
1

Accelerating Federated Learning for Edge
Intelligence using Conjugated Central Acceleration

with Inexact Global Line Search
Lei Zhao, Member, IEEE, Lin Cai*, Fellow, IEEE, and Wu-Sheng Lu, Life Fellow, IEEE

Abstract—Driven by the increasing demand for real-time, low-
latency learning processes and the ever-growing emphasis on
data privacy, Federated Learning (FL) enabled edge intelligence
emerges as a promising decentralized learning paradigm at the
edge of the network, which empowers collaborative model train-
ing on edge agents, allowing them to make intelligent decisions
locally without relying solely on centralized cloud servers. To en-
hance the training efficiency of edge agents and alleviate commu-
nication burdens, we propose a novel technique called Conjugated
Central Acceleration with Inexact Line Search enabled Federated
Stochastic Variance Reduced Gradient (CLSFSVRG). Conjugate
Central Acceleration leverages conjugate gradient technique to
efficiently utilize the training information from multiple edge
agents by additional updating efforts in the central server, thereby
enhancing the convergence rates of the global model and reduce
the local training burden. Inexact Line Search optimizes the step
size for model updates, striking a balance between precision
and computational efficiency. Simulation results demonstrate
that the proposed scheme outperforms the state-of-the-art FL
algorithms, achieving superior performance in terms of higher
test accuracy and faster convergence speed. Remarkably, our
approach reduces communication costs by an impressive 82.4%,
while still achieving a test accuracy of 96.5%. By allowing a small
portion of edge agents to participate, CLSFSVRG exhibits higher
robustness without compromising the test accuracy. Moreover,
the fast convergence speed achieved with a limited number of
participating edge agents contributes to significant reductions in
edge computing cost during the training procedure.

Index Terms—Edge Intelligence, Federated Learning, Conju-
gate Central Acceleration, Global Inexact Line Search

I. INTRODUCTION

In real-time machine learning applications such as for
connected robots or intelligent vehicles, ensuring high reli-
ability and low latency decision making are crucial. However,
transporting large volumes of time-sensitive data to the cloud
for analysis and learning can be too costly and even impractical
due to long and unpredictable WAN delays [1] [2]. To address
this challenge, the paradigm of edge intelligence has emerged
by processing and analyzing data at the network edge. This
approach significantly enhances efficiency and flexibility in
real-time machine learning applications.

While edge intelligence offers a promising avenue for
enhancing real-time machine learning applications, there are
critical challenges inherent in its implementation. One major
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concern is that the limited local data may be insufficient
for achieving high-quality model training, which results in
the need for augmenting local training. Given users’ pri-
vacy concern, safeguarding sensitive data during distributed
processing becomes a paramount consideration. Furthermore,
the resource-intensive nature of model training poses energy
challenges for edge agents, demanding innovative solutions for
sustainable operation [3] [4] [5] [6].

Federated learning (FL) enabled edge intelligence provides
a desirable platform as it tackles the challenges facing large-
scale learning while ensuring data privacy [7] [8] [9] [10].
It enables real-time and privacy-preserving AI capabilities at
the edge of the network with applications in IoT, healthcare,
autonomous vehicles, and more.

There are many challenges for FL when dealing with edge
intelligence applications. These include keeping the communi-
cations between the edge agents and the central server (often
reside in cloud) to a low volume, and at the same time protect-
ing the security and privacy of the data at the local agents [11].
We need to address specific challenges inherent in federated
learning, such as communication overhead, convergence speed,
and robustness to heterogeneity and dynamic participation
among edge agents. Traditional FL algorithms often suffer
from slow convergence and instability, especially in dynamic
edge intelligence environments, where limited edge agents
participation leads to high variances in local model updates
and deteriorates the convergence in federated training [12].

Our main contributions lie in ensuring rapid convergence
and highly accurate learning across diverse local datasets with
a novel approach called Conjugate Central Acceleration with
Inexact Line Search integrating Federated Stochastic Variance
Reduced Gradient (CLSFSVRG). Based on the updating infor-
mation from multiple edge agents, the central server estimates
the curvature information of the global objective function and
applies conjugated directions to achieve more efficient and sta-
ble updates, improving the convergence rate and reducing the
computational burden on edge agents. Furthermore, we design
the inexact line search method for the central model updating
to enhance the robustness of our algorithm, particularly in
scenarios with noisy updates and varying data distributions,
by dynamically adjusting the step size to maintain stability.
Moreover, integration with the global anchor gradient in local
updates enhances the stability and speed of convergence,
particularly beneficial for heterogeneous local datasets. The
proposed CLSFSVRG method achieves higher accuracy in
fewer training rounds, even with a limited number of partici-
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pating edge agents in each round, resulting in greater flexibility
and robustness and substantially lower communication and
edge computing costs. Simulation results demonstrate that
CLSFSVRG outperforms state-of-the-art methods, achieving
98% test accuracy with 50% fewer iterations.

The rest of this paper is organized as follows. The related
works are summarized in Section II. Section III formulates
the federated objective among edge agents and provides basic
properties of the local and global objective functions. The
proposed CLSFSVRG is explained in Section IV. Simulation
results are presented in Section V followed by the conclusions
and further research issues in Section VI.

II. RELATED WORK

FL-enabled edge intelligence is particularly well-suited for
applications where data privacy, low latency, and real-time
decision-making are critical, such as in IoT, healthcare, au-
tonomous vehicles, and intelligent manufacturing [13] [14].
By combining the benefits of FL and edge intelligence,
this approach empowers edge devices to become intelligent,
adaptive, and privacy-preserving entities, ushering in a new
era of decentralized AI and data processing [15]. Instead of
aggregating data to a central server for training, FL enables
the training of models directly on edge devices [16]. This
decentralized approach ensures data privacy and reduces the
need for data transmission, as raw data remains on the edge
devices [17].

There are many challenges for the cooperation among
multiple edge agents by FL. First, the communication among
the edge agents and the cloud server is very heavy to exchange
information in each training iteration. To reduce the commu-
nication cost, edge agents can perform multiple local model
updates before communicating with the cloud server [18] [10].
Second, statistical heterogeneity of the local data sets is com-
mon as each edge agent can differ from its peers in multiple
aspects [7] [19]. The FL with proximal term, namely FedProx,
can improve the performance of FL with data heterogeneity
by adding a proximal term to local objective functions [19].
SCAFFOLD [20] uses control variates to correct local up-
dates, mitigating client drift and aligning local updates with
the global objective in non-i.i.d. settings. MimeSVRG [21]
combines the SVRG framework with periodic averaging and
momentum techniques to enhance stability and convergence
rates in environments with high data variability. LoSAC [22]
employs adaptive control variates and sparse communication to
simultaneously reduce variance and communication overhead.
However, these FL solutions still have challenges to satisfy the
stringent requirements of edge intelligence in terms of robust
training performance with dynamic edge agents participation,
restricted and heterogeneous local resources and low commu-
nication cost and fast convergence speed.

Adaptive learning rate and step length are crucial com-
ponents in enhancing federated learning. Work [23] adjusts
learning rates to accommodate the heterogeneous local data
distributions. FedUR [24] leverages adaptive centralized learn-
ing optimizers to improve convergence rates. SAFA [25] is
a semiasynchronous protocol that allows a subset of edge

TABLE I
COMPARISON OF FEDERATED LEARNING ALGORITHMS

Algorithm Conver. Comm. Var. Adapt. to
Speed Efficiency Reduc. Limit Part.

FedAvg [10] Moderate Low No Low
FedProx [19] Moderate Medium No Medium
SCAFFOLD [20] Fast High Yes Medium
MimeSVRG [21] Fast High Yes Medium
LoSAC [22] Fast High Yes High
CLSFSVRG Very Fast High Yes High

agents to send updates to the server asynchronously to reduce
waiting times. HiFlash [26] employs a hierarchical federated
learning framework with adaptive staleness control. In addition
to asynchronous updates, agent selection strategies can fur-
ther enhance communication efficiency [27] [28], considering
channel conditions, computational capabilities, and data qual-
ity for resource-constrained edge computing environments.

Different from the above, we incorporate a novel variance
reduction technique by scaling the auxiliary local gradient
based on the number of non-zero features of the samples.
This scaling ensures that the updates consider the sparsity
patterns in the local datasets, leading to more balanced and
accurate global model updates. Our method includes a conju-
gate gradient-based global model updating mechanism, which
aims to design a finite set of conjugate updating directions.
This technique boosts the global model updating process by
ensuring Hessian based orthogonality in the search directions,
thereby enhancing convergence efficiency. This aspect is a
significant departure from the adaptive optimizers discussed
in the referenced works. We employ an inexact line search
strategy to fine-tune the global learning rate during model ag-
gregation. This approach allows for more flexible and adaptive
adjustments compared to the fixed or predefined schedules
typically used in traditional adaptive optimization methods.
By integrating these novel components, our approach not only
adapts the learning rates and step lengths but also ensures
a more robust and efficient federated learning process. The
combination of variance reduction through gradient scaling,
conjugate gradient-based updating, and inexact line search
positions our method as a significant advancement in the field
of federated optimization.

III. SYSTEM MODEL AND FEDERATED OBJECTIVE

As illustrated in Fig. 1, massive data are generated from
numerous smart sensors. The sensing data will be delivered to
edge agents which have stronger processing units and larger
memories and storage space. The edge agents can guarantee
low-latency local services for data analysis supporting intel-
ligent applications in various fields, including smart cities,
industrial IoT, autonomous vehicles, healthcare, and more.
It enables the development of intelligent systems that can
process and respond to data in real-time, bringing increased
efficiency, responsiveness, and autonomy to a wide range of
applications [4].

We use E to denote the set of all edge agents and the
number of edge agents is denoted by |E|. Each edge agent
collects the information sensed by the devices in vicinity
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Fig. 1. Federated Learning enabled Edge Intelligence Architecture.

which forms the local data set. Edge agent i possesses ni local
training samples and we use Pi to denote the local data set
where i = 1, 2, · · · , |E| and Pi∩Pj = ∅ whenever i ̸= j. The
entire training data samples can be represented by {xk, yk}nk=1

where n =
∑|E|

i=1 ni. The local training objective of edge agent
i can be represented by

fi(w) =
1

ni

∑
k∈Pi

Fk(w) i = 1, · · · , |E|, (1)

where {Fk(w)}k∈Pi denotes the empirical loss over the local
data set {xk, yk}Pi

k=1. The federated optimization objective
among the edge agents in E can be formulated as

minimize
w∈Rq

f(w) =

|E|∑
i=1

ni
n
fi(w). (2)

IV. CONJUGATE CENTRAL ACCELERATION WITH INEXACT
LINE SEARCH INTEGRATING FEDERATED STOCHASTIC

VARIANCE REDUCED GRADIENT

In this section, we design the Conjugate Central Accelera-
tion with Inexact Line Search integrating Federated Stochastic
Variance Reduced Gradient (CLSFSVRG). The conjugate fed-
erated updating selects the successive global model updating
directions as a conjugate version of the successive anchor gra-
dients obtained in the federated optimization progresses. The
global model updating directions are determined sequentially
at each federation round. In each round, the central server
evaluates the current negative anchor gradient and adds to
it a linear combination of the previous conjugate directions
to obtain a new conjugate direction along which to update
the current global model. The learning rate in the central
acceleration is obtained by inexact line search.

A. Global Anchor and Local Auxiliary Gradients

Due to the dynamic participation of edge agents, at the
beginning of the r-th round, only a subset of edge agents
Sr ⊆ [E] with size |Sr| = S contributes to the global model

TABLE II
DESCRIPTION OF NOTATIONS

NOTATION DESCRIPTION

f(w) The global objective function
fi(w) The i-th local objective function
gi(ŵ

r
i,k−1) The local gradient from individual training sample

or a batch of the training samples
wr−1 The current global model in the r-th round
ŵr−1 The global model after central acceleration

in the r-th round
ŵr

i,k The i-th local model in the r-th global round
and the k-th local iteration

E The set of total edge agents
Sr The selected edge agent subset in the r-th round
αi
l The local learning rate of edge agent i

dr
i,k The local model updating direction of edge agent i

in r-th round and k-th local iteration
ni The number of local samples in edge agent i
nr The total number of samples to calculate the anchor

gradient in the r-th round
g(wr−1) The anchor gradient in the r-th round
nj The number of samples with nonzero j-th feature
nj
i The number of samples in the local data set of

edge agent i with nonzero j-th feature
q The number of model parameters
ηr The step size of r-th conjugate federated updating
dr The conjugated directions in the r-th training round

update at the central server. Edge agent i randomly selects
a batch of training samples to calculate gi(ŵ

r
i,k−1) in each

local updating, where we define ŵr
i,k as the i-th local model

in the r-th global round and the k-th local iteration. The local
gradient gi(ŵr

i,k−1) is an unbiased estimation of ▽▽▽fi(ŵr
i,k−1).

According to Jensen’s inequality, we obtain the upper bound
of the stochastic local gradient as

E[||gi(ŵr
i,k−1)||2] ≤ ||▽▽▽fi(ŵr

i,k−1)||2. (3)

We use w∗
i to denote the optimal local model for client i

where ||▽▽▽fi(w∗
i )||2 = 0. Then, we obtain the upper bound of

the variance of the local gradient as

E[||gi(ŵr
i,k−1)||2] ≤ ||▽▽▽fi(ŵr

i,k−1)− ▽▽▽fi(w
∗
i )||2. (4)

According to (38) in the Appendix, we have

||▽▽▽fi(ŵr
i,k−1)− ▽▽▽fi(w

∗)||2 ≤ L2
i ||ŵr

i,k−1 −w∗
i ||2, (5)

where Li refers to the upper bound of the eigenvalues of the
Hessian of the i-th local objective function, used to quantify
the local curvature information.

However, in practical FL with heterogeneous local data sets,
all local optimization procedures will converge to different
solutions. To ease the biased local gradients and make efficient
progress in the local training procedure, we first evaluate
the global anchor gradient. The current global model wr−1

is distributed to the current participated edge agents in Sr.
The available edge agents in Sr evaluate their full local
gradients and transmit {▽▽▽fi(wr−1)}i∈Sr to the central server
to aggregate the current anchor gradient as

g(wr−1) =
∑
i∈Sr

ni
nr

▽▽▽fi(w
r−1), (6)
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where nr denotes the number of samples from all edge agents
in subset Sr. Given the dynamic edge agents participation,
the anchor gradient g(wr−1) obtained by an entire data pass
of all the accessible local data sets is an unbiased estimation
of the full global gradient ▽▽▽f(wr−1), i.e., E[g(wr−1)] =
▽▽▽f(wr−1).

The current anchor gradient g(wr−1) distributed to all the
edge agents in subset Sr can be applied to force the local
gradient to be unbiased for the local training procedure, where
the stochastic local gradient gi(ŵ

r
i,k−1) is replaced by the

auxiliary local gradient as

gi(ŵ
r
i,k−1)− gi(w

r−1) + g(wr−1), (7)

where by using gi(w
r−1), it adjusts the local gradient

gi(ŵ
r
i,k−1) to align more closely with the global gradient

direction. This ensures that the updates made during local
training are consistent with the overall objective of minimizing
the global loss function. Based on the auxiliary local gradient,
the stochastic update in edge agent i yields an unbiased
estimate of the global gradient ▽▽▽f(w) as

▽▽▽f(ŵr−1) ≈ E[gi(ŵ
r
i,k−1)− gi(w

r−1) + E[g(wr−1)]].
(8)

The auxiliary local gradient (7) is crafted to address the
challenge of high variance in local gradient estimates due
to non-i.i.d data distributions across multiple edge agents.
By incorporating both the local gradient difference and the
current global gradient, the auxiliary local gradient ensures
a balanced update that mitigates local variance and aligns
with global optimization objectives. The primary advantage
of defining the auxiliary local gradient in this manner is its
ability to significantly reduce the variance of local gradient
estimates. By combining the local gradient difference with
the global anchor gradient, our method ensures that updates
from different edge agents are more consistent and less noisy,
which leads to more stable and faster convergence of the global
model.

Since E[g(wr−1)] is constant during the local updating, we
obtain

Var(gi(ŵr
i,k−1)− gi(w

r−1) + E[g(wr−1)])

= Var(gi(ŵr
i,k−1)− gi(w

r−1)),
(9)

which leads to
Var(▽▽▽f(ŵr−1)) ≈ Var(gi(ŵr

i,k−1)− gi(w
r−1))

≤ E[||gi(ŵr
i,k−1)− gi(w

r−1)||2],
(10)

where ||E[gi(ŵ
r
i,k−1) − gi(w

r−1)]||2 > 0. According to
Jensen’s inequality, we obtain

E[||gi(ŵr
i,k−1)− gi(w

r−1)||2]
≤ ||E[gi(ŵ

r
i,k−1)]− E[gi(w

r−1)]||2.
(11)

Since the stochastic local gradients are unbiased to the full
local gradients, we obtain

E[gi(ŵ
r
i,k−1)− gi(w

r−1)] = ▽▽▽fi(ŵ
r
i,k−1)− ▽▽▽fi(w

r−1),
(12)

which leads to
Var(▽▽▽f(ŵr−1)) ≤ ||▽▽▽fi(ŵr

i,k−1)− ▽▽▽fi(w
r−1)||2

≤ L2
i ||ŵr

i,k−1 −wr−1||2.
(13)

Over a sequence of the global model updating, the variance
would go to zero over time since the global model estimation
becomes closer to the converged point.

B. Local Updating with Variance Reduction

The data available locally may exhibit a specific pattern.
The auxiliary local gradient and the aggregation step need to
be carefully tuned due to the large variance among local data
sets. To enforce the auxiliary local gradient to be of the correct
magnitude, it is scaled carefully by the number of non-zero
features of the samples. This scaling is crucial because the
local data sets often have varying sparsity levels, and features
that appear less frequently need to be weighted appropriately
to ensure balanced updates. By scaling the gradients based on
the number of non-zero features, we account for the differ-
ences in feature representation across edge agents, leading to
more accurate and stable global model updates.

The number of samples in the local data set of edge agent
i with nonzero j-th feature is denoted by nji . After going
through their local data sets, edge agents send the number of
local nonzero j-th feature {nji}i∈E to the central server, the
central server can obtain the number of samples with nonzero
j-th feature over all local data sets as

nj =
∑
i∈E

nji . (14)

The variance between the gradient w.r.t. the current local
model ŵr

i,k−1 and global model ŵr−1 is scaled by diagonal
matrix Λi as

Λi[gi(ŵ
r
i,k−1)− gi(ŵ

r−1)], (15)

where

Λi = diag

{nj · ni
n · nji

}
j=1,··· ,q

 . (16)

The scaled updating direction in the k-th local step of edge
agent i can be obtained as

dr
i,k = −(Λi[gi(ŵ

r
i,k−1)− gi(w

r−1)] + g(wr−1)), (17)

and the local model update of the edge agent i in the k-th
local step can be formulated as

ŵr
i,k = ŵr

i,k−1 + αi
ld

r
i,k. (18)

The local training procedure guided by these unbiased gradi-
ents can be formulated as

ŵr
i,k = ŵr−1 +

K∑
k=1

αi
ld

r
i,k. (19)

C. Conjugated Global Model Updating with Inexact Line
Search

1) Global Model Updating: The idea behind the conjugate
federated central updating is to design a finite set of conjugate
updating directions {di}r−1

i=0 in the central server to boost the
global model updating where dT

i ▽▽▽
2f(w)dj = 0 for all i ̸= j

and d0 = −g(w0). After the local training procedure, the
edge agents send {ŵr

i,k}i∈Sr to the central server. Then, the
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drift from the current global model is scaled based on whether
the specific feature appears in one local data set or not. The
intuitive idea is that if a feature appears less frequently in
local data sets, we want to enhance the update amount to
the gradient related to this feature more. The number of edge
agents that contain data samples with nonzero j-th feature is
obtained by

ωj =
∑
i∈E

1nj
i ̸=0. (20)

The scaling diagonal matrix for model aggregation can be
defined as

A = diag

({
|S|
ωj

}
j=1,··· ,q

)
. (21)

The global model update with global learning rate αg as

wr = ŵr−1 +
αg

S
A
∑
i∈Sr

ni
nr

K∑
k=1

αi
ld

r
i,k. (22)

After the global model wr is aggregated, the central server
randomly selects the next participation edge agent set Sr+1

and distribute wr to these edge agents to evaluate the anchor
gradient

g(wr) =
∑

i∈Sr+1

ni
nr+1

▽▽▽fi(w
r), (23)

Then, we design

βr =
g(wr)Tg(wr)

g(wr−1)Tg(wr−1)
. (24)

The conjugate direction in the federation is designed as

dr = −g(wr) + βrdr−1. (25)

2) Global Inexact Line Search: We introduce the global
inexact line search method to explore the inexact step length
along the central acceleration updating direction, which not
only is computing efficient but also can achieve better perfor-
mance when the condition number of ▽▽▽2f(w) is large. The
central acceleration transformed to the problem of determining
the step length parameter ηr after the search direction dr

is determined. In the central acceleration, the target is to
update the current global model wr to the accelerated global
model ŵr along the search direction to minimize the objective
function value f(w).

Our design is based on the Taylor expansion of the
global objective function where we design a perfect sym-
metric quadratic function associated with the accelerated
global model ŵr, i.e., the condition number of this designed
quadratic function’s Hessian is 1. We use ηr to control the
curvature in every dimension, which is designed as

ψηr (ŵ
r) =

1

2ηr
∥ŵr −wr∥2

+ g(wr)T (ŵr −wr) + f(wr).

(26)

Because the condition number of ψηr (ŵ
r) is 1, the contour of

ψηr
(ŵr) is perfect circles, and we can easily find the optimal

solution ŵr to ψηr
(ŵr) by

▽ψηr (ŵ
r) =

1

ηr
(ŵr −wr) + g(wr) = 0. (27)

This function parameterized by ηr gives us a point ŵr which
is the optimal solution for ψηr (ŵ

r), and this point is paired
with the parameter ηr as

ψηr
(ŵr) = −ηr

2
g(wr)Tg(wr) + f(wr). (28)

We compare the optimal value of the designed quadratic
function ψηr

(ŵr) and the objective function f(w) at ŵr by
tuning ηr to increase the curvature of ψηr

(ŵr) to a point that
the lowest value of ψηr (ŵ

r) is above f(ŵr).
Instead of communicating with all edge agents to obtain

the global objective function and compare f(ŵr) ≥ ψηr
(ŵr),

we build a validation data set in the central server which can
be obtained from held-out edge agents [29]. For the inexact
line search in the central server, we define a dampening factor
γ ∈ (0, 1) and initialize η̂ = 1 at the beginning of each round.
The central server update η̂ = γη̂ and set ηr = η̂ until the
condition

ηr
2
g(wr)Tg(wr) ≥ fv(wr)− fv(ŵr). (29)

is satisfied, where fv(w) is the global validation function to
replace f(w) in order to make fast hyper-parameter tuning in
the central acceleration without causing severe communication
burden. After (29) is satisfied, the global model wr is updated
to ŵr by

ŵr = wr + ηrdr, (30)

which is shared to the selected edge agents as initialized local
models {ŵr+1

i,0 = ŵr}i∈Sr+1 for the next round training. This
method is suitable to the situation where there are many local
minimums and maximums for the global objective function.
The details of CLSFSVRG is illustrated in Algorithm 1.

Algorithm 1 Conjugated central acceleration with inexact Line
Search enabled FSVRG (CLSFSVRG).

1: Initial global model w0, β0 = 0 and η0 = 1
2: for r ← 1 to T do
3: Randomly select a subset Sr out of E
4: Compute and transmit {▽▽▽fi(wr−1)}i∈Sr to the central

server
5: g(wr−1) =

∑
i∈Sr

ni

nr▽▽▽fi(wr−1)
6: ρ = ηr−1

2 g(wr−1)Tg(wr−1)
7: ŵr−1 = wr−1 + ηr−1dr−1

8: while ρ ≥ fv(wr−1)− fv(ŵr−1) do
9: ηr−1 = γηr−1

10: ŵr−1 = wr−1 + ηr−1dr−1

11: end while
12: Distribute g(wr−1) and ŵr−1 to edge agents in Sr

13: for i ∈ Sr in parallel do
14: △ŵr

i ← Procedure 1 (g(wr−1), ŵr−1, i)
15: end for
16: wr = ŵr−1 + ηr−1

S A
∑

i∈Sr
ni

nr△ŵr
i

17: Randomly select a subset Sr+1 out of E
18: g(wr) =

∑
i∈Sr+1

ni

nr+1▽▽▽fi(wr)

19: βr = g(wr)T g(wr)
g(wr−1)T g(wr−1)

20: dr = −g(wr) + βrdr−1

21: end for
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Procedure 1 Local-Updating (g(wr−1), ŵr−1, i)
1: ŵr

i,0 = ŵr−1

2: Normalize the local learning rate αi
l =

αl

ni

3: for k ← 0 to K do
4: Compute gi(ŵ

r
i,k−1) and gi(w

r−1)
5: dr

i,k = −(Λi[gi(ŵ
r
i,k−1)− gi(w

r−1)] + g(wr−1))
6: ŵr

i,k = ŵr
i,k−1 + αi

ld
r
i,k

7: end for
8: Return △ŵr

i = ŵr
i,k − ŵr−1

CLSFSVRG offers several key advantages to address chal-
lenges in FL. Firstly, it employs conjugate federated cen-
tral acceleration, which enables more efficient exploration of
the optimization landscape by incorporating conjugate search
directions globally. This approach accelerates convergence
rates and enhances optimization performance. Additionally, the
adoption of inexact line search within CLSFSVRG facilitates
adaptive adjustment of step lengths along the central accel-
eration updating direction. This mechanism allows the algo-
rithm to dynamically tune step lengths, improving its ability
to navigate complex optimization surfaces and converge to
optimal solutions more effectively. Furthermore, CLSFSVRG
mitigates the impact of noisy gradients and reduces overall
variance during model updates through the use of anchor
gradients in the central server and variance reduction in edge
agents. Moreover, the algorithm’s robustness to heterogeneity
is another key factor contributing to its superior performance.
CLSFSVRG accommodates variations in local data distribu-
tions and computational resources across edge agents through
techniques such as global anchor gradient evaluation and
scaled local updates.

V. EXPERIMENTS

In our experiments, we first employed the MNIST dataset,
featuring 10 classification categories, to assess the efficacy of
our proposed algorithm. Subsequently, we applied the CIFAR-
10 dataset, providing supplementary validation for the per-
formance of our proposed method. To generate local training
datasets for 400 edge agents, we introduce a non-i.i.d distribu-
tion to simulate heterogeneity. The non-i.i.d local datasets are
constructed using the symmetric Dirichlet distribution with a
parameter ξ = 0.5, where a smaller ξ intensifies the degree of
heterogeneity in the data distribution [30].

We conduct a comparative analysis between our pro-
posed CLSFSVRG algorithm and FedAvg [10], FedProx [19],
SCAFFOLD [20], MimeSVRG [21], and LoSAC [22]. Fur-
thermore, we introduce Conjugated FSVRG (CFSVRG) as a
baseline, exclusively applying conjugated acceleration in the
central server. This inclusion aims to highlight the advance-
ments achieved by incorporating inexact line search in the cen-
tral acceleration. These algorithms represent a diverse range of
approaches in federated learning, allowing for a comprehen-
sive evaluation of our proposed method. The analysis focuses
on accuracy, communication overhead, convergence speed, and
robustness to heterogeneity in datasets of edge agents. Our
proposed method exhibits superior performance compared to

the baseline algorithms, achieving higher accuracy with lower
communication overhead and faster convergence.

A. Convergence Performance

We first investigate the performance of the proposed CLS-
FSVRG with varying participation ratios of edge agents.
As shown in Fig. 2, we compare it against six baseline
algorithms: FedAvg [10], FedProx [19], SCAFFOLD [20],
MimeSVRG [21], LoSAC [22], and CFSVRG. The partici-
pation ratios range from 20% to 5% out of 400 total edge
agents, with the local learning rate set to αl = 0.3.

The results demonstrate that CLSFSVRG achieves higher
test accuracy significantly faster than the other baselines.
Specifically, CLSFSVRG reaches a test accuracy of 98%
within 48, 50, 59, and 65 rounds for participation ratios of
20%, 15%, 10%, and 5%, respectively. In contrast, none of
the other baselines achieve the same level of test accuracy
even after 100 rounds. Furthermore, CLSFSVRG outperforms
CFSVRG, which lacks the inexact linear search in the central
acceleration. The benefits of the conjugated central accelera-
tion in CLSFSVRG become more obvious as the participation
ratio decreases. As shown in Fig. 2(c) and Fig. 2(d), other
baseline FL algorithms exhibit a clear decline in test accuracy
performance with lower participation ratios. Both CLSFSVRG
and CFSVRG maintain comparable performance to scenarios
with a 20% participation ratio, with CLSFSVRG achieving
higher effectiveness thanks to its inexact line search in the
central acceleration. CLSFSVRG surpasses all algorithms and
achieves the highest test accuracy in fewer than 10 federated
training rounds.

Moreover, CLSFSVRG exhibits higher stability across dif-
ferent participation ratios compared to other approaches. This
resilience is particularly evident when fewer edge agents
participate, as shown in Fig. 2(d) with only 5% participa-
tion. In such scenarios, the performance of baseline methods
significantly deteriorates, while CLSFSVRG remains robust.
For instance, with 5% edge agent participation, MimeSVRG
achieves a test accuracy of only 95.93% at 100 rounds,
CFSVRG reaches 96.02% at 40 rounds, and CLSFSVRG
achieves 96.14% within just 16 training rounds. In comparison,
LoSAC achieves 96.13% accuracy in 61 rounds. These results
clearly demonstrate the faster convergence and improved test
accuracy achieved by CLSFSVRG, leading to significant sav-
ings in overall edge resources and communication costs.

The advantage of our proposed algorithm is clearly demon-
strated by its performance in reducing cross-entropy loss
during the training process. The results in Fig. 3 illustrate the
cross-entropy loss achieved by CLSFSVRG and the baseline
algorithms as the participation ratio of edge agents decreases
from 20% to 5% out of 400 agents. By analyzing the cross-
entropy loss, we can evaluate the convergence speed w.r.t the
training procedure. Although LoSAC converges faster than the
other baselines, both CLSFSVRG and CFSVRG outperform
the baselines by achieving lower cross-entropy loss across all
participation ratios. This is attributed to the conjugated central
acceleration employed by CLSFSVRG and CFSVRG. As the
participation ratio of edge agents decreases, the advantage
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Fig. 2. Test accuracy comparison with decreasing ratio of participated edge
agents.
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Fig. 3. Training loss comparison with decreasing ratio of participated edge
agents.

of conjugated central acceleration in reducing cross-entropy
loss becomes more evident, as shown in Fig. 3. Moreover,
CLSFSVRG’s convergence speed approaches that of LoSAC
when the number of participating edge agents is very limited,
as depicted in Fig. 3(d). This robustness of CLSFSVRG is
due to the inexact line search and global conjugated direction
updating used in the central acceleration. Consequently, CLS-
FSVRG consistently reduces cross-entropy loss across varying
participation ratios of edge agents.

B. Impact of the local training settings

Next, we focus on the performance of the proposed CLS-
FSVRG under different local training settings. As shown in
Fig. 4, we compare the test performance of CLSFSVRG
with local learning rates set to {0.1, 0.5, 0.8, 1.0}, named
as CLSFSVRG-0.1, CLSFSVRG-0.5, CLSFSVRG-0.8, and
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Fig. 4. Test accuracy comparison with different local learning rates.

CLSFSVRG-1, respectively, where participation ratios of edge
agents set to {30%, 20%, 15%, 10%}.

The simulation results in Fig. 4(a) show that with 30% of
edge agents participating in each federated training round, a
local learning rate of 0.5 yields better performance faster than
other settings. Specifically, local learning rate of 0.5 achieves
98% test accuracy after 40 rounds, while local learning rate
of 0.1 reaches the same accuracy level around 60 rounds. In
contrast, learning rates of 0.8 and 1.0 fail to achieve 98% test
accuracy even after 100 rounds. As shown in Fig. 4(b), the
performance with local learning rate of 0.5 slightly deteriorates
when the participation of edge agents decreases to 20%.
However, even at this participation level, it converges faster
within the first 50 rounds. After 50 rounds, the performance
with local learning rate of 0.5 becomes comparable to that
with local learning rate of 0.1, with both achieving faster
convergence and higher test accuracy compared to local learn-
ing rates of 0.8 and 1.0. When the edge agent participation
ratio further decreases to 15%, as shown in Fig. 4(c), the
performance across all local learning settings becomes more
variable. Nonetheless, the best results are still achieved with
learning rates of 0.5 and 0.1. As depicted in Fig. 4(d), both 0.1
and 0.5 local learning rates surpass the 0.8 setting within 80
federated training rounds. After 80 rounds, the performance
with local learning rate of 0.8 aligns more closely with that
of 0.1 and 0.5, indicating that a relatively larger local learning
rate can still lead to promising results. However, using a rate
of 1.0 significantly diverges from the others, illustrating that
an excessively large local learning rate can negatively impact
performance. While a larger local learning rate may yield
faster initial progress, it also introduces greater oscillations
during updates, adversely affecting the final converged results.

The comparison of training cross-entropy loss across dif-
ferent local training settings is shown in Fig. 5. Smaller
learning rates reduce oscillation during updates but suffer
from slower convergence. However, with the global inexact
line search scheme, even smaller learning rates can achieve
faster convergence and higher test accuracy. When edge agent
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Fig. 5. Training loss comparison with different local learning rates.

participation ratio is reduced from 30% to 10%, as shown in
Fig. 5, the initial performance gap between local learning rates
of 1.0 and 0.8 compared to 0.1 becomes more pronounced.
Initially, the higher local learning rates show faster progress,
but they fail to converge to a low loss and lose their advantage
after a few rounds due to oscillation caused by the large step
sizes. In contrast, local learning rates of 0.1 and 0.5 exhibit
smoother performance and their advantages become evident
early in the training process.

We extend our investigation to the CIFAR-10 dataset, which
consists of 50000 training images and 10000 test images, to
further validate the effectiveness of our proposed method. The
performance comparisons, illustrated in Fig. 6, highlight the
impact of decreasing participation ratios of edge agents. Our
proposed CLSFSVRG consistently outperforms the baselines
in both convergence speed and test accuracy.

The robustness of CLSFSVRG is particularly evident when
compared to the baselines, whose performance degrades sig-
nificantly as the participation ratio decreases. Additionally, the
benefits of the inexact line search in central acceleration are
highlighted through comparisons between CLSFSVRG and
CFSVRG. This analysis reveals not only faster convergence
but also superior performance in converged test accuracy,
especially in scenarios with limited edge agent participation
during training. Even as the variance in performance across
all methods increases at a participation ratio as low as 5%,
CLSFSVRG distinguishes itself by achieving significantly
greater stability than the others. This underscores the reliability
of CLSFSVRG, particularly in federated learning scenarios
with highly dynamic participation.

C. Computation and Communication Evaluation

We then focus on two key aspects of performance evalua-
tion: communication and computation costs. In our evaluation,
we focus on comparing our proposed method with LoSAC,
as LoSAC has demonstrated clear advantages over the other
baselines. Figs. 7 and 8 compare the communication and
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Fig. 6. Test accuracy comparison with decreasing ratio of participated edge
agents from CIFAR-10.

computation cost required to achieve test accuracy of 95.5%,
96%, and 96.5%, respectively. We set the scenario with only
5% of edge agents participating in federated training. Fig. 7
shows the quantitative assessment of the data volume that
needs to be transmitted to achieve the specified test accuracy.
The results in Figs. 7 and 8 demonstrate that our design
substantially reduces the overall communication burden, as
well as the overall local computing workload to achieve
the same test accuracy at the expense of slightly increased
computation cost at the central server.

Our approach reduces communication cost through two
main factors. First, the proposed central acceleration approach
minimizes the number of required rounds. Second, within
each round, the ratio of participating edge agents can be
reduced. To quantify the communication cost, we define the
unit communication cost as the number of values included
in the transmitted gradients and local model drifts. In our
experiments, each gradient and local model drift consists of
2.25 KB of data. The total computational workload for a given
FL task is evaluated by 5% edge agents participation to achieve
the required test accuracy levels.

The results in Fig. 8 further illustrate the advantages of
our proposed CLSFSVRG in terms of the overall computation
time measured with the experimental platform features an 8-
core CPU, a 14-core GPU, and 16GB of RAM. The results
demonstrate by slightly increasing the computation time of
the central server, we can substantially reduce the local agent
computation time, and the overall computation cost can be
reduced by up to 65%.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we proposed an accelerated FL method with
global updating based on conjugate directions and inexact line
search, named CLSFSVRG. Our approach not only demon-
strates a faster convergence rate but also achieves higher test
accuracy compared to the state-of-the-art. Simulation results
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indicate that our global conjugate direction updating and
inexact line search scheme significantly accelerate federated
optimization convergence and are more robust with limited
edge agent participation, offering a substantial advantage in
dynamic FL environments. In our future work, we will evaluate
the impact of different edge agent selection strategies on com-
munication costs, model performance, and resource utilization
in various network conditions. While our proposed CLS-
FSVRG method primarily focuses on synchronous updates,
it is essential to discuss asynchronous strategies, which can
mitigate the straggler effect and enable more efficient use of
resources. However, asynchronous training introduces several
challenges, such as how to ensure consistent global model
states and stable convergence, handling client failures and
ensuring fault tolerance, which beckon further investigation.

APPENDIX

A. Properties of Objective Functions

We define an auxiliary variable zr
k as

zr
k = ŵr

i,k−1 + τ(ŵr
i,k − ŵr

i,k−1), (31)

where 0 ≤ τ ≤ 1, and notice that∫ 1

0

dfi(z
r
k) =

∫ 1

0

▽▽▽fi(z
r
k)

T (ŵr
i,k − ŵr

i,k−1)dτ. (32)

Since
fi(ŵ

r
i,k)− fi(ŵr

i,k−1)

=

∫ 1

0

fi(ŵ
r
i,k−1 + τ(ŵr

i,k − ŵr
i,k−1))dτ.

(33)

combining (33) and (32), we obtain

fi(ŵ
r
i,k) = fi(ŵ

r
i,k−1) + ▽▽▽fi(ŵ

r
i,k−1)

T (ŵr
i,k − ŵr

i,k−1)

+

∫ 1

0

(▽▽▽fi(z
r
k)− ▽▽▽fi(ŵ

r
i,k−1))

T (ŵr
i,k − ŵr

i,k−1)dτ.

(34)

Since∣∣∣∣∫ 1

0

(▽▽▽fi(z
r
k)− ▽▽▽fi(ŵ

r
i,k−1))

T (ŵr
i,k − ŵr

i,k−1)dτ

∣∣∣∣
≤
∫ 1

0

|(▽▽▽fi(zr
k)− ▽▽▽fi(ŵ

r
i,k−1))

T (ŵr
i,k − ŵr

i,k−1)|dτ,
(35)

and

|(▽▽▽fi(zr
k)− ▽▽▽fi(ŵ

r
i,k−1))

T (ŵr
i,k − ŵr

i,k−1)|
≤ ||(▽▽▽fi(zr

k)− ▽▽▽fi(ŵ
r
i,k−1))||2 · ||(ŵr

i,k − ŵr
i,k−1)||2,

(36)
and by the Lipschitz continuous gradient assumption, we have

||(▽▽▽fi(zr
k)− ▽▽▽fi(ŵ

r
i,k−1))||2 ≤ Li||zr

k − ŵr
i,k−1||2

= Li||τ(ŵr
i,k − ŵr

i,k−1)||2.
(37)

Combining (34)-(37), we can upper bound fi(ŵr
i,k) by

fi(ŵ
r
i,k) ≤ fi(ŵr

i,k−1) + ▽▽▽fi(ŵ
r
i,k−1)

T (ŵr
i,k − ŵr

i,k−1)

+
Li

2
||ŵr

i,k − ŵr
i,k−1||2.

(38)
Similarly, we can lower bound fi(ŵr

i,k) by

fi(ŵ
r
i,k) ≥ fi(ŵr

i,k−1) + ▽▽▽fi(ŵ
r
i,k−1)

T (ŵr
i,k − ŵr

i,k−1)

+
µi

2
||ŵr

i,k − ŵr
i,k−1||2,

(39)
where µi refers to the lower bound of the eigenvalues of the
Hessian of the local objective fi.

The properties of the federated optimization objective func-
tion depends on the properties of the local objective functions
of each edge agent. We assume all local objective functions
{fi(w)}i=1,··· ,|E| satisfy

fi(αw
r + (1− α)wr−1) ≤ αfi(wr) + (1− α)fi(wr−1),

(40)
for i = 1, · · · , |E|, where 0 < α < 1 and wr denotes the
global model after the r-th round. Then, we can obtain

f(αwr + (1−α)wr−1) =

|E|∑
i=1

ni

n
fi(αw

r + (1− α)wr−1)

≤ α
|E|∑
i=1

ni
n
fi(w

r) + (1− α)
|E|∑
i=1

ni
n
fi(w

r−1)

= αf(wr) + (1− α)f(wr−1),
(41)

which means the federated optimization objective function also
satisfies the same property.

We remark that an upper bound of the eigenvalues of the
Hessian ▽▽▽2f is given by

L =

|E|∑
i=1

ni

n
Li. (42)

Based on Eq. (39), the lower bound of the eigenvalues of ▽▽▽2f
is obtained by

µ =

|E|∑
i=1

ni

n
µi. (43)
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Consequently, the global objective function is upper bounded
by

f(ŵr) ≤
|E|∑
i=1

ni
n
fi(ŵ

r
i,k−1) + ▽▽▽fi(ŵ

r
i,k−1)

T (ŵr
i,k − ŵr

i,k−1)

+
L

2
||ŵr − ŵr−1||2,

(44)
and is lower bounded by

f(ŵr) ≥
|E|∑
i=1

ni
n
fi(ŵ

r
i,k−1) + ▽▽▽fi(ŵ

r
i,k−1)

T (ŵr
i,k − ŵr

i,k−1)

+
µ

2
||ŵr − ŵr−1||2.

(45)

B. Convergence of Local Updating

The target to analyze the local convergence is to prove that
in the local training procedure of the i-th edge agent, we can
upper bound the distance from the current local model ŵr

i,k

and the optimal global model w∗ as

E[||ŵr
i,k −w∗

i ||2|ŵr
i,0] ≤ Var||ŵr

i,0 −w∗
i ||2, (46)

which is sufficient to support the linear convergence rate in
the local updating. The sequence {ŵr

i,k}∞k=0 can converge to
w∗ with linear rate. The convergence ratio ρ is defined as

ρ = lim
k→∞

||ŵr
i,k+1 −w∗

i ||
||ŵr

i,k −w∗
i ||p

, (47)

which is one indicator to get the order of the convergence
speed. The convergence speed is quantified by the largest
nonnegative integer p, namely, the order of convergence, which
is a measure of how good the worst part of the tail is. Larger
values of the convergence order p imply faster convergence,
since the distance from the optimal global w∗ is reduced by
the p-th power in a single step. From the definition of the
convergence ratio, asymptotically we have

||ŵr
i,k+1 −w∗

i || = ρ||ŵr
i,k −w∗

i ||p. (48)

The speed of convergence is increased if p is increased and
ρ is reduced. If we can prove p = 1 and ρ < 1, it will have
linear convergence.

To prove the above conclusion, we begin from the one step
local iteration. After adding w∗, the k-th local updating of
edge agent i in r-th round can be formulated as the conditional
expectation Ek−1[||ŵr

i,k −w∗
i ||2] which can be rewritten as

Ek−1[||ŵr
i,k−1 + αld

r
i,k−1 −w∗

i ||2]. (49)

Then, we decompose Eq. (49) into 3 components as

C1 = ||ŵr
i,k−1 −w∗

i ||2,
C2 = 2αl(ŵ

r
i,k−1 −w∗

i )
TEk−1[d

r
i,k−1],

C3 = α2
lEk−1[||dr

i,k−1||2],
(50)

where Ek−1[·] refers to the conditional expectation over the
{ŵr

i,j}j=0,··· ,k−1 local step updating.

Based on the unbiased local gradient estimation and
▽▽▽f(wr−1) is independent with ŵr

i,k−1, we obtain that

(ŵr
i,k−1 −w∗

i )
TEk−1[gi(ŵ

r
i,k−1)]

= (ŵr
i,k−1 −w∗

i )
T▽▽▽fi(ŵ

r
i,k−1),

(51)

and

(ŵr
i,k−1 −w∗

i )
T (▽▽▽fi(w

r−1)− ▽▽▽fi(w
r−1)) = 0. (52)

Thus, we can rewrite C2 as

C2 = −2αl(ŵ
r
i,k−1 −w∗

i )
T▽▽▽fi(ŵ

r
i,k−1). (53)

By strong convexity as shown in Lemma 3, C2 can be upper
bounded by

C2 ≤ −2αlµi||ŵr
i,k−1 −w∗

i ||2. (54)

Then, we transform the variance of the local search direction
dr
i,k−1 as

Vark−1(d
r
i,k−1) = Vark−1(gi(w

r−1)− gi(ŵ
r
i,k−1)),

(55)
which leads to

Vark−1(d
r
i,k−1) ≤ Ek−1[||gi(ŵr

i,k−1)− gi(w
r−1)||2].

(56)
We rewrite the conditional expectation of the local updating
direction Ek−1[||dr

i,k−1||2] as

Ek−1[||gi(ŵr
i,k−1)− gi(w

r−1)||2] + ||▽▽▽fi(ŵ
r
i,k−1)||2,

(57)
which leads to upper bound C3 as to upper bound

Ek−1[||gi(ŵr
i,k−1)− gi(w

r−1)||2]. (58)

To achieve this goal, first, according to Jensen’s inequality, we
have

Ek−1[||gi(ŵr
i,k−1)− gi(w

r−1)||2]
≤ ||Ek−1[gi(ŵ

r
i,k−1)]− Ek−1[gi(w

r−1)]||2.
(59)

And according to (38), we have

||▽▽▽fi(ŵr
i,k−1)− ▽▽▽fi(w

r−1)||2 ≤ L2
i ||ŵr

i,k−1 −wr−1||2.
(60)

Since we can rewrite

||ŵr
i,k−1 −wr−1||2 = ||(ŵr

i,k−1 −w∗
i )− (wr−1 −w∗

i )||2.
(61)

According to the triangle inequality, we have

θ

2
||ŵr

i,k−1 −w∗
i ||2 +

1

2θ
||wr−1 −w∗

i ||2

≥ (ŵr
i,k−1 −w∗

i )
T (wr−1 −w∗

i ),
(62)

where ∀ θ > 0. By setting θ = 1, we obtain

||ŵr
i,k−1 −wr−1||2 ≤ 2||ŵr

i,k−1 −w∗
i ||2

+ 2||wr−1 −w∗
i ||2.

(63)

Then, we can achieve the conclusion that

Ek−1[||gi(ŵr
i,k−1)− gi(w

r−1)||2]
≤ 2L2

i ||ŵr
i,k−1 −w∗

i ||2 + 2L2
i ||wr−1 −w∗

i ||2.
(64)
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Furthermore, since ▽▽▽fi(w
∗
i ) = 0 and by (38) we get

||▽▽▽fi(ŵr
i,k−1)||2 ≤ L2

i ||ŵr
i,k−1 −w∗

i ||2. (65)

Combining the conclusions together, finally we obtain that

Ek−1

[
||ŵr

i,k −w∗
i ||2
]

≤ Ek−1||ŵr
i,k−1 −w∗

i ||2 − 2αlµiEk−1||ŵr
i,k−1 −w∗

i ||2

+ α2
lL

2
iEk−1||ŵr

i,k−1 −w∗
i ||2

+ α2
l (2L

2
iEk−1||ŵr

i,k−1 −w∗
i ||2 + 2L2

i ||wr−1 −w∗
i ||2)

= (1− 2αlµi + 3α2
lL

2
i )Ek−1[||ŵr

i,k−1 −w∗
i ||2]

+ 2α2
lL

2
i ||wr−1 −w∗

i ||2.
(66)

C. Convergence of Conjugated Global Updating

There are three primary advantages of the conjugate fed-
erated learning. First, unless the optimal global model is
attained in less than q federation rounds, the anchor gradient
is always nonzero and linearly independent of all previous
global updating directions. Second, the conjugate federated
updating only slightly more complicated than the traditional
global model aggregation strategy, because the conjugated
global model updating directions are also based on the anchor
gradients, the process makes good uniform progress toward
the optimal global model at every federation round.

The intuitive design guidance is that the optimal global
model w∗ ∈ Rq can be represented by q independent direc-
tions, i.e.,

w∗ =

q−1∑
i=0

η∗i d
∗
i . (67)

We can regard this representation as the result of an iterative
process of q steps where at the i-th step, η∗i d

∗
i is added.

The conjugate federated learning allows for an arbitrary initial
global model w0 ∈ Rq where the sequence {ŵr} generated
in central server as

wr+1 = wr + ηrdr. (68)

The idea is to update the initialized global model w0 to the
optimal global model w∗ as

w∗ −w0 =

q−1∑
i=0

ηidi, (69)

by designing the conjugate directions and the parameters, i.e.,
{di, ηi}q−1

i=0 .
First, we can prove that the conjugated direction set {di}r−1

i=0

can span a r-dimensional space Br since they are r in-
dependent vectors. To prove the linear independence of the
conjugated global model updating directions, we premultiply
dT
j ▽▽▽

2f(w) to
∑r−1

i=0 ηidi and apply the conjugate property,
we can have

r−1∑
i=0

ηjd
T
j ▽▽▽

2f(w)di = ηjd
T
j ▽▽▽

2f(w)dj . (70)

As long as the eigenvalues of ▽▽▽2f(w) are non-zero, we can
guarantee dT

j ▽▽▽
2f(w)dj ̸= 0. Then, there is only one way to

achieve
r−1∑
i=0

ηidi = 0, (71)

namely, ηj = 0 for j = 0, · · · , r − 1, which guarantees the
conjugated directions in {di}r−1

i=0 are independent vectors.
To show the idea behind the conjugate federated updating

step length design, we premultiply dT
r ▽▽▽

2f(w) to (w∗−w0)
and according to Eq. (69) to obtain

dT
r ▽▽▽

2f(w)(w∗ −w0) =

q−1∑
i=0

ηid
T
r ▽▽▽

2f(w)di. (72)

Then, in order to generate the conjugate property which leads
to

dT
r ▽▽▽

2f(w)(w∗ −w0) = ηrd
T
r ▽▽▽

2f(w)dr, (73)

the step length parameter in conjugate federated updating
should be designed as

ηr =
dT
r ▽▽▽

2f(w)(w∗ −w0)

dT
r ▽▽▽

2f(w)dr
. (74)

In the conjugate federated learning, the trajectory by updating
initial global model w0 to wr can be represented by

wr = w0 +

r−1∑
i=0

ηidi. (75)

Similarly as shown in Eq. (72) and Eq. (73), we premultiply
dT
r ▽▽▽

2f(w) to (wr−w0) and according to Eq. (75) we have

dT
r ▽▽▽

2f(w)(wr −w0) =

r−1∑
i=0

ηid
T
r ▽▽▽

2f(w)di = 0, (76)

which leads to the conclusion that

dT
r ▽▽▽

2f(w)wr = dT
r ▽▽▽

2f(w)w0. (77)

Then, we apply the conclusion in Eq. (77) into Eq. (74), we
obtain

ηr =
dT
r ▽▽▽

2f(w)(w∗ −wr)

dT
r ▽▽▽

2f(w)dr
. (78)

Furthermore, since the Hessian is the changing rate of the
gradient w.r.t. the parameter variable w, the change caused in
gradient can be approximated by

E[g(wr)− g(w∗)] ≈ ▽▽▽2f(w)(wr −w∗), (79)

then, according to that ▽▽▽f(w∗) = 0, we obtain

▽▽▽2f(w)(wr −w∗) ≈ E[g(wr)]. (80)

Based on Eq. (78), we design the conjugate federated updating
step length as

ηr = − dT
r g(w

r)

dT
r ▽▽▽

2f(w)dr
, (81)

to guarantee the conjugate property of the generated directions.
The conjugate federated updating can substantially improve

the FL training procedure, because the sequential conjugated
directions are generated by solving the problem optimally
dimension by dimension, namely, the conjugate federated
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updating not only optimizes the updating in each direction, i.e.,
ŵr minimizes f(w) on the line w = wr−1 + ηdr−1, where
η is the variable, but also minimizes f(w) on the subspace
Br spanned by {di}r−1

i=0 , i.e., on the linear variety w0+Br.
This conclusion will hold by showing that g(wr) ⊥ Br, i.e.,
the gradient information in the current spanned subspace Br

is 0 leading to optimal solution projected on Br.
To provide proof of g(wr) ⊥ Br, first, we set B0 as

null space, thus, for r = 0, g(w0) ⊥ B0. Then, we assume
g(wr) ⊥ Br. Based on

g(wr+1)− g(wr) = ▽▽▽2f(wr)(wr+1 −wr), (82)

we have

g(wr+1) = g(wr)+ ηr▽▽▽
2f(wr)dr, (83)

which leads to

g(wr+1)Tdi = g(wr)Tdi + ηrd
T
r ▽▽▽

2f(wr)di, (84)

by inner product with di. When i < r, g(wr)Tdi vanishes
because of the induction hypothesis, and dT

r ▽▽▽
2f(wr)di = 0

by the ▽▽▽2f(wr)-orthogonality, then we can get the following
conclusion

g(wr+1)Tdi = g(wr)Tdi + ηrd
T
r ▽▽▽

2f(w)di = 0. (85)

Furthermore, based on the conjugate federated updating step
length designed in Eq. (81), we can obtain

g(wr+1)Tdr = g(wr)Tdr + ηrd
T
r ▽▽▽

2f(wr)dr = 0, (86)

when i = r. Then, combining the conclusions in Eq. (85) and
Eq. (86) we obtain g(wr+1) ⊥ Br+1.

Then, we introduce the idea behind the design of βr
which controls the momentum of the previous global updating
directions. To generate direction set {di}q−1

i=0 to be a conjugate
set w.r.t. ▽▽▽2f(w), which satisfies

dT
r ▽▽▽

2f(w)di = 0, for 0 ≤ i < r and 1 ≤ r ≤ q. (87)

First, we assume that

dT
r ▽▽▽

2f(w)di = 0, for 0 ≤ i < r. (88)

Since ▽▽▽2f(w)di is a vector in the subspace spanned by
{di}r

i=0, which means when i < r, it can be represented
by

▽▽▽2f(w)di =

r∑
i=0

aidi. (89)

By post-multiplying ▽▽▽2f(w)di to dT
r+1 and according to

Eq. (25) and Eq. (89), we can obtain

dT
r+1▽▽▽

2f(w)di = −
r∑

i=0

aig(w
r+1)Tdi + βrd

T
r ▽▽▽

2f(w)di.

(90)
Since g(wr+1) orthogonal to the subspace spanned by
{di}r

i=0, and we have assumed that dT
r ▽▽▽

2f(w)di = 0. Thus,
we can get

dT
r+1▽▽▽

2f(w)di = 0, (91)

for 0 ≤ i < r. Then, we design

βr =
g(wr+1)T▽▽▽2f(w)dr

dT
r ▽▽▽

2f(w)dr
, (92)

to guarantee

dT
r+1▽▽▽

2f(w)dr = −g(wr+1)T▽▽▽2f(w)dr

+ βrd
T
r ▽▽▽

2f(w)dr = 0.
(93)

Therefore, we have proved that

dT
r+1▽▽▽

2f(w)di = 0, for 0 ≤ i < r + 1. (94)

Combining the results from Eq. (88) and Eq. (94), we can
guarantee the generated direction set is a conjugate set.

Furthermore, we can redesign the formulation of βr to get
rid of ▽▽▽2f(w). By pre-multiplying −g(wr)T to dr, we have

−g(wr)Tdr = g(wr)T g(wr)− βr−1g(w
r)Tdr−1. (95)

Since g(wr) ⊥ Br, thus we can get g(wr)Tdr−1 = 0
where dr−1 is inside the subspace Br. Therefore, we obtain
that

−g(wr)Tdr = g(wr)T g(wr), (96)

which allows us to reformulate ηr as

ηr = − g(wr)Tdr

dT
r ▽▽▽

2f(w)dr
=

g(wr)T g(wr)

dT
r ▽▽▽

2f(w)dr
. (97)

On the other hand, we premultiply g(wr+1) to

▽▽▽2f(w)dr =
1

ηr
(g(wr+1)− g(wr)), (98)

and we obtain

g(wr+1)T▽▽▽2f(w)dr

=
1

ηr
(g(wr+1)T g(wr+1)− g(wr+1)T g(wr)).

(99)

We can get the conclusion that the subspace spanned by the
gradients is the same subspace as spanned by the search
directions according to

g(wr+1) = g(wr)+ ηr▽▽▽
2f(w)dr, (100)

which means g(wr) is also inside the subspace Br+1. Then,
we can get the conclusion that

g(wr+1)T g(wr) = 0. (101)

Thus, βr can be reformulated as

βr =
g(wr+1)T▽▽▽2f(w)dr

dT
r ▽▽▽

2f(w)dr
=

g(wr+1)T g(wr+1)

g(wr)T g(wr)
.

(102)
In the overall updating, and combining with (66) we obtain

that

Er−1[||ŵr
i,k −w∗||2]

≤ (1− 2αlµi + 5α2
lL

2
i )Er−1[||ŵr−1 −w∗||2].

(103)

To contract the upper bound of the distance from the current
local model ŵr

i,k to the optimal global solution w∗, we define
a factor of e, and as long as we can guarantee that

eEr−1[||ŵr
i,k −w∗||2] ≥ Er−1[||ŵr

i,0 −w∗||2], (104)
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we have

Er−1||wr−1 −w∗||2 ≤ eEr−1[||ŵr
i,k−1 −w∗||2],

(105)
since ŵr

i,0 = ŵr−1. Combining (103)-(105), we have

Er−1[||ŵr
i,k −w∗||2]

≤ (1− 2αlµi + 5α2
lL

2
i e)Er−1[||ŵr

i,k−1 −w∗||2].
(106)

If we set αlµi = 5α2
lL

2
i e where the local learning rate αl =

µi

5L2
i e

we can get

Er−1[||ŵr
i,k −w∗||2]

≤ (1− µ2
i

5L2
i e

)Er−1[||ŵr
i,k−1 −w∗||2].

(107)

By applying the updating recursively, we obtain

Er−1[||ŵr
i,k −w∗||2]

≤ (1− µ2
i

5L2
i e

)kEr−1[||ŵr−1 −w∗||2],
(108)

which can be rewritten as

Er−1[||ŵr
i,k −w∗||2]

≤ exp(− µ2
i k

5L2
i e

)kEr−1[||ŵr−1 −w∗||2].
(109)

We define L̂ = max{Li}i∈E and µ̂ = min{µi}i∈E , and it
leads to the conclusion that

Er−1[||ŵr −w∗||2] ≤ e−
5rL̂2e

µ̂2 ||ŵ0 −w∗||2, (110)

with recursively updating, where it should satisfy

r ≥ µ̂2

5L̂2e
log(

||ŵ0 −w∗||2

ϵ
), (111)

to guarantee error tolerance ϵ.
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