
1

LiveStream Meta-DAMS: Multipath Scheduler
using Hybrid Meta Reinforcement Learning for

Live Video Streaming
Amir Sepahi, Graduate Student Member, IEEE, Lin Cai, Fellow, IEEE,, Wenjun Yang, Graduate Student

Member, IEEE,, Jianping Pan, Fellow, IEEE, Senior Member, ACM

Abstract—Overcoming challenges in mobile environments,
such as bandwidth constraints, user mobility, and network hand-
offs, is crucial for video streaming applications. To address
these challenges, we can use multiple network paths to mitigate
bandwidth limitations and guarantee end-to-end delay, enhancing
the overall quality of experience for the users. This paper presents
LiveStream Meta Learning-based Delay Aware Multipath Sched-
uler (LSMeta-DAMS), a novel learning-based multipath sched-
uler explicitly designed for live streaming applications. LSMeta-
DAMS employs a hybrid meta-reinforcement learning architec-
ture, incorporating both online and offline phases to enhance
speed and accuracy for training and decision making. Prioritizing
packet scheduling based on frame types and considering the video
coding features like group of pictures (GOP), scalable video
coding (SVC), and Dynamic Adaptive Streaming over HTTP
(MPEG-DASH), LSMeta-DAMS offers a tailored solution for
multipath video streaming. Trace-driven emulations highlight its
superior performance, demonstrating up to 32% improvement
in learning, up to 25% reduction in download time, up to 15%
enhancement in video quality assessment, and up to 35% reduc-
tion in stalling time compared to the state-of-the-art multipath
schedulers. These findings underscore LSMeta-DAMS’s potential
to substantially enhance video streaming experiences in highly
dynamic network conditions.

Index Terms—Meta reinforcement learning, multipath sched-
uler, live video streaming, delay guarantee

I. INTRODUCTION

Video streaming has reshaped the landscape of mobile
applications, providing users with unprecedented access to
a variety of multimedia content anywhere, anytime. High
bandwidth and low latency are the main requirements to have
high-quality video streaming [1]. However, it is challenging
to satisfy these requirements since wireless spectrum is scarce
and expensive, and low latency and robust data transmission in
mobile environment is difficult due to user mobility and chan-
nel impairments. The limitations of conventional protocols like
TCP [2] in meeting the requirements of real-time applications,
especially in terms of low latency and mobility support,
have prompted the exploration of newer protocols. One such
protocol is QUIC [3], a versatile transport-layer protocol
supporting multiple streams and incorporating a 0-RTT/1-RTT
handshake mechanism. Unlike TCP, QUIC can better support
real-time applications through features like instant handshakes
and accelerated loss detection and recovery. However, QUIC
was originally designed for web applications, and it may not
necessarily improve the performance of Dynamic Adaptive
Streaming over HTTP (MPEG-DASH) video streaming [4].

Fig. 1: An example of heterogeneous paths.

Given the increasing popularity of mobile services, many
mobile devices are equipped with multiple wireless interfaces,
such as 4G, 5G, and WiFi. As a result, multipath transport
protocols such as multipath TCP (MPTCP) [5] and multipath
QUIC (MPQUIC) [6] were developed to simultaneously use
multiple access links and multiple network paths, resulting in
faster and more reliable data transmission [7].

In addition, multipath transport protocols can provide seam-
less handover between network interfaces to better support
user mobility [8]. They are resilient to link failures and
can leverage bandwidth from multiple paths. However, using
multipath protocols cannot always lead to higher quality
services, particularly when the links (paths) are heterogeneous
and highly dynamic (e.g., 5G and WLAN). An example of
a heterogeneous scenario is shown in Fig. 1. Under these
circumstances, multipath transport protocols face great chal-
lenges to provide low-latency transmission services for delay-
sensitive applications, such as video streaming and online
gaming.

One of the main reasons for this problem is out-of-order
(OFO) packets. Specifically, if data packets arrive in a different
order than intended, packets with higher sequence numbers
must remain unprocessed in the receiver’s buffer until lower
sequence number packets arrive. This leads to wasted buffer
space, head-of-line (HOL) blocking, unnecessary packet re-
transmissions, and lengthy reordering delays. In the context
of video streaming, these issues collectively contribute to a
degradation in video quality and playback experience.

The key challenge in mitigating out-of-order packets lies
in devising an efficient scheduling policy to distribute data
packets across available paths. This strategic distribution aims
to enhance user perceived video quality, which depends on

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

2

several performance metrics, including throughput, latency,
and reliability. To achieve this objective, the development of
a multipath (MP) packet scheduler is essential to effectively
manage the distribution of packets across diverse network
paths. However, designing an effective MP scheduler proves
to be a challenging task, particularly when dealing with highly
dynamic network conditions [9].

Existing MP schedulers can be categorized into model-
based and learning-based types [1]. Model-based MP sched-
ulers are rigid and cannot effectively handle highly dynamic
network conditions. Learning-based schedulers offer agile
responses, but they often rely on time-consuming Deep Q-
Networks (DQN) [10] for online learning and may struggle
with real-time adaptability. A main issue with the mentioned
MP schedulers in both categories is that they are not specif-
ically designed for delay-sensitive applications, such as live
video streaming, where efficient scheduling of packets related
to different video frames across available network paths is cru-
cial for preventing degradation in video quality and ensuring
a seamless playback experience. We discuss various types of
schedulers in detail in Section II-E.

The design of an effective MP scheduler plays a crucial role
in enhancing video streaming performance, particularly when
utilizing multiple network paths (interfaces) simultaneously for
transmission of multimedia data to the receiver. This becomes
crucial when integrated with video coding and transmission
technologies, such as group of pictures (GOP) [11], scalable
video coding (SVC) [12], and MPEG-DASH [13]. Different
from conventional MP schedulers, we present a learning-based
MP scheduler explicitly designed to address the requirements
of multipath video streaming. The main contributions of this
paper are summarized as follows:

• We propose LiveStream Meta Learning-based Delay
Aware Multipath Scheduler (LSMeta-DAMS), a learning-
based MP scheduler explicitly crafted for live streaming
applications, in conjunction with methods like GOP, SVC,
and MPEG-DASH. This distinction sets LSMeta-DAMS
apart from other MP schedulers.

• Considering GOP structure, we schedule packets related
to different frame types on the path that ensures the
earliest delivery to the client. This minimizes the packet
reordering cost. We also implement a mechanism to
prioritize I-frame packets over P- and B-frame packets.
We incorporate a video chunk manager and a video frame
manager into LSMeta-DAMS’s framework to ensure it
can determine the reception of each frame and each
chunk.

• To make LSMeta-DAMS fast and accurate, we propose
a hybrid meta-reinforcement learning (meta-RL) architec-
ture, considering both online and offline meta-RL phases.
Pretrained meta-models in the offline phase enhance both
the learning process speed and the accuracy of the online
learning phase. In the online learning phase of LSMeta-
DAMS, we introduce a training algorithm built on top
of the asynchronous advantage actor-critic (A3C) [14],
which is faster and more accurate than Deep Q-Networks
(DQN) widely used in other MP-schedulers.

• We implement LSMeta-DAMS using mpquic-go [15] for

protocol aspects, TensorFlow [16], and keras-rl [17] for
learning aspects. We utilize the free and open-source
software project FFmpeg for video processing. Through
trace-driven emulations, we demonstrate the superior
performance of LSMeta-DAMS in terms of learning
speed and accuracy, download time, and video quality
assessment compared to state-of-the-art MP schedulers.

The rest of this paper is organized as follows. We first
summarize the background and related work in Section II. We
then specify the research problem and provide an overview
of LSMeta-DAMS in Section III. We next detail the design
of LSMeta-DAMS in Section IV. We present the experimental
setup, LSMeta-DAMS configuration, and performance anal-
ysis in Section V. We finally conclude our work in Section
VI.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the background
for LSMeta-DAMS and related work, including multipath
transport protocols (Section II-A), video streaming tech-
nologies (Section II-B), stalling time (Section II-C), meta-
reinforcement learning (Section II-D), and multipath packet
scheduling (Section II-E).

A. Multipath Transport Protocols

Multipath transport protocols, initially stemming from the
Stream Control Transmission Protocol (SCTP), used for sig-
naling in telephone networks, evolved to address challenges
in multipath communication [18]. Despite the difficulties en-
countered by MPTCP in gaining widespread adoption due
to ossification issues, MPQUIC has emerged as a promising
alternative. Developed as an extension of QUIC, MPQUIC
demonstrates superior multipath performance over UDP and
boasts flexibility in implementing various schedulers. Different
from MPTCP, MPQUIC does not require modifications to
operating systems or middleboxes, making it a more attrac-
tive option for modern networks. Both protocols enhance
data transmission by leveraging multiple network paths, but
MPQUIC’s simplicity, resistance to middlebox tampering, and
superior performance position it as a promising multipath
transport protocol for diverse network environments.

In this paper, we take advantage of MPQUIC to design
our delay-aware MP scheduler for delay-sensitive video ap-
plications, such as live video streaming and online gaming.
Comparing MPQUIC and MPTCP (Fig. 2), both are designed
to manage multipath communication, a feature that can sub-
stantially improve the performance and reliability of video
streaming, particularly in mobile scenarios characterized by
challenging network conditions. We use MPQUIC instead of
MPTCP because it provides superior multipath performance
over UDP, resulting in smoother video delivery, lower la-
tency, and higher throughput. This is essential for a high-
quality streaming experience. Moreover, MPQUIC’s flexibility
in scheduler implementation allows fine-tuning for optimal
video content delivery, making it adaptable to the specific
requirements of video streaming applications [19]. MPQUIC
is also compatible with Dynamic Adaptive Streaming over

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 2: MPTCP vs MPQUIC.

HTTP (DASH) which is the state-of-the-art standard of video
streaming [13].

B. Video Streaming Technologies

Video content is a sequence of static images, or frames,
displayed in rapid succession to create the illusion of motion.
Several factors affect the size of a video file, including
resolution, motion speed, frame rate, and the compression
method used. In video compression and streaming, the GOP
[11] method and SVC [12] have been widely deployed. GOP,
also known as IPB, is a popular compression method where
consecutive frames are grouped together and compressed as a
unit. A GOP consists of an I frame that encodes the complete
information for an image within the frame, followed by a
variable number of P frames and B frames. P frames predict
and record only the picture information that has changed from
the previous I or P frame, while B frames use both the
previous and subsequent frames as references.

SVC, an extension of the H.264 (MPEG-4 AVC) video
compression standard, offers spatial, temporal, and quality
scalability. This ensures graceful degradation in video quality
when faced with channel loss [20]. The scalability allows
for adaptability to varying network conditions, providing a
more robust video streaming experience [21]. In this method,
a video is encoded into multiple layers: a base layer that
provides the lowest quality version of the video, and several
enhancement layers that offer a higher quality version when
decoded together with the base layer. This layered approach
enables the video player to adapt to network conditions by
selecting which layers to download and display based on
network conditions. A general layered structure of SVC is
shown in Fig. 3.

Together, these methods provide an effective solution for
streaming video. SVC often works with adaptive stream-
ing protocols like Dynamic Adaptive Streaming over HTTP
(MPEG-DASH) which are designed to select layer(s) for
video downloading based on network conditions [13]. MPEG-
DASH breaks content up into a sequence of small HTTP-based
segments, with each segment containing a short interval of
playback time. Various bit rates (in layers) are available for
the content. MPEG-DASH workflow is shown in Fig. 4.

MPEG-DASH starts with original video assets that are
transcoded into multiple bitrates. Afterwards, these versions
are packaged and encrypted using the MPEG-DASH standard,
which segmented the video into small segments or chunks.
These chunks, along with a Media Presentation Description

Fig. 3: A General Layered Structure of SVC.

(MPD) file, are stored on an origin server. In order to stream
the video, the client device sends an HTTP request to a
Content Delivery Network (CDN), which responds by sending
the appropriate video chunks. In order to playback the video,
the client device reassembles these chunks into a continuous
video, automatically selecting the highest bitrate that can be
downloaded in time for playback without causing buffering.
This process allows MPEG-DASH to adapt to changing net-
work conditions and provide a seamless quality of experience
(QoE) for the users. MPEG-DASH should not be confused
with a transport protocol - MPEG-DASH uses TCP or QUIC
as its transport protocols. MPEG-DASH uses existing HTTP
web server infrastructure that is used for delivery of essentially
all World Wide Web content.

C. Stalling Time

A key performance metric for video streaming applications
is stalling time, which results from pauses or buffering inter-
ruptions during playback, frustrating users with disruptions.
This occurs when the video player’s buffer lacks sufficient
data to play continuously, often influenced by factors such as
network congestion, server issues, client-side problems, and
Adaptive Bitrate Streaming (ABR) adjustments [22]. Fluctu-
ations in network conditions, inadequate server performance,
device or player glitches, and ABR algorithms dynamically
adjusting video quality based on varying network conditions
contribute to the occurrence of stalling. Mitigating this issue
involves optimizing streaming protocols, implementing effec-
tive buffering strategies, and enhancing network infrastructure
to ensure a seamless and uninterrupted video playback expe-
rience [23].

Utilizing MP transport protocols like MPQUIC and im-
plementing an effective MP scheduler in video streaming
system design can significantly diminish stalling time. A
well-designed MP scheduler optimally allocates data across
available paths, ensuring load balancing and adaptiveness to
changing network conditions, thereby preventing over-reliance
on a single path prone to stalling. This approach not only
minimizes the risk of buffer depletion but also proactively
fetches and buffers content, improving the overall robustness
of the streaming system and elevating the quality of the user
experience.

D. Meta-Reinforcement Learning

Deep Reinforcement Learning (DRL) approaches like DQN
[10] and actor-critic methods [14] can perform well in many
challenging and dynamic environments after extensive train-
ing. Human intelligence, on the other hand, can understand
and adapt to new tasks quickly by leveraging their prior ex-
periences with similar tasks. This inspires meta-reinforcement
learning (meta-RL) [24].

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

4

Fig. 4: MPEG-DASH Workflow.

In the realm of artificial intelligence (AI), the integration of
the meta-learning concept has been successful [25]. It allows
deep learning models to enhance their learning algorithms
iteratively over a number of learning episodes. This concept
is also applicable to RL, a process akin to how we engage in
multiple learning tasks concurrently in our daily lives. In meta-
RL, different RL algorithms operate at different timescales but
in parallel. Using the meta-RL framework, Deep RL models
engage in multiple RL tasks simultaneously, each unfolding at
distinct timescales.

Motivated by the capability of meta-RL, we integrate it into
the architecture of our proposed MP scheduler. Traditional
RL algorithms often experience difficulty in learning and
adapting to new tasks efficiently. As a result, they typically
require extensive training from scratch, which is both time-
consuming and computationally expensive. The inability to
adapt quickly to new tasks can be a significant disadvantage
in highly dynamic environments.

Meta-RL can train models to be adaptive to new tasks
rapidly without the need to retrain them from scratch, leverag-
ing the knowledge gained from previous tasks. This accelerates
the learning process and allows the scheduler to be more
responsive to highly dynamic network conditions [1].

E. MP Packet Schedulers

The MP scheduler is responsible for distributing packets
over the available subflows. In the following section, we
categorize MP schedulers into two groups: model-based and
learning-based MP schedulers.

Model-based schedulers: A model-based multipath packet
scheduler, such as minRTT, Round Robin (RR), Blocking
Estimation (BLEST) [26], and Earliest Completion First (ECF)
[27], uses a structured and rule-driven approach for packet
distribution across available subflows. These schedulers are
based on predefined rulesets and models that enable them to
make informed decisions based on well-defined criteria. For
instance, minRTT prioritizes subflows with minimum RTTs,
while RR cyclically distributes packets among available paths.

BLEST and ECF implement sophisticated algorithms based
on bandwidth estimation and the available congestion window.
The deterministic nature of model-based approaches facili-
tates predictability in network management, offering stability
in scenarios with relatively stable and well-defined network
conditions. However, their inherent rigidity becomes appar-
ent in highly dynamic or unpredictable environments, where
adaptability may be compromised.

Fig. 5: Multipath Video Streaming.

Learning-based schedulers: Learning-based schedulers,
such as Peekaboo [28], M-Peekaboo [9], RL [29], and Reles
[30], can adapt their policies to new network conditions. This
makes them more suitable for highly dynamic environments.
While providing flexibility and adaptability, these schedulers
often face challenges, such as the time-consuming training of
DQN, which may impede real-time adaptability.

Learning-based algorithms come in two varieties: online
learning and batch learning (offline learning). For batch learn-
ing (offline learning), any improvements to the model requires
retraining over the entire dataset, making it less adaptive
and requiring sufficient storage capacity to store the entire
dataset. On the other hand, online learning can adapt to
data with varying patterns and distributions as they emerge,
making it more suitable for real-time tasks such as multipath
scheduling. However, a trade-off exists between accuracy and
convergence time [31]. Online learning algorithms with less
complex architectures are faster but less accurate, and vice
versa.

To address the challenges related to DQN convergence
speed and the limitations of both online and offline learning,
meta-DAMS [1] was developed, leveraging meta-RL. A hybrid
meta-RL architecture was proposed, considering both offline
and online meta-RL. A3C was used as the learning algorithm
for the MP scheduler. A3C adopts an actor-critic framework,
incorporating asynchronous training and an advantage function
to enhance the algorithm’s training efficiency across parallel
threads. This results in faster and more accurate learning
compared to DQN.

III. PROBLEM DESCRIPTION AND SOLUTION FRAMEWORK

In this section, we first explain the multipath video stream-
ing system model. We then describe the challenges of multi-
path video streaming. Afterwards, we describe how we intend
to resolve those problems. For easy presentation, we consider
only the two-path scenario presented in Fig. 5 in the problem
formulation. It is straightforward to extend the method to
scenarios with a larger number of paths.

A. Multipath Video Streaming

In multipath video streaming, multiple paths are used to
reduce the impact of network congestion or disruptions on the
viewing experience. This approach increases robustness and
ensures that video playback is smoother even in challenging
network conditions [32].

Considering the multipath network topology depicted in
Fig. 5, the client C initiates a media stream request from the
streaming server S. The server delivers the requested bitstream

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

5

through two separate paths, each comprising two segments
connected through intermediate nodes. A buffering delay may
be introduced by intermediate nodes, which forward packets
from the server to the client. Buffer interfaces deploy first-
in, first-out (FIFO) queues. As links/paths have variable data
rates and congestion levels, the sending rate from the server
changes over time. On the client side, an initial playback
delay δ is experienced following the stream request. The client
then begins to decode the media stream and plays the video
continuously. Wireless video transmission through multiple in-
terfaces is our main application. During the streaming session,
server selects to send a subset of pre-encoded media packets
for communication with the client, depending on the available
bandwidth on each path.

B. Streaming Model

The video sequence is encoded into a bitstream using a
scalable (layered) video encoder, consisting of a base layer and
several enhancement layers. The bitstream is then fragmented
into network packets in accordance with two main rules. First,
each network packet contains data relevant to at most one
video frame. This is due to the fact that we use GOP as
our compression method in this paper. According to Section
II-B, in this method, there are three types of frames, I,
P, and B. A fragmented packet can be related to at most
one of these types. Second, an encoded video frame can be
divided into multiple network packets. Here, the video data is
classified into a base layer, containing essential information
for reconstruction, and enhancement layers, which provide
additional details for higher quality. Consider a system where
the client has F = {1, . . . , f, . . . , F} flow requests. Suppose
there is a streaming request S associated with one of these
flows (f ∈ F). S contains a number of packets, denoted by
N = {1, . . . , n, . . . , N}, which need to be transmitted over
P interfaces (paths) denoted by P = {1, ..., p, ..., P}. Each
network packet, n, is characterized by its size sn in bytes,
and its decoding timestamp tdn.

In the GOP structure, I frames hold greater significance
for the client compared to P and B frames. If the client
encounters difficulty decoding an I frame, the subsequent P
and B frames in the corresponding GOP lose their utility.
In our streaming solution, I-frame packets have the highest
importance and, therefore, have the highest utility. We define
the utility of each network packet, λn, which represents the
reduction in distortion perceived by the client when the packet
is successfully decoded [33]. The value of λn is determined
by the importance of the packet’s content to the overall quality
of the video stream. For example, packets containing I frames,
which are critical for reconstructing video frames, have higher
values of λn, reflecting their greater impact on video quality. In
contrast, packets containing P or B frames have lower values
of λn since they depend on I frames and contribute less to the
immediate reconstruction quality.

The streaming server uses an MPQUIC scheduler to deter-
mine which packets (N ∗ ⊂ N) should be scheduled on path
p ∈ P when the path has an available window (ωp(t) > 0)
[1]. The MPQUIC scheduler updates its scheduling policy

Π = {π1, . . . , πn, . . . , πN} according to the current network
condition. Each policy πn corresponds to the transmission
decision for the n-th packet, consisting of [an, tsn], where an is
the action chosen for the n-th packet and tsn is its sending time.
The scheduling policy keeps updating until the transmission
of all packets (|N |) is completed.

The arriving time of the n-th packet through path p can be
defined as:

tan = tsn +OWDp + dtp + ηp, (1)

where OWDp is the one-way delay of path p, assumed to be
half of τp, dtp is the transmission delay at the sender, and ηp
is the total retransmission delay if the packet is lost during
the first attempt. In our streaming model, the receiver can
successfully decode the n-th packet only if its arrival time (tan)
is smaller than its decoding deadline (δ), i.e., if tan ≤ tdn + δ.
Since I-frame packets are more important to QoE, they have
a more stringent decoding deadline.

The optimization framework inherently integrates key con-
straints essential for ensuring high-quality multipath video
streaming. For this purpose, we introduce a binary variable,
ζ(πn), which indicates whether the n-th packet reaches the
decoder prior to its decoding deadline and if all its preceding
dependent packets are successfully decoded according to the
streaming policy πn ∈ Π. If ζ(πn) is equal to 1, it signifies that
the packet arrives at the decoder on time, and all its preceding
dependencies have been successfully decoded. Furthermore,
we consider the distinction between the order of frames in
the bitstream and the order in which they are decoded at the
client, impacting the scheduling of a B frame positioned in
the bitstream after the upcoming P frame it relies on. This
parameter effectively embeds constraints related to decoding
deadlines, network conditions (such as available bandwidth
and latency), and interdependencies between frame types,
thereby guiding the optimization process toward maximizing
video quality while maintaining adaptability in dynamic net-
work environments.

Given the utility value λn for each packet, the total benefit
of a streaming policy πn ∈ Π, denoted by Ψ(πn), represents
the overall quality experienced by the receiver and can be
calculated as the sum of utilities of all successfully decoded
packets:

Ψ(πn) =
∑

∀n:ζ(πn)=1

λn. (2)

This formulation ensures that the optimization objective of
maximizing the client’s perceived video quality is achieved
by prioritizing packets that contribute the most to reducing
distortion.

C. Problem Statement

A multipath scheduler takes packets from applications and
determines on which subflow to transmit each packet. In
multipath video streaming, packets can vary significantly in
importance and urgency due to their types, which include base
layer (BL) and enhancement layer (EL) packets of different
frame types (I, P, and B frames). The scheduler’s primary

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

6

goal is to find the optimal streaming policy π∗ to maximize the
total utility (Ψ) experienced by the client, which is expressed
as:

Ψ(π∗) = max
π∈Π

∑
∀n:ζ(πn)=1

λn. (3)

This optimization problem is NP-complete [34]. Our solu-
tion introduces an MP scheduler that leverages hybrid meta-
reinforcement learning to update the scheduling policy (Π)
efficiently and accurately in response to dynamically changing
network conditions. In this approach, we consider the decoding
deadlines for various types of packets, addressing the specific
requirements of video streaming.

The main challenges addressed by this problem include
adapting to highly dynamic network conditions, where band-
width, latency, and packet loss vary unpredictably, and pri-
oritizing packets of different importance and urgency (e.g.,
I, P, and B frames) to ensure timely delivery and mini-
mize distortion. Additionally, the scheduler must handle the
computational complexity of real-time decision-making while
operating with minimal prior knowledge of network behavior,
making it robust across various environments. To address
these challenges, our proposed scheduler uses hybrid meta-
reinforcement learning, which combines offline meta-learning
with online reinforcement learning (RL) to quickly adapt to
network changes, balance multiple objectives, and achieve
near-optimal performance efficiently.

D. Solution Overview

LSMeta-DAMS employs meta-RL and DRL techniques
to efficiently address the rapid adaptation to new policies
with a limited number of training episodes. By doing so,
our approach facilitates accelerated learning with minimum
amount of training data.

Fig. 6 depicts the flow chart of our solution. The client
initiates an HTTP request to access the desired video content.
On the server side, IPB frames from the requested video
content are extracted and packetized in the application layer.
Throughout this process, packets are labeled to denote the
respective frame type (I, P, or B frame) and the associated
layer (BL or EL). This labeling ensures precise identification
and decoding on the client side, thereby facilitating the re-
construction of the video content with due consideration to
the layered structure. Moving to the transport layer, LSMeta-
DAMS schedules packets, associated with different frames
and layers, across available subflows according to the current
network condition. The generation of scheduling policies is
executed by a neural network embedded in our scheduler,
which takes input from observations derived from the environ-
ment, meta data, and meta models. LSMeta-DAMS enhances
MPQUIC in several ways. First, it understands the preference
for multiple paths and leverages this knowledge to optimize
overall performance. Second, it is aware of the deadline for
each video chunk. Third, it takes advantage of hybrid meta-
RL in its architecture, using both online and offline meta-
RL. Finally, it utilizes meta data obtained from pre-trained
meta models and the client side. Based on this information,

Fig. 6: General Workflow.

the scheduler manages network paths quickly and accurately
in response to highly dynamic network conditions to meet
deadlines and satisfy user preferences, as detailed in Section
IV.

IV. LSMETA-DAMS DESIGN

In this section, we first explain meta-RL in Section IV-A.
Then, we discuss hybrid meta-RL to clarify why it is a suitable
approach to consider in our algorithm design in Section IV-
B. Next, we describe the various learning elements that are
required to configure LSMeta-DAMS operations in Section
IV-C.

A. Meta-Reinforcement Learning

Our proposed MP scheduler leverages the architecture of
meta-RL to train models that can adapt to new tasks rapidly
and accurately. Unlike classical RL, meta-RL offers a distri-
bution of Markov decision processes (MDP). Each MDP is
referred to as a task [35], and we consider a distribution over
these tasks pT (·). Each task T = (S,A, r, γ, p0, pd) includes
state space S, action space A, reward function r, discount
factor γ, initial state distribution p0 (s0,), and transition dis-
tributions pd (st+1 | st,at).

There are two steps in meta-RL: meta-training, where the
agent learns an algorithm, and meta-testing, where the agent
applies this algorithm to determine an optimal policy π∗

i for the
current task Ti. However, the main goal is to find an optimal
policy π∗ for a distribution of tasks (pT (·)) to maximize the
expected return J(θ) over tasks:

max
θ

J(θ) = ET ∼p [JT (θ)] , (4)

where JT (θ) is the expected discounted return:

JT (θ) = Es0∼d0,at∼πθ(st),st+1∼pd(st,at)

[∑
t

γtrt

]
. (5)

In practice, the meta dataset D consists of a set of tasks di-
vided into two subsets: meta-training tasks D(train) and meta-
testing tasks D(test). Agent uses a set of meta-training tasks
D(train) to learn a stochastic algorithm Γ while interacting
with the environment to learn a policy πi to maximize the
objective function for each task JTi

:

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 7: LSMeta-DAMS: High-Level Architecture.

ETi∼D(train)

[
Eπ̃i∼−(Ti)JTi (πi)

]
. (6)

During testing, the agent (scheduler) samples a task Ti with
a set of meta-testing tasks D(test) to learn πi using Γ and to
apply the learned policy πi in the environment. Meta-training
and meta-testing are carried out in both offline and online
meta-RL.

B. Hybrid Meta-RL

To enhance the accuracy and speed of our scheduler, we
propose a hybrid meta-reinforcement learning (meta-RL) ap-
proach for designing LSMeta-DAMS. Fig. 7 illustrates the
LSMeta-DAMS architecture, comprising both offline and on-
line meta-RL phases. Offline meta-RL refers to the phase
where the meta-models are pre-trained using historical data
and simulated environments before deployment. This phase
aims to create a set of generalized models, called meta-
models, that are capable of providing a good starting point for
learning under various network conditions. In contrast, online
meta-RL involves using these pre-trained meta-models during
actual deployment to quickly adapt to real-time changes in the
network environment. This phase focuses on fine-tuning and
optimizing the scheduling policy in response to the current
network conditions, ensuring efficient and accurate decision-
making in a dynamic environment. The online and offline
phases exchange their updated experiences with each other
as follows:

1) Offline meta-RL: The main purpose of this phase is to
train a set of meta-models M = {M1,M2, . . . ,Mn}. Each
Mi represents a meta-model derived for a specific network
condition that LSMeta-DAMS may encounter in online phase.
The mean RTT, the jitter (RTT variation rate), and the packet
loss rate are indicators of network conditions. We consider
different ranges for RTT, jitter and packet loss to distinguish
different network conditions. R = {R1, R2, . . . , Rn} repre-
sents a set of different ranges for different network conditions.
Each meta-model Mi is derived based on a specific range
of these parameters. For instance, meta-model Mi is derived
considering RTT between [τi, τi+1], jitter between [τ∗i , τ

∗
i+1]%,

and packet loss rate between [li, li+1]% [1]. To pre-determine
these network conditions, we use statistical analysis based on
historical data and real-world network measurements to define
ranges for RTT, jitter, and packet loss that cover most typical
scenarios encountered in practical settings. This method allows
us to establish a set of representative meta-models that reflect
a wide spectrum of possible network conditions. However,
network environments are inherently dynamic, and conditions
may occasionally fall outside these predefined ranges. In
such cases, LSMeta-DAMS employs an interpolation strat-
egy to select the most appropriate meta-model. When the
observed network condition does not match any predefined
range exactly, the system calculates the weighted average of
the scheduling policies from the two closest meta-models
based on their similarity to the current network state. This
adaptive approach ensures that LSMeta-DAMS can handle
dynamic network conditions effectively. With the help of this
classification, we are able to cover most network conditions
that may occur in a dynamic environment. Therefore, con-
sidering each network condition as a task Ti, meta-training
and meta-testing are applied to derive each meta-model as
well as the optimal scheduling policy π∗

i for each task in
offline meta-RL. Then in the online phase, when LSMeta-
DAMS encounters a specific network condition, it fetches
the associated meta-model corresponding to that condition,
and attempts to converge to the optimal scheduling policy
using that meta-model. As a result, LSMeta-DAMS is able
to converge faster without compromising its accuracy.

2) Online meta-RL: As depicted in Fig. 7, LSMeta-DAMS
operates with both a control plane and a data plane during
the online phase. These planes consist of several blocks
working collaboratively to retrieve the matched meta-model
corresponding to the new network condition from offline
phase database. Once retrieved, this meta-model is used to
quickly and accurately update the online model to adjust the
scheduling policy effectively in each time slot. We explain the
online meta-RL phase function in details in the following.

There is a block in the control plane that constantly monitors
the network conditions to detect any changes. If the new
network condition falls outside the current range (Ri), it sends

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

8

a control signal to the fetch block in the data plane. This
signal instructs the fetch block to retrieve the corresponding
meta-model (M new

i) from the offline phase database. After
meta-model selection, LSMeta-DAMS is able to fine-tune
the selected meta-model (M new

i) using few-shot learning [36]
and derive the scheduling policy using MA3C. MA3C is the
learning algorithm that we developed on top of A3C, detailed
in Section IV-C.

Since our application is video streaming, to make on-
line model training more accurate, we assigned two other
controllers in the control plane to inform the MA3C about
the reception of each video frame and video chunk, helping
the learning algorithm in deriving a more precise scheduling
policy. As a final step, LSMeta-DAMS deploys and uses the
new policy until a new change is detected. As soon as a new
network condition is detected, the updated meta-model M u

i is
sent back to the M in the offline meta-RL phase.

C. Reinforcement Learning Indicators

As discussed earlier in Section IV-B, LSMeta-DAMS uti-
lizes a modified version of A3C algorithm (MA3C) to generate
the policy during operation. Additionally, it employs a hybrid
meta-RL approach to converge rapidly to the optimal pol-
icy without compromising accuracy. Consequently, the entire
framework can be regarded as an MDP, which LSMeta-DAMS
can solve through the coupling of meta-RL using MA3C.
Detailed information about the framework’s learning indicators
is provided below.

State: In an MDP, a system state refers to the information
captured in a snapshot of the environment that an agent
can perceive during the learning process. LSMeta-DAMS
represents the learning agent in our scenario. General state
is determined by the parameters of the transport layer of
the available paths (P) including number of inflight packets
(Infp), throughput measurement (Tp), congestion window
(wp), size of the send window (swndp), RTT (τp) and packet
loss (lp). The agent observes the current state of the sys-
tem in each episode or scheduling interval (SI). Assuming
that in the t-th SI, the system state is denoted by st =
(st,1, st,2, . . . , st,n), where st,i (1 ≤ i ≤ n) signifies the
observed state of the i-th subflow, represented as a tuple
st,i = (Tt,i, swndt,i, Inft,i, wt,i, τt,i, lt,i), where

• Tt,i is the subflow throughput measurement;
• swndt,i is the maximum amount of unacknowledged data

that a sender can have in-flight;
• Inft,i is the number of unacked packets;
• wt,i is the average congestion window sizes;
• τt,i is the subflow mean RTT;
• lt,i is the packet loss of the subflow.

Action: The action space in our scenario is discrete
and its size is determined by the available paths (A =
{a0, . . . , ai, . . . , aP }). Each time LSMeta-DAMS deploys a
scheduling policy, it can choose from this set of actions,
and for each action it receives a reward. Each scheduling
policy is executed for a specific amount of time (T), where
T = min{τ0, . . . , τi, . . . , τP }. However, if the sender receives

an acknowledgment packet (ACK) before T , it proceeds to
choose the next action.

As an example, in the case where a user has only two
paths to transmit its data, our action space would be A =
{a0, a1, a2} where a0 corresponds to the option of waiting for
at least one path to become available. The action a1 involves
deciding whether to transmit data through the currently avail-
able path or to wait for the other path to become active. Finally,
the action a2 entails the selection of packets for transmission
from both available paths.

The data collection occurs in two instances [29]. First, dur-
ing the scheduling process, a data tuple [State (T ms before),
Action (T ms before), Reward (T ms during), State (current)]
is gathered every T ms. This occurs if no acknowledgment
(ACK) is received before T ms, under the condition that
the chunk download is not yet completed. Second, upon the
completion of the chunk download (or episode), a data tuple
[State (T ms before), Action (T ms before), Reward (episode),
and State (current)] is collected.

Reward: At any given time t, the reward rt ∈ R repre-
sents the performance of the agent. This scalar reward signal
comprises both positive and negative values which correspond
to rewards and penalties, respectively. Our reward R function
comprises frame-level (Rf) and chunk-level (Rc) components
(R = f(Rf , Rc)). To calculate Rf and Rc, we implement
a frame controller and chunk controller in LSMeta-DAMS
architecture. The details of the frame controller and chunk
controller are discussed in Section IV-B.

The frame-level reward (Rf) focuses on the timely delivery
of I-frame packets, which are critical for video quality, and
the successful delivery of P-frame and B-frame packets. The
reward for I-frames is given by:

Rf =
∑

i∈I-frames

(
RI

f · I(tai ≤ tdi + δ)−

P I
f · I(tai > tdi + δ)

)
+

∑
j∈P,B-frames

Gj , (7)

where RI
f is the positive reward for timely delivery of I-

frames, P I
f is the penalty for delayed or lost I-frames, Gj is

the goodput contribution of P-frame and B-frame packets, and
I(·) is an indicator function that returns 1 if the condition is
met and 0 otherwise.

The chunk-level reward (Rc) ensures efficient download
of video chunks by providing a higher reward for faster
downloads. It is defined as:

Rc =
Cmax

Cdownload
,

where Cmax is a constant representing the maximum reward
for the fastest possible download, and Cdownload is the actual
time taken to download the chunk.

To account for both immediate and future rewards, we
employ a discounted future reward approach. This method
allows the agent to consider both immediate and long-term
benefits, which is crucial for learning an effective policy over
time. The discounted future reward is calculated as:

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

9

Fig. 8: High-Level Architecture of the MA3C Algorithm in LSMeta-DAMS. The global network sends the current policy and
value network parameters (θ and θv) to multiple worker agents (1, 2, ..., n). Each worker interacts with its environment, taking
actions (ai = π(si; θi)) based on the current policy, and receiving new states and rewards (si,new, ri) from the environment. The
workers compute gradients (∆θi,∆θv,i) using their experiences and send them back to the global network, which aggregates
these gradients to update the global parameters. This process allows for efficient parallel training and faster convergence in
dynamic network conditions.

Rt (st, at) =

∞∑
k=0

γkrt+k+1, (8)

where γ ∈ (0, 1) is the discount factor. This structure
ensures that the agent’s decisions align with the long-term
objectives of high-quality video streaming by prioritizing
timely delivery, minimizing delays, and optimizing the overall
QoE.

Asynchronous Training Algorithm: LSMeta-DAMS em-
ploys a modified asynchronous training algorithm known as
modified-A3C (MA3C), which we developed as an extension
of the A3C algorithm. In contrast to previous approaches that
commonly utilize DQN as their online learning module, our
work introduces enhancements to the basic A3C framework
to better align it with the requirements of our application,
particularly in the context of multipath packet scheduling.
A high-level architecture of A3C is shown in Fig. 8. In the
following, we first provide an overview of the A3C algorithm.
Following that, we discuss the modifications implemented in
A3C to introduce MA3C.

1) A3C: A3C has several advantages over DQN. A3C
adopts the actor-critic framework and incorporates asyn-
chronous training and an advantage function to enhance the
algorithm’s training efficiency across parallel threads. In this
setup, the actor network generates actions or policies, while the
critic network assesses the chosen actions. This design acceler-
ates the overall training speed of the algorithm. A3C operates
without the need for experience replay, and its asynchronous
training ensures a diverse exploration and exploitation strategy.
By allowing each agent thread to interact with the environment
in parallel, the correlation among training samples is reduced,

enhancing the agent’s learning speed. Moreover, A3C can be
trained two times faster than DQN, even if a multi-core CPU
is used rather than a GPU [14].

A3C maintains a policy π (at | st; θ) and an estimate of
the value function V (st; θv). Updates to the policy and value
function occur either after a fixed number of steps or when a
terminal state is reached. In cases where the action function
Q(at, st) is non-negative, the policy gradient becomes greater
than or equal to zero, leading to increased action probabilities
and enlarged policy variance, thereby slowing down the agent’s
learning. To overcome this challenge, A3C introduces an
advantage function given by

A(at, st; θ) =

k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv) , (9)

where k varies from state to state and is capped by tmax.
If A(at, st; θ) > 0, the probability of action at increases;
otherwise, it decreases.

Recognizing that entropy can gauge the uncertainty of a
probability distribution, A3C incorporates policy entropy into
its framework. A higher entropy serves to prevent A3C from
converging to a suboptimal policy. Consequently, the policy
gradient update for A3C is defined as follows:

dθ ← dθ +∇θ′ log π (ai | si; θ′) (R− V (si; θ
′
v))

+β∇θ′H (π (st; θ
′)) ,

dθv ← dθv + ∂ (R− V (si; θ
′
v)) /∂θ

′
v,

(10)

where θ and θv are the global parameters regarding to the
action estimation and value estimation, respectively. θ′ and θ′v

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

10

Fig. 9: LSTM integration in MA3C algorithm.

are the local parameters regarding to the action estimation and
value estimation, respectively.

2) MA3C: On top of the original A3C, the proposed
MA3C changes the optimization method used in A3C and
incorporates a Long Short-Term Memory (LSTM) [37] model
into the design.

While RMSProp [38] is employed in the original A3C
design, MA3C utilizes the Adam optimizer [39] instead of
RMSProp. Adam combines ideas from both momentum and
RMSProp, utilizing moment estimates and an adaptive learn-
ing rate to optimize the loss function. As the effective steps
in the parameter space of the reinforcement learning model,
performed with the gradient moment estimates, are bounded by
the learning rate (α), the Adam method demonstrates resilience
to sudden changes in the magnitude of the gradients of the
loss function. This characteristic reduces the sensitivity to
abrupt changes, making Adam less dependent on extensive
hyperparameter searches for viable learning rates [39].

In problems where temporal dependencies exist between a
received reward at timestep t and information from previous
inputs, there is an incentive to maintain knowledge of input
history. One approach to sustain the context of a problem
over a sequence of time is by using recurrent neural networks
(RNNs). In the context of deep learning, a widely-used RNN
architecture is the LSTM model, which belongs to a set of
RNN models referred to as gated models.

Utilizing LSTM in the design of MA3C for multipath packet
scheduling is justified based on the temporal nature of the
input state, encompassing components such as throughput, un-
acknowledged data, congestion window size, mean RTT, and
packet loss. LSTM excels in capturing temporal dependencies,
facilitating sequential decision-making by the MA3C agent.
Its ability to handle variable-length sequences and preserve
memory and context makes it well-suited for scenarios where
decisions depend on historical context. Additionally, LSTM
enhances the model’s capacity to learn patterns in sequential
data, contributing to the effective adaptation of scheduling
policies in dynamic multipath environments.

Fig. 9 illustrates the integration of LSTM within the MA3C
architecture, demonstrating how LSTM is embedded in both
the worker agents and the global network. This integration
allows each block of the MA3C framework to effectively

Server

5G

Client

4G

WLAN

Fig. 10: Simulation Topology.
TABLE I: Simulation Parameters

Path Type
Path Parameters

BW (Mbps) RTT (ms) Jitter (ms) Packet Loss Rate (%)
5G 1100 27 ±7 0.1

4G 140 30 ±5 0.1

WLAN 30 20 ±10 0.7

leverage temporal dependencies, thereby improving learning
and scheduling decisions by maintaining context across se-
quential data inputs. The figure shows how LSTM units are
used to process sequences of input states, capture historical
information, and enhance the overall performance of the
MA3C algorithm in dynamic environments.

V. PERFORMANCE EVALUATION

In this section, the performance of LSMeta-DAMS is com-
pared with state-of-the-art MP schedulers.

A. Experiment Setup

The MPQUIC implementation in this study is based on
the QUIC implementation within mpquic-go [15]. Further-
more, we develop both model-based and learning-based MP
schedulers for comparison purposes. minRTT and RR are
the non-learning or model-based algorithms, while LSMeta-
DAMS, DAMS, Meta-DQN, DQN, ReLes, and Peekaboo are
the learning-based schedulers for comparison.

minRTT, RR, ReLes, and Peekaboo are algorithms proposed
based on MPTCP. We modified them for our application,
specifically adapting them to the MPQUIC framework. On the
other hand, LSMeta-DAMS, DAMS, Meta-DQN, and DQN
algorithms were developed by us. LSMeta-DAMS is proposed
as the primary MP scheduler for this work. We implement
Meta-DQN based on our hybrid meta-RL architecture to
observe how our MP scheduler performs when using DQN
instead of MA3C in our design. Additionally, we develop
DAMS and DQN to analyze the behavior of the scheduler
without considering our hybrid meta-RL architecture.

We build up a multi-homing scenario in which the client
and server are connected using two access links, i.e., WiFi
and 4G/5G (Fig. 10). This setup enables us to adjust the
RTT ratio of paths and define the client’s mobility pattern.
In our emulated experiments, we use network traces along
with statistical values, aiming for a controlled yet realistic
evaluation. Mininet is utilized to emulate the environment, and
the characteristics of each network path are shown in Table I
[30], [31].

At the application layer, we conduct both bulk transfer and
video streaming to evaluate the aggregation capability of the
MP schedulers. In the case of bulk transfers, each experiment
initiates an HTTP GET request for files of different sizes,

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

11

TABLE II: Hyperparameters of the Learning Model

Hyperparameter Value
Discounted Factor (γ) 0.99
Learning Rate (α) 0.001
ϵmax 1
ϵmin 0.01
ϵdecay 0.98

(a) WiFi RTT 20ms, LTE RTT
30ms.

(b) WiFi RTT 20ms, 5G RTT
27ms.

Fig. 11: The Impact of worker count on the performance of
LSMeta-DAMS while using meta-models.

(a) WiFi RTT 20ms, LTE RTT
30ms.

(b) WiFi RTT 20ms, 5G RTT
27ms.

Fig. 12: The Impact of worker count on the performance of
LSMeta-DAMS without using meta-models.

ranging from 256 KB to 256 MB, to assess the performance
of the MP schedulers. For video streaming, we utilize a video
file containing I, P, and B frames. To extract these video
frames and do video quality assessments, we use the free
and open-source software project called FFmpeg [40], which
provides a collection of libraries and programs for handling
multimedia data. We use MPEG-DASH as the adaptive bitrate
(ABR) streaming protocol in our video streaming experiments.

B. LSMeta-DAMS Configuration

LSMeta-DAMS’s learning components are implemented us-
ing keras-rl, a popular deep reinforcement learning library.
Based upon the ranges of network conditions covered by
the meta-models for each path, we implemented that packet
loss rates can range between [0, 0.5)%, [0.5, 0.75)%, and
[0.75, 1)%; the mean RTT can be between [0, 50) ms, [50, 100)
ms, and [100, 200] ms; and the ratio between deviations and
mean RTTs can be [0, 10)%, [10, 30)%, and [30, 50]%. The
combination of 27 coarse-grained states can therefore be
achieved by a single path [31]. In the case of two paths, there
are a total of 33×33 different coarse-grained states that can be
derived from the potential combinations. Thus, there are 729
meta-models in total. CSV files are routinely used to record
online experiences, while Hierarchical Data Format version 5
(HDF5) files are used to store neural networks representing
meta-models [31]. Hyperparameters of our learning model are

(a) WiFi RTT 20ms, LTE RTT
30ms.

(b) WiFi RTT 20ms, 5G RTT
27ms.

Fig. 13: Score of different MP schedulers.

shown in Table II. The discounted factor (γ) in Reinforcement
Learning indicates how much an agent values future rewards
as part of decision-making. It balances the trade-off between
immediate and long-term gains, promoting temporal credit
assignment, stability in learning, and exploration in dynamic
environments. The choice of γ influences the agent’s behavior,
with extremes (γ = 0 or γ = 1) representing myopic
or farsighted decision-making, respectively. Epsilon (ϵ) is
utilized in reinforcement learning to address the exploration-
exploitation trade-off. Implemented through epsilon-greedy
strategies, it governs the agent’s decision-making by balancing
the exploration of new actions and the exploitation of known
actions. Adjusting the value of epsilon enables the agent to
adapt its behavior over time, promoting exploration in the early
stages of learning and shifting towards exploitation as it gains
more knowledge about the environment.

C. Performance Analysis

1) Performance of the learning-based algorithms: In this
section, our primary objectives are twofold: first, to assess
the performance of LSMeta-DAMS using different numbers
of workers in its learning algorithm, both with and without the
use of meta-models. Second, to compare the performance of
learning-based algorithms among themselves, using different
network settings.

As shown in Fig. 11a and Fig. 11b, LSMeta-DAMS ex-
hibits improved performance with an increasing number of
workers. MA3C’s parallel execution allows multiple workers
to explore diverse network paths concurrently, facilitating
faster exploration, efficient resource utilization, and scalabil-
ity. The asynchronous nature of MA3C enables independent
interactions with the environment, preventing bottlenecks and
contributing to quicker learning and adaptation. In the context
of managing multiple network paths, the collective knowledge
gained from parallel exploration enhances LSMeta-DAMS’s
decision-making, resulting in a more robust and adaptable
to highly dynamic network conditions. This holds true even
when no meta-models are present, as illustrated in Fig. 12a.
Meta-models accelerate and enhance the convergence accuracy
of the online learning model towards the optimal policy.
Consequently, the score values in Fig. 11 are higher than
those in Fig. 12, showcasing the positive impact of meta-
models on performance. The term ”score” in this context rep-
resents the cumulative reward accumulated by the agent during
its learning process, reflecting the total utility achieved by

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

12

(a) WiFi RTT 20ms, LTE RTT 30ms. (b) WiFi RTT 20ms, LTE RTT 150ms. (c) WiFi RTT 20ms, 5G RTT 27ms.

Fig. 14: Performance of LSMeta-DAMS and other schedulers in downloading files of varying sizes.

(a) WiFi RTT 20ms, LTE RTT
30ms.

(b) WiFi RTT 20ms, 5G RTT
27ms.

Fig. 15: Performance comparison of LSMeta-DAMS and other
schedulers in downloading files with varying sizes, considering
different path combinations and worker numbers within the
LSMeta-DAMS framework.

LSMeta-DAMS over multiple episodes of interaction with the
environment. It is directly tied to the optimization objectives of
our framework, which aim to minimize stalling time, optimize
video quality, and maintain smooth playback.

In Fig. 13, we compare the performance of LSMeta-
DAMS with other learning-based algorithms under different
path configurations. It is worth mentioning that we consider
LSMeta-DAMS with four workers in these comparisons. As
observed, LSMeta-DAMS outperforms other algorithms in
both scenarios, thanks to its hybrid meta-RL architecture and
MA3C. However, the performance of Meta-DQN is notewor-
thy as well, indicating that even if we employ DQN in our
proposed hybrid meta-RL MP scheduler framework, it can
still outperform other algorithms. Additionally, DAMS, our
algorithm without using meta-models, demonstrates a good
performance, closely approaching the performance of Meta-
DQN.

2) Comparison of download time for different RTTs: We
test the completion (download) time of the schedulers on a
variety of files of various sizes, which results are illustrated
in Fig. 14a, and Fig. 14b. The term ”completion time” here
refers to the total time required to download or transmit a
video chunk over the multipath network. To facilitate a fair
comparison across different network conditions, we use a
regularized or normalized completion time, defined as the ratio
of the actual completion time to the baseline completion time
of a reference scheduler (minRTT in this case). We examine
two RTT combinations to demonstrate network heterogeneity.

Compared to minRTT, LSMeta-DAMS increases download
speeds by approximately 30% when the RTT values on both
paths are similar. LSMeta-DAMS improves download perfor-
mance by about 40% compared to minRTT as the gap between
RTT values widens. Our MP schedulers, LSMeta-DAMS and
DQN-based, consistently outperform other MP schedulers in
various scenarios. We are able to provide superior performance
due to the fact that we include delays and throughput as part
of our reward function, in addition to considering RTT, jitter,
and path capacity within our state set. LSMeta-DAMS and
DQN-based MP schedulers are more adaptable to significant
path differences. Nevertheless, LSMeta-DAMS outperforms
the DQN-based MP scheduler due to its utilization of A3C
within its architecture for learning.

3) Comparison of download time for different path com-
binations: Using minRTT as a baseline, we conducted tests
on the completion time of various schedulers for different path
combinations, such as WLAN/4G and WLAN/5G. Completion
times are normalized with respect to the completion time
of minRTT. In Fig. 14a, where WLAN and 4G are used as
network paths, LSMeta-DAMS demonstrates an approximate
30% increase in download speeds compared to minRTT. Fur-
thermore, when considering WLAN and 5G as network paths,
LSMeta-DAMS exhibits a 38% improvement in download
performance compared to minRTT, as shown in Fig. 14c.
LSMeta-DAMS outperforms other MP schedulers, particularly
Meta-DQN and DAMS, which share the same architecture as
LSMeta-DAMS. This superiority is due to the integration of
hybrid meta-RL and MA3C within its learning architecture.
Another contributing factor to its superior performance is
the inclusion of delays and throughput as part of the reward
function.

4) Download Time Comparison with Varying Worker
Numbers in LSMeta-DAMS Framework for Different Path
Combinations: As illustrated in Fig. 15, in both scenarios, an
increase in the number of workers in LSMeta-DAMS’s learn-
ing algorithm MA3C corresponds to a reduction in completion
time. This improvement can be attributed to the inherent
parallelization capabilities of MA3C. With a higher number of
workers, each worker can independently explore and exploit
the environment, sending its feedback to the global network.
Thus, the global network has access to more information in
each time slot compared to other algorithms, enabling it to

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

13

(a) WiFi RTT 20ms, LTE RTT 30ms. (b) WiFi RTT 20ms, 5G RTT 27ms. (c) Median Values of Stalling Time.

Fig. 16: Total stalling time of different MP schedulers.

(a) WiFi RTT 20ms, LTE RTT 30ms. (b) WiFi RTT 20ms, 5G RTT 27ms. (c) Median Values of Stalling Time.

Fig. 17: Total stalling time of LSMeta-DAMS.

converge to the optimal policy faster and more accurately.
5) Stalling Time: As mentioned in section II-C, stalling

time refers to pauses or buffering interruptions during play-
back. It represents the gap between the end of the playback
of one chunk (Ci) and the complete arrival of the next chunk
(Ci+1). If the next chunk arrives before the current chunk’s
playback concludes, there is no stalling time. However, if the
playback of Ci finishes and the Ci+1 is not fully received,
the time gap until the complete arrival of Ci+1 is considered
as the stalling time. In simpler terms, stalling time measures
the delay or waiting period between consecutive chunks of a
video. For each MP scheduler, we conduct 100 experiments
and present the cumulative distribution function (CDF) of the
total stalling time during the whole session, reflecting user
experience, in both Fig. 16 and Fig. 17.

As illustrated in Fig. 16, LSMeta-DAMS exhibits the least
stalling time compared to other MP schedulers in both sce-
narios. This superiority stems from LSMeta-DAMS’s ability
to rapidly and accurately schedule packets across available
paths, not only minimizing the risk of buffer depletion but
also proactively fetching and buffering content.

In Fig. 17, We aim to demonstrate the impact of the
number of workers on the performance of LSMeta-DAMS. It
is evident that having more workers can significantly enhance
the performance of LSMeta-DAMS. As mentioned before,
with a higher number of workers, each worker is able to
independently explore and exploit the environment, resulting
in faster and more accurate convergence to the best scheduling
policy.

6) Video Quality Assessment: In assessing the impact of
our proposed MP packet scheduler on live video streaming, we
deploy three widely used metrics: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Video Mul-
timethod Assessment Fusion (VMAF). PSNR, a conventional
metric, provides a straightforward measure of fidelity between
the original and received videos through signal power ratios.
Calculated as the ratio between peak signal power and mean
squared error (MSE), a higher PSNR value indicates lower
distortion and superior video quality [41]. Acceptable range
for PSNR is from 30 dB to 50 dB [42]. SSIM introduces
perceptual accuracy by incorporating structural information,
offering a scale from 0 to 1, where values exceeding 0.9 are of-
ten considered acceptable [43]. VMAF, developed by Netflix,
employs machine learning for content-dependent assessments,
providing scores on a 0 to 100 scale [44].

Enhancing video quality stands as a crucial objective for
quality metrics. However, widely employed metrics such as
PSNR and SSIM, despite their ease of calculation, fall short
in capturing the subjective perceptions of the human eye.
As a result, they offer limited practical value in real-world
applications. However, to thoroughly assess the visual quality
of the received video using LSMeta-DAMS in comparison
to other MP schedulers, we calculate all three metrics using
existing libraries in FFmpeg. The video quality of different
MP schedulers for various path combinations is illustrated in
Fig. 18 and Fig. 19.

As illustrated in Fig. 18a and Fig. 19a, the VMAF value
for LSMeta-DAMS surpasses that of other MP schedulers.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

14

(a) VMAF (b) SSIM (c) PSNR

Fig. 18: Video quality assessment considering three metrics, including PSNR, SSIM, and VMAF (WLAN+LTE).

(a) VMAF (b) SSIM (c) PSNR

Fig. 19: Video quality assessment considering three metrics, including PSNR, SSIM, and VMAF (WLAN+5G).

LSMeta-DAMS also excels over other MP schedulers in terms
of PSNR and SSIM metrics, except in Fig. 18c. Nevertheless,
the VMAF value holds particular significance for us in this
context, as our primary goal is to ensure the quality of the
received video aligns with human perception. This superior
performance in terms of speed and accuracy is attributed
to the hybrid meta-RL architecture of LSMeta-DAMS and
the utilization of MA3C as the learning algorithm. Addition-
ally, LSMeta-DAMS incorporates different video frames (IPB
frames) and layers (base layer and enhancement layer) in
its design. The consideration of diverse frame types and the
incorporation of parameters that contribute to reduced stalling
time in our reward design are other key factors contributing
to LSMeta-DAMS’s exceptional performance.

VI. CONCLUSION AND FURTHER RESEARCH ISSUES

In conclusion, this paper introduces LSMeta-DAMS,
a learning-based multipath scheduler designed for MP
live streaming. LSMeta-DAMS utilizes a hybrid meta-
reinforcement learning architecture with offline and online
phases. Unique features, such as prioritizing I-frame packets,
video chunk and frame management, and an enhanced asyn-
chronous training algorithm based on A3C (MA3C), collec-
tively contribute to superior performance in learning, accuracy,
and overall video streaming quality. Practical implementation
and trace-driven emulations using mpquic-go, TensorFlow, and
keras-rl validate LSMeta-DAMS’s effectiveness, showcasing
its potential to significantly enhance mobile video streaming
experiences.

Two promising future directions stem from this work.
Firstly, we propose developing a coupled congestion control
algorithm tailored for the multipath scheduler, aiming to
synchronize congestion control mechanisms and optimize MP
video streaming performance. Secondly, we envision creating
a dedicated multipath dynamic adaptive streaming over HTTP

(MP DASH) algorithm addressing unique challenges in mul-
tipath video streaming.

REFERENCES

[1] A. Sepahi, L. Cai, W. Yang, and J. Pan, “Meta-DAMS: Delay-aware
multipath scheduler using hybrid meta-reinforcement learning,” in 2023
IEEE 98th Vehicular Technology Conference (VTC2023-Fall), pp. 1–5,
2023.

[2] V. G. Cerf and R. E. Kahn, “A protocol for packet network intercommu-
nication,” IEEE Transactions on Communications, vol. 22, pp. 637–648,
1974.

[3] A. Langley et al., “The QUIC transport protocol,” Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
2017.

[4] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: A performance study of
DASH over QUIC,” in Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video, NOSS-
DAV’17, (New York, NY, USA), pp. 13–18, Association for Computing
Machinery, 2017.

[5] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses.” RFC 6824, 2013.

[6] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in Proceedings of the 13th International Conference on
Emerging Networking Experiments and Technologies, pp. 160–166,
2017.

[7] W. Yang, L. Cai, S. Shu, and J. Pan, “Scheduler design for mobility-
aware multipath QUIC,” in GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, pp. 2849–2854, 2022.

[8] W. Yang, L. Cai, S. Shu, J. Pan, and A. Sepahi, “Mams: Mobility-
aware multipath scheduler for mpquic,” IEEE/ACM Transactions on
Networking, pp. 1–16, 2024.

[9] H. Wu, G. Caso, S. F. Oliveira, Ö. Alay, and A. Brunström, “Multipath
scheduling for 5G networks: Evaluation and outlook,” IEEE Communi-
cations Magazine, vol. 59, pp. 44–50, 2021.

[10] V. Mnih et al., “Playing Atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[11] P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Codec and
GOP identification in double compressed videos,” IEEE Transactions
on Image Processing, vol. 25, pp. 2298–2310, 2016.

[12] J.-S. Lee et al., “Subjective evaluation of scalable video coding for
content distribution,” in Proceedings of the 18th ACM International
Conference on Multimedia, MM ’10, (New York, NY, USA), pp. 65–72,
Association for Computing Machinery, 2010.

[13] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the Internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

15

[14] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in 33rd ICML, 2016.

[15] D. C. Quentin, “MPQUIC-go.” https://github.com/qdeconinck/mp-quic/,
2019.

[16] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. Software available from tensorflow.org.

[17] M. Plappert, “Keras-rl.” https://github.com/keras-rl/keras-rl, 2016.
[18] H. Wu, S. Ferlin, G. Caso, . Alay, and A. Brunstrom, “A survey

on multipath transport protocols towards 5G access traffic steering,
switching and splitting,” IEEE Access, vol. 9, pp. 164417–164439, 2021.

[19] T. W. do Prado Paiva, S. Ferlin, A. Brunstrom, O. Alay, and B. Y. L.
Kimura, “A first look at adaptive video streaming over multipath QUIC
with shared bottleneck detection,” Proceedings of the 14th Conference
on ACM Multimedia Systems, 2023.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, 2007.

[21] J. Chen, C. Kao, and Y. Lin, “Introduction to H.264 advanced video
coding,” Asia and South Pacific Conference on Design Automation,
2006.

[22] S. Yu and N. Wang, “Video stalling detection method,” IOP Conference
Series: Materials Science and Engineering, vol. 715, no. 1, pp. 12–36,
2020.

[23] A. Biernacki and K. Tutschku, “Performance of HTTP video streaming
under different network conditions,” Multimedia Tools and Applications,
vol. 72, pp. 1143–1166, 2014.

[24] H. F. Harlow, “The formation of learning sets,” Psychological Review,
vol. 56, no. 1, pp. 51–65, 1949.

[25] R. Hattori et al., “Meta-reinforcement learning via orbitofrontal cortex,”
Nature Neuroscience, 12 2023.

[26] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pp. 431–439, IEEE, 2016.

[27] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP path scheduler to manage heterogeneous paths,” in Proceedings
of the 13th International Conference on Emerging Networking Experi-
ments and Technologies, pp. 147–159, 2017.

[28] H. Wu, . Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous envi-
ronments,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 10, pp. 2295–2310, 2020.

[29] S. Lee and J. Yoo, “Reinforcement learning based multipath QUIC
scheduler for multimedia streaming,” Sensors, vol. 22, no. 17, 2022.

[30] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in IEEE
INFOCOM 2019, 2019.

[31] H. Wu et al., “FALCON: Fast and accurate multipath scheduling using
offline and online learning,” arXiv preprint arXiv:2201.08969, 2022.

[32] X. Zhao, B. Liu, X. Jiang, W. Tang, and W. Dou, “Smart decision for
device selection in D2D-assisted multipath video transmission network,”
Expert Systems, vol. 40, 2022.

[33] D. Jurca and P. Frossard, “Video packet selection and scheduling for
multipath streaming,” IEEE Transactions on Multimedia, vol. 9, no. 3,
pp. 629–641, 2007.

[34] M. R. Garey and D. S. Johnson, Computers and intractability – A guide
to the theory of NP-completeness. New York: W. H. Freeman, 23rd ed.,
2002.

[35] V. H. Pong et al., “Offline meta-reinforcement learning with online
self-supervision,” in International Conference on Machine Learning,
pp. 17811–17829, PMLR, 2022.

[36] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, 2020.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[38] T. Tieleman, G. Hinton, et al., “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[40] F. Project, “FFmpeg: A complete, cross-platform solution to record,
convert, and stream audio and video.” https://ffmpeg.org/, 2023.

[41] F. A. Fardo, V. H. Conforto, F. C. de Oliveira, and P. S. Rodrigues, “A
formal evaluation of PSNR as quality measurement parameter for image
segmentation algorithms,” 2016.

[42] J. Erfurt et al., “A study of the perceptually weighted peak signal-to-
noise ratio (WPSNR) for image compression,” in 2019 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 2339–2343, 2019.

[43] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[44] R. Rassool, “VMAF reproducibility: Validating a perceptual practical
video quality metric,” in 2017 IEEE International Symposium on Broad-
band Multimedia Systems and Broadcasting (BMSB), pp. 1–2, 2017.

Amir Sepahi is a Ph.D. Candidate in the Depart-
ment of Electrical & Computer Engineering at the
University of Victoria, British Columbia, Canada.
He obtained his M.Sc. in Communication Networks
from Isfahan University of Technology in 2019. His
research interests include Wireless Communications,
Internet Protocols, Artificial Intelligence, and Net-
work Security.

Lin Cai (S’00-M’06-SM’10-F’20) has been with the
Department of Electrical & Computer Engineering
at the University of Victoria since 2005, and she
is currently a Professor. She is an NSERC E.W.R.
Steacie Memorial Fellow, an Engineering Institute
of Canada Fellow, a Canadian Academy of Engi-
neering Fellow, a Royal Society of Canada Fellow,
and an IEEE Fellow. Her research interests span
several areas in communications and networking,
with a focus on network protocol and architecture
design supporting emerging multimedia traffic and

the Internet of Things. She has been elected to serve the board of the IEEE
Vehicular Technology Society, 2019 - 2024, and as its VP in Mobile Radio.
She has been a Board Member of IEEE Women in Engineering (2022-
24) and IEEE Communications Society (2024-2026). She has served as an
Associate Editor-in-Chief for IEEE Transactions on Vehicular Technology,
and as a Distinguished Lecturer of the IEEE VTS Society and the IEEE
Communications Society.

Wenjun Yang is currently a Postdoctoral fellow
in the Department of Computer Science at the
University of Victoria, British Columbia, Canada.
His research interests include multipath QUIC/TCP,
video streaming, deep reinforcement learning, and
the next generation of network architecture. He is a
Graduate Student Member of IEEE.

Jianping Pan is a Professor of Computer Science
at the University of Victoria, British Columbia,
Canada. He received his Bachelor’s and PhD de-
grees in computer science from Southeast University,
Nanjing, Jiangsu, China, and he did his postdoc-
toral research at the University of Waterloo, On-
tario, Canada. He also worked at Fujitsu Labs and
NTT Labs. His area of specialization is computer
networks and distributed systems, and his current
research interests include protocols for advanced
networking, performance analysis of networked sys-

tems, and applied network security. He received IEICE Best Paper Award
in 2009, Telecommunications Advancement Foundation’s Telesys Award in
2010, WCSP 2011 Best Paper Award, IEEE Globecom 2011 Best Paper
Award, JSPS Invitation Fellowship in 2012, IEEE ICC 2013 Best Paper Award,
NSERC DAS Award in 2016, IEEE ICDCS 2021 Best Poster Award and
DND/NSERC DGS Award in 2021, and has been serving on the technical
program committees of major computer communications and networking
conferences including IEEE INFOCOM, ICC, Globecom, WCNC and CCNC.
He was the Ad Hoc and Sensor Networking Symposium Co-Chair of IEEE
Globecom 2012 and an Associate Editor of IEEE Transactions on Vehicular
Technology. He is a senior member of the ACM and a Fellow of the IEEE.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3502512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:30:41 UTC from IEEE Xplore. Restrictions apply.

