeled
as different VMs [150], [151]. Second, computation offloading
enables users to offload their compute-intensive tasks to nearby
BS equipped with edge computing server. Then, BS can
execute the compute-intensive task for users. Generally, there
are two offloading policies that are the binary offloading and
the partial offloading, as per Fig. 11.

For the binary offloading, each user executes the task in lo-
cal or entirely offload the task to BS. The many-to-one match-
ing is exploited to optimize binary offloading decision and
channel assignment in a single-cell mobile edge computing
(MEC) network [59]. The MWIS is further used to optimize
user clustering and access control for task offloading in single-
cell and multi-cell MEC networks [152], [153]. Considering
the dependency among computation tasks, the DAG is utilized
to describe the execution order and relationship between tasks
and propose the corresponding computation offloading scheme
[154]. A minimum-cost flow based algorithm is developed
to optimize the task offloading in multi-cell MEC networks,
which is shown to be applicable to both binary and partial
offloading policies [155]. The shortest path is utilized to
optimize transmission scheduling in NOMA assisted internet
of video things (IoVT) [156].

For the partial offloading, each user can offload a part
of its compute-intensive task by partitioning the entire task
into subtasks and then execute the remainder in local. The
shortest path is exploited to find a proper data routing path for
delivering each offloaded subtask and each processing result
for maximizing the network throughput in a trackside MEC
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network [157]. A bipartite matching based heuristic algorithm
is proposed to allocate each subtask one of computation
resources in a cloud-edge-end three tier networks for transmit
energy minimization [158].

Lessons learned 5: With the development of edge caching
and computing, storage and computation resources at the
edge of wireless networks have become indispensable for
resource management, along with communication resources.
For edge caching, graph optimization approaches focus on
content placement and delivery scheduling. Independent set-
based algorithms over interference graphs are efficient for
content delivery to maximize system throughput and user
capacity. Hypergraph and bipartite matching are also used
for content delivery optimization. Furthermore, various graph
optimization methods, such as hypergraph, graph coloring,
bipartite matching, and clique-based algorithms, are proposed
for content placement to make full use of storage resources to
promote the hit rate. For edge computing, graph optimization
methods are applied to baseband computing scheduling and
computation offloading. For baseband computing scheduling,
bipartite matching is the efficient and popular approach to
assign virtualized computing resources. For computation of-
floading, bipartite matching, independent set-based algorithms,
DAG-based algorithms, and the minimum-cost flow are uti-
lized for binary offloading decision and channel assignment.
The shortest path and bipartite matching are usually exploited
for designing partial offloading schemes. Table V summarizes
the reviewed resource management approaches using graph
optimization for edge caching and edge computing along with
references. From the literature review, we can see that graph
optimization can be utilized for resource management in future
edge AI and data center network.

F. Non-Terrestrial Networks
Tremendous developments of aerospace technologies and

the cost reduction of manufacturing and launching facilitate
new use cases and applications of NTNs and their integration
with all kinds of terrestrial wireless networks. This brings
new challenges and problems on resource management in
NTNs. There is recent literature exploiting graph optimization
approaches to tackle relevant issues in satellite networks and
aerial networks.

1) Satellite Networks: Link scheduling, user association,
and handoff are typical issues of resource management in
satellite networks [159], [160]. TEG is the most popular graph
model for resource management in satellite networks. TEGs
can characterize the potential available communication links,
i.e., contacts, at different time slots among different nodes in a
given satellite constellation. Generally speaking, a TEG con-
sists of T layers if the scheduling period has T time slots. Each
layer includes all the network nodes, e.g., on-orbit satellites,
ground stations, etc., represented by vertices, and contacts in
current time slot represented by horizontal edges. There are
vertical edges between two adjacent layers representing the
carrying of flow forward. Fig. 12 shows an illustration of the
TEG for satellite networks. Over the TEG, the maximum-
weight bipartite matching is used for contact planning, i.e., link
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Figure 12. An example of TEG for satellite networks.

scheduling, to maximize the network throughput [161] or the
transmission success ratio [162]. The maximum flow is utilized
to design a transceiver resource allocation scheme to maximize
the resource utilization for inter-satellite communication links
[163]. Furthermore, the RL is exploited over the TEG to
propose a long-term resource allocation scheme with low
computational complexity to maximize the network capacity
in a heterogeneous satellite network [164]. The hypergraph
is combined with TEGs to model multi-domain resource
allocation problems in heterogeneous satellite networks and
accomplish the scheduling with low computational complexity
[165].

There are several variants of TEG proposed to depict the
resource management procedure in satellite networks [166]–
[171]. To be specific, a time-evolving resource graph (TERG)
is proposed to describe the evolution of multi-dimensional
resources in broadband satellite networks [166]. A time-
expanded resource relationship graph (TERRG) is further
developed to model evolving service capabilities of multi-
dimensional resources by a unified measurement standard,
which is used to proposed an optimal resource mobility uti-
lization strategy [168]. An enhanced TEG (ETEG) is devised
which can jointly depicts different resources and combines
the transmission and observation phases in satellite networks
[170]. Besides the TEG and its variants, the conflict graph
is applied to characterize the conflict of resource utilization
between different communication links in satellite networks
[172], [173].

2) Aerial Networks: Due to the characteristics of high ma-
neuverability and low cost, unmanned aerial vehicles (UAVs)
have participated in wireless communications and networking
to build various aerial networks, as per Fig. 13. In aerial
cellular networks, the k-coloring is employed to assign UAV-
BSs with limited channels to maximize downlink sum-rate
over a dynamic interference graph, where the edge between
any two vertices is dynamically changing due to the mobility
of UAV-BSs [174]. The MWIS is utilized to optimize spec-
trum resource allocation to improve spectrum efficiency of
aerial cellular communications [175], [176]. In UAV-assisted
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Table V
A SUMMARY OF RESOURCE MANAGEMENT APPROACHES USING GRAPH OPTIMIZATION FOR EDGE CACHING AND COMPUTING

Use Cases References Methods Graph Types Issues Networks

[141] Maximal independent set Interference graph User association and channel
assignment Small-cell network

[142] Maximal independent set Interference graph User association and BS muting Small-cell network
[143] MWIS Interference graph User association and power control F-RAN

[144] Three-dimensional
matching Hypergraph D2D pairing and resource allocation D2D underlaying

cellular network
Edge

Caching [145] Stable matching Bipartite graph Spectrum allocation Vehicular content
delivery

[146] Cooperative game Hypergraph Content placement Overlay D2D
[147] Chromatic number Conflict graph Content placement HetNet

[148] Minimum-weight clique Conflict graph User scheduling and content
placement

HetNet with coded
multicasing

[149] Maximum-weight perfect
matching Undirected graph Joint content placement and delivery NOMA

[150], [151] Maximum-weight
matching Bipartite graph VM assignment C-RAN

[59] Many-to-one matching Bipartite graph Binary offloading decision Single-cell MEC
Edge [152], [153] MWIS Conflict graph User clustering and access control Multi-cell MEC

Computing [154] Extreme value theory DAG Dependent task offloading Time-slotted MEC
[155] Minimum-cost flow Flow network Binary and partial offloading Multi-cell MEC
[156] Shortest path Directed graph Transmission scheduling IoVT
[157] Shortest path Directed graph Partial offloading and data routing Trackside MEC
[158] Heuristic Bipartite graph Computation resource allocation Three-tier MEC

Small BS

UAV-BS

Aerial relaying

Aerial cellular network Aerial data collection
Terrestrial network

UAV-BS

Macro BS

UAV relay

UAV 

collector

Figure 13. An illustration of aerial networks.

data collection systems, a hypergraph based greedy coloring
algorithm is proposed to divide users into several NOMA
groups and allocate each group one uplink spectrum channel
for the sum-rate maximization [177]. The maximum bipartite
matching is exploited for channel allocation to promote energy
saving during data collection from sensors to the UAV [178].
For an aerial edge computing network, the bipartite stable
matching is used to match users with edge server-mounted
UAV-BSs to meet high delay sensitivity requirement for com-
putation offloading [179]. In a UAV-assisted wireless body area
networks (WBAN), stable matching and k-coloring are used
to optimize RB allocation to mitigate interference [180].

Besides the above issues, the mobility of UAVs bring new
optimization dimension in flexible network deployment. The
shortest path is used to obtain the optimal UAV trajectory to
minimize the completion time of information uploading from
the UAV to ground BSs, where the mobility of UAV follows
the fly-hover-fly structure [181]. For a large-scale aerial cel-
lular network, DAG is exploited to describe the trajectory of
each UAV-BS and propose a cooperative trajectory planning
algorithm over user locations and charging stations [182]. The

maximum flow is utilized to model the trajectory planning
problem in a UAV-assisted relay network, which is solved by
the spectral graph theory to maximize the data flow of the
network [183].

Lessons learned 6: Graph optimization has recently been ap-
plied to resource management in NTNs, including satellite
networks and aerial networks, to enhance network capacity and
the coverage performance. In satellite networks, the TEG is the
most common graph model for resource management. Over
TEGs, bipartite matching, the maximum flow, hypergraph,
and RL-based algorithms are utilized for contact planning
and resource allocation with different objectives. Furthermore,
many TEG variants have been proposed to describe the process
of resource management and model the evolution of multi-
dimensional resources. In aerial networks, graph coloring,
independent set-based algorithms, hypergraph, and bipartite
matching are used for channel allocation and the association
between UAVs and other network elements, e.g., terrestrial
BSs and users, to promote resource utilization. More im-
portantly, graph optimization methods including the shortest
path, DAG-based algorithms, and the maximum flow are
utilized for solving and modeling UAV trajectory planning
problems to improve the coverage performance in diverse
aerial networks. Table VI summarizes the reviewed resource
management approaches using graph optimization in NTNs
along with references. The literature review demonstrates that
graph optimization is promising to manage multi-dimensional
resources in future multi-tier space-air-ground integrated net-
works.

G. Summary and Discussion

This section investigates the application of graph optimiza-
tion for resource management in wireless networks. We review
the literature from five scenarios: cellular networks, D2D
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Table VI
A SUMMARY OF RESOURCE MANAGEMENT APPROACHES USING GRAPH OPTIMIZATION IN NTNS

Networks References Methods Graph Types Issues Use Cases

[161], [162] Maximum-weight
matching Bipartite graph Contact planning Satellite relaying

[163] Maximum flow Flow network Transceiver resource allocation Inter-satellite
communications

[164] RL TEG Long-term resource allocation Inter-satellite
communications

[165] Shortest path Hypergraph Multi-domain resource allocation Inter-satellite
communications

[166] Maximum flow TERG Multi-dimensional resource
scheduling Satellite relaying

Satellite
Networks [167] Maximum flow Event-driven TEG Multi-resource coordinate

scheduling Earth observation

[168] Maximum flow TERRG Resource mobility utilization Earth observation
[169] Maximum flow TEG Contact planning Remote sensing

[170] Maximum flow ETEG Multi-resource coordinate
scheduling Earth observation

[171] Maximum flow Resource TEG Energy-efficient resource scheduling Remote sensing

[172] Q-learning Conflict graph Data forward and backward
induction

Remote sensing by
small satellites

[173] Maximum independent
set Conflict graph Task scheduling Satellite relaying

[174] k-coloring Conflict graph Channel allocation Aerial cellular
communications

[175], [176] MWIS Conflict graph Spectrum allocation Aerial cellular
communications

[177] Greedy coloring Hypergraph User grouping and channel
allocation Data collection

[178] Maximum matching Bipartite graph Channel allocation Data collection
Aerial

Networks [179] Stable matching Bipartite graph User association Aerial edge
computing

[180] Stable matching and
k-coloring Topology graph RB allocation WBAN

[181] Shortest path Topology graph UAV trajectory planning Data uploading with
NOMA

[182] Dynamic programming DAG Cooperative trajectory planning Aerial cellular
communications

[183] Maximum flow Flow network UAV trajectory planning UAV relaying

communications, multi-hop networks, multi-antenna systems,
edge computing and caching, and NTNs. We first focus on
the graph optimization approaches for resource management
in cellular networks. Various graph optimization methods
are applied in single-cell networks and multi-cell networks
to coordinate interference and improve resource utilization.
Second, we elaborate on graph optimization methods in D2D
communications with different working modes for spectrum
reuse and mode selection to increase spectrum efficiency.
Then, we investigate graph optimization-based link scheduling
and resource allocation algorithms in multi-hop networks,
including SONs, relay networks, and vehicular networks.
Afterwards, we concentrate on graph optimization methods in
multi-antenna systems, which are applied to channel allocation
and pilot placement to increase resource utilization and reduce
training overhead. Furthermore, we investigate how graph
optimization facilitates the development of computation and
storage resource management at the edge of wireless networks
from the perspectives of edge caching and edge computing. Fi-
nally, we review the literature of graph optimization applied in
NTNs, including satellite networks and aerial networks. TEG-
based algorithms are highly effective for contact planning
and resource allocation in satellite networks, while diverse
graph optimization approaches are used for UAV trajectory

planning and resource allocation in aerial networks. In the
future, advanced graph optimization methods will continue to
leverage their advantages in combinatorial optimization and
combine with emerging wireless communication technologies
to enhance overall performance in resource management.

IV. CONCLUSION

In this part, we have presented a comprehensive survey on
resource management via graph optimization. First, we have
started with the basics of graph theory to introduce graph
optimization problems and methods. Then, the literature on
graph optimization approaches for resource management has
been systematically reviewed according to different scenarios,
i.e., cellular networks, D2D communications, multi-hop net-
works, multi-antenna systems, edge caching and computing,
and NTNs. In Part II of this survey, we will focus on graph
learning for resource management in wireless networks and
then discuss current technical challenges and future research
directions in this field.
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