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Abstract— Average consensus is a key component of
multi-agent systems coordination, while data privacy becomes
a serious concern. Through the information exchange process,
the initial state of an agent may be disclosed to its neighbors.
The existing privacy-preserving research mainly addressed the
situation of single-neighbor eavesdropping and infinite-time con-
sensus, and they cannot deal with the cases of multi-neighbors
eavesdropping and collusion inference attack or ensuring finite-
time consensus. In this paper, we prove that it is impossible to
preserve a node’s data privacy if all of its neighbors collusively
infer the data. Otherwise, we propose a privacy-preserving
framework to support conventional average consensus, push-sum
consensus, and finite-time average consensus, which integrates
multiplying random variables, finite-time error compensation,
and updating rule jump. In this paper, each agent exchanges
data with its neighbors by multiplying a random variable to its
real-time state at each iteration. To eliminate errors caused by
the random multiplier, a finite-time error compensation term and
updating rule jump are designed, which ensure the accuracy of
consensus. We prove that the proposed framework can converge
and preserve privacy facing collusion inference attacks in both
finite-time and infinite-time consensus, while traditional adding-
noise-based methods cannot solve the finite-time case. We also
derive the analytical expressions of the maximum privacy disclo-
sure probability for the initial state of each agent, and present the
impact of multiplying random variables. Extensive case studies
demonstrate the effectiveness of the proposed framework.

Index Terms— Average consensus, privacy preserving, collu-
sion inference, multiplying random variables, finite-time error
compensation, updating rule jump.
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I. INTRODUCTION

CONSENSUS in multi-agent systems (MASs) has
attracted extensive attention in the past decades for its

wide applications in distributed systems [1], [2], [3], [4], such
as smart grids [5], [6], Internet of vehicles [7], multi-UAV
formation [8], etc. Consensus relies on information exchanges
between agents, and states of the agents are updated iteratively
and in a distributed manner till the states of all agents converge
to the same value. Average consensus is the most studied con-
sensus, in which each agent calculates the weighted average
of the states received from its neighbors to update its state and
achieves consensus when their states are all equal to the aver-
age of the initial states for all agents in the MAS. According
to convergence iterations, average consensus can be divided
into infinite-time average consensus and finite-time average
consensus, where infinite-time average consensus has been
thoroughly investigated [1], [9], while research of finite-time
average consensus still is in its infancy [10], [11].

On the other hand, privacy preserving becomes a press-
ing need as private information can be utilized to generate
user portraits, analyze user behaviors, and cause security
issues [12], [13], [14], [15], [16], [17], [18]. In an average
consensus process, the private information to be protected is
the initial states of the agents [19]. For instance, in distributed
energy management systems of microgrids, the devices apply
consensus to distributively make power decisions and during
this process, the initial states are the power generation or
consumption of the devices, which may be utilized by others to
infer sensitive information of a user, e.g., power demands [5].
For a target agent in an averaging process, since it regularly
exchanges information with its neighbors, each of its neighbors
is potentially able to infer something about the private state of
this target agent. Furthermore, if all its neighbors can mutually
share their available information and collusively infer the
private information of the target agent, the private information
can be inferred easier and more accurately. To this end, when
an agent does not want to reveal its initial state to any
other agent, it needs a suitable privacy-preserving algorithm
to preserve its initial state against collusion inference.

There has been active research about privacy-preserving
average consensus, where adding-noise-based methods [19],
[20], [21], [22], [23] are first proposed and widely used,
with which artificial noises are added into the exchanged
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information to blur the true state during the consensus process.
However, what kinds of noise can be utilized is a tricky
problem. Differential privacy (DP) is a privacy-preserving
algorithm which first applied in database management, then
it is introduced into average consensus. In differential-
privacy-based approaches, the noise of Laplacian or normal
distribution is added into the states of agents. Compared
with normally distributed noise, Laplacian distributed noise
can achieve probability zero of violating the private infor-
mation [24]. However, if DP is directly applied in average
consensus, the MAS cannot converge. This is because the
amplitude of noises does not decrease to zero, and the states of
agents cannot reach the same value. Hence, parameter-decay
DP is proposed to address this problem, where the magnitudes
of the added noises decay to zero with probability 1 (w.p.1)
when the average consensus algorithm converges, and the
convergence value is expected to be the true average value
of initial states [20]. Note that the convergence value is just
only expected to be the average value of initial states, i.e.,
the convergence value is not always the average value of
initial states. To guarantee the accuracy of convergence, the
noise added into the states of agents should be zero-sum and
parameter-decay [21].

However, there lacks a systematic study on privacy
preserving average consensus against collusion inference.
A fundamental issue remains to answer that, for a collusion
inference, whether there exists an algorithm to ensure average
consensus convergence while preserving the state privacy.
Besides, existing privacy-preserving methods usually focus
on a specific average consensus algorithm and hence are not
universally applicable. In addition, existing privacy-preserving
algorithms mainly consider infinite-time average consen-
sus, while few of them shed light on finite-time average
consensus.

In this paper, we address the problems that multiple neigh-
bors collusively infer the initial state of an agent by using the
information transmitted between the agent and its colluding
neighbors in cases of finite or infinite time average consen-
sus. We first systematically classify and analyze collusion
inference, and theoretically prove that the private information
cannot be preserved if all neighbors collusively inferring the
privacy of the target agent. To ensure both infinite-time and
finite-time consensus while preserving data privacy against
collusion attack, we propose a generic privacy-preserving
framework based on mechanisms including multiplying noise,
finite-time error compensation, and updating rule jump. The
proposed framework consists of two phases and in the first
phase, each agent generates a random variable at each iteration
and sends the product of the random variable and an interme-
diate variable to neighbors. To eliminate the errors caused by
the multiplicative noise, a finite-time error compensation term
is proposed to finally eliminate the impact of the noise on the
consensus convergence. Furthermore, we design the updating
rule jump mechanism, which allows the agent jump to phase 2
when each agent performs the original average consensus
algorithm. The phase change takes place asynchronously at
iterations that can be designed arbitrarily and independently
by each agent.

The main contributions of this paper are listed as follows:
1) We systematically investigate collusion inferences in

average consensus and theoretically analyze that in
the common average consensus scenarios, in which no
method can preserve the state privacy of an agent under
strong and full collusion attacks when all neighbors of
the victim agent collusively infer its private information.

2) We propose a generic privacy-preserving framework,
where random variables preserve the private information,
the finite-time error compensation term eliminates the
error caused by random variables, and the updating rule
jump ensures the convergence of average consensus.

3) We prove that the proposed framework converges in both
infinite- and finite-time average consensus and preserves
the initial state of the agent in the situation that all
except one neighbor are collusive, while adding-noise-
based methods can only preserve privacy in the case of
infinite-time consensus.

4) We analyze the impact of multiplying random vari-
ables when normally or Laplacian distributed random
variables are utilized, with which the proposed frame-
work performs better with larger variances of random
variables.

The rest of this paper is structured as follows: Section II
introduces related privacy-preserving methods for average
consensus. Section III presents average consensus algorithms
in detail and introduces the privacy disclosure problem with
average consensus. Section IV proposes our privacy-preserving
average consensus framework. Section V analyzes the conver-
gence and privacy-preserving properties and makes compar-
isons with traditional adding-noise-based methods, and guides
parameter design of the multiplicative noises. Section VI
presents case studies, followed by concluding remarks in
Section VII.

II. RELATED WORK

Privacy-preserving average consensus has been a hot topic,
and the approaches have three main categories: adding noise
[19], [20], [21], [22], [23], homomorphic encryption [25], [26],
[27], and state decomposition [28], [29], [30].

Adding-noise-based methods were first proposed. The work
in [20] proposed a differential privacy-based method, where
values of noises decay to zero w.p.1 when the average
consensus algorithm converges, and the MAS is expected
to converge to the average of agents’ initial states. Mo and
Murray proposed an algorithm in [19], in which a decay factor
is utilized and the added noises are zero-sum. This algorithm
can guarantee convergence and privacy preserving when only
part neighbors of an agent are honest-but-curious. Based on
the work in [19], He et al. [21] designed a secret function
interaction mechanism to avoid neighbors collecting broadcast
information. To evaluate the privacy-preserving performance
of adding-noise-based methods, a novel index was defined
in [22] to evaluate the privacy-preserving performance, termed
(ϵ, δ)-data-privacy, which depicts the maximum privacy disclo-
sure probability (MPDP) of private information, and becomes
an efficient evaluation indicator.
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Homomorphic encryption is a kind of asymmetric encryp-
tion methods, where each agent uses public and private keys to
respectively encrypt and decrypt the states of each agent and
the associated weights, and the product of data in the form of
ciphertext is equal to the sum of that in the form of plaintext.
The works in [25] and [26] applied Paillier cryptosystem into
average consensus, andachieves privacy-preserving consensus
based on homomorphic encryption. The work in [27] fur-
ther extended the application of this method on push-sum
average consensus. However, homomorphic encryption-based
algorithms consume much computation and communication
resources and may face the problem of running out of
memory [31].

State decomposition was first proposed in [28], with which
each agent constructs a virtual agent that has only one neigh-
bor, i.e., the corresponding actual agent. In this algorithm,
each actual agent updates its state based on the information
received from its actual neighbors and its corresponding virtual
agent, while each virtual agent updates its state only based on
its corresponding actual agent. The works in [29] and [30]
extended the method in [28] to push-sum average consensus
and asynchronous average consensus, respectively. Further, the
works in [32] and [33] proposed node decomposition and
edge decomposition methods, respectively, where each agent is
decomposed into multiple virtual agents in order to enhance
the privacy-preserving performance. However, such methods
usually inflate the network topology due to added virtual
agents, and hence may decrease the consensus convergence
speed.

III. PRELIMINARIES

In this section, we introduce three most commonly known
average consensus algorithms and identify the privacy disclo-
sure problem.

A. Network Model

Consider a directed graph G with N agents, and the set
of agents is denoted by V . Let eij denote the communication
link from agent j to agent i. eij is a 0 − 1 variable, where
eij = 1 means the link exists, and 0 otherwise. Then we define
N in

i = {j ∈ V|eij = 1} (resp. N out
i = {j ∈ V|eji = 1}) as

the in-neighbor (resp. out-neighbor) set of agent i with agent
j being an in-neighbor (resp. out-neighbor) of agent i. The
set of eij is represented by E ⊂ V × V . W (k) denotes the
time-varying weighted adjacency matrix of G. In summary, the
graph is denoted as G = {V, E , W (k)}. Particularly, if eij =
eji holds for each agent i and j in graph G, we call G an
undirected graph. Then N in

i = N out
i = Ni and din

i = dout
i = di

for each agent.

B. Average Consensus

Consider an undirected or strongly-connected directed
graph, where each agent has an initial state xi(0). The average
consensus aims to drive agents’ states (or their ratios) converge
to the average value x̄ of all agents’ initial states after infinite
(or finite) iterations, e.g, in the infinite cases,

lim
k→∞

xi(k) =
1
N

∑
i∈V

xi(0) = x̄, (1)

where k denotes the iteration number. To achieve average
consensus, the following three updating rules are commonly
used.

Algorithm 1 (Conventional Average Consensus, CAC):
For an undirected graph G, the updating rule of the CAC is

xi(k + 1) = wii(k)xi(k) +
∑
j∈Ni

wij(k)xj(k), (2)

where wij(k) is the weighted adjacency for the link eij of
agents i and j. The weights should ensure that 0 < wij(k) ≤

1
dmax+1 ,

∑
j∈Ni

wij(k)+wii(k) = 1, wij(k) = wji(k), where
dmax = maxi∈V{di}. W (k) is the matrix form of wij(k),
which is a symmetric matrix. It has been proved that CAC
converges and (1) holds if G is undirected and W (k) is
doubly-stochastic [1].

Algorithm 2 (Push-Sum Average Consensus, PAC): For a
strongly connected and directed graph, each agent designates
xi,1(0) = xi(0) and xi,2(0) = 1, and randomly generates
wpi(k) and wii(k) satisfying wpi(k) > 0, wii(k) > 0, and∑

p∈N out
i

wpi(k) + wii(k) = 1. At each iteration, each agent
receives wij(k), xj,1(k) and xj,2(k) from its j-th in-neighbor
and sends wpi(k), xi,1(k) and xi,2(k) to its p-th out-neighbor.
The updating rule for each agent is as follows:

xi,s(k + 1) = wii(k)xi,s(k) +
∑

j∈N in
i

wij(k)xj,s(k), s ∈ {1, 2}.

(3)

The average is achieved in terms of:

lim
k→∞

xi,1(k)
xi,2(k)

= x̄. (4)

It has been proved that PAC converges and (4) holds if G is
directed connected and W (k) is column-stochastic [34].

Remark 1: In PAC, the communication topology is a
directed graph where wij(k) = wji(k) is not necessary,
i.e., each agent can define its own adjacency weights. The
convergence value in PAC is also the average value of the
sum of all initial states, which is the same as CAC. Thus,
PAC can be viewed as a form of average consensus.

Algorithm 3 (Finite-Time Average Consensus, FAC): For a
strongly connected directed graph, where each agent des-
ignates xi,1(0) = xi(0) and xi,2(0) = 1, and randomly
generates wpi and wii that satisfy 0 < wpi ≤ 1

dout
i +1 and∑

p∈N out
i

wpi +wii = 1. At each iteration, each agent receives
wij , xj,1(k) and xj,2(k) from its j-th in-neighbor and sends
wpi, xi,1(k) and xi,2(k) to its p-th out-neighbor. The updating
rule for each agent is as follows:

xi,s(k + 1) = wiixi,s(k) +
∑

j∈N in
i

wijxj,s(k), s ∈ {1, 2}. (5)

Convergence to the average value is achieved in a finite
number of iterations, where each agent checks the convergence
conditions as follows. For any k = 2h ≥ 0 where h is a
positive integer, let

∆xi,s(0 :2h)=(xi,s(1)−xi,s(0), . . . , xi,s(2h+1)−xi,s(2h))T ,
(6)
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where s ∈ {1, 2}. Then the associated Hankel matrix of
∆xi,s(0 : 2h)T is

H(∆xi,s(0 : 2h))

=


xi,s(1)− xi,s(0) · · · xi,s(h + 1)− xi,s(h)
xi,s(2)− xi,s(1) · · · xi,s(h + 2)− xi,s(h + 1)

...
. . .

...
xi,s(h + 1)− xi,s(h) · · · xi,s(2h + 1)− xi,s(2h)

 .

(7)

Each agent computes the rank of H(∆xi,s(0 : 2h))(s ∈
{1, 2}), and records the first defective matrix and iteration
2hi when H(∆xi,s(0 : 2h)) firstly loses full rank. Let

βi = (βi(0), · · · , βi(hi − 1), 1)T (8)

denote the kernel of the first defective matrix
H(∆xi,s(0 : 2hi)) of agent i, then each agent can obtain x̄
by

xi,1(0 : hi)T βi

xi,2(0 : hi)T βi

= x̄, (9)

where xi,s(0 : hi) = (xi,s(0), . . . , xi,s(hi))T [10]. It has been
proved that FAC converges except for situations related to
Lebesgue measure zero set [10]. FAC can be viewed as a
special case of PAC, with which each agent can compute
the convergence value in finite iterations and in a distributed
manner.

To distinguish these updating rules in normal cases from
the privacy-preserving algorithms in presence of inferrers as
follows, we call the former the original average consensus
algorithms.

C. Privacy Disclosure Under Collusion Inference

In the average consensus, consider the situation that there
are a set of honest-but-curious agents (called inferrers in the
following) who want to infer the initial states of a target agent
i, i.e., xi(0). We call this case internal collusion inference.

Assumption 1: In this paper, we assume that all inferrers are
honest-but-curious, and they do not tamper with other agents’
data or the updating rule of the average consensus.

Based on the distribution of inferrers, internal collusion
inference can be categorized into four types, as illustrated in
Fig. 1.

Definition 1 (Non-Collusion Inference): An inferrer infers
the initial state of one of its neighbors, without colluding with
any other agents.

Definition 2 (Weak Collusion Inference): For a target
agent, a portion of its neighbors collaborate to infer the initial
state of the agent, while there is at least one neighbor of the
target agent who does not collude.

Definition 3 (Strong Collusion Inference): For a target
agent, all of its neighbors collusively infer its initial state.

Definition 4 (Full Collusion Inference): For a target agent,
all other agents in the network collusively infer its initial state.

Note that Definition 3 only considers one-hop neighbors of
the target agent. Definition 4 also specifies the role of its other
multi-hop neighbors. Hence, we can view the full collusion
inference as a special case of the strong collusion inference.

Fig. 1. Four types of internal inferences, where green nodes denote the target
agent, red nodes denote inferrers, and blue nodes denote normal ones.

Then we analyze the information about the target agent i
known to the inferrers based on the updating rule in
Algorithm 1. In the case of non-collusion inference, let Ij

i (k)
be the information set about the target agent i accessible to
the inferrer j at iteration k. Due to the existence of common
neighbors of agents i and j, the information originating from
the common neighbors can be utilized to infer the initial state
of agent i. Hence, Ij

i (k) can be expressed as

Ij
i (k) = {wij(k)} ∪ {ζl(k) | l ∈ (Ni ∩Nj) ∪ {i} ∪ {j}} ,

(10)

where ζl(k) is the exchanged information of agent l, which
has different meanings in different algorithms. For example,
if agents do not apply any privacy-preserving algorithm, then
ζl(k) = xl(k); while if agents apply adding-noise-based
methods, then ζl(k) = xl(k)+ϑl(k), where ϑl(k) denotes the
added noise. Similarly, in the case of weak collusion inference,
the information set of agent i accessible to the inferrers at
iteration k can be defined as

IAi
i (k) =

⋃
j∈Ai

Ij
i (k) = (∪j∈Ai

{wij(k)})⋃
{ζl(k) | l ∈ (Ni ∩ (∪j∈AiNj)) ∪ Ai ∪ {i}}, (11)

where Ai denotes the set of the inferrers of agent i. In the
case of weak collusion inference, Ai ⫋ Ni. Specifically,
Ai = j in the case of non-conclusion inference where agent
j is the inferrer. Further, by letting Ai = Ni, we obtain the
information set about agent i accessible to the inferrers in the
case of strong collusion inference (i.e., all the neighbors) at
iteration k

INi
i (k) =

⋃
j∈Ni

Ij
i (k) = {wli(k), ζl(k) | l ∈ Ni ∪ {i}}. (12)

Note that the information set accessible to the inferrers in the
case of full collusion inference at iteration k is the same as
INi

i (k), i.e., IV\{i}i (k) = INi
i (k). This is because for any

agent who is out of agent i’s neighbors (i.e., V\(Ni ∪ {i})),
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its incoming information originated from agent i must be
transferred by neighbors of agent i, and the neighbors cannot
obtain any extra information of agent i. Also, we define the
state set of agent i as Si(k) at iteration k, i.e., Si(k) = {xi(k)}
in the case of CAC, and Si(k) = {xi,2(k), xi,2(k)} in the
cases of PAC and FAC.

In this paper, we assume that for each individual inferrer
(resp. weak, strong, and full collusion inferrers), the inferring
process for xi(0) is based on Sj(0 : k) (resp. SAi(0 : k),
SNi

(0 : k), SV\{i}(0 : k)) and Ij
i (0 : k) (resp. IAi

i (0 : k),
INi

i (0 : k), IV\{i}i (0 : k)), where SAi
(0 : k) and IAi

i (0 : k)
denote the state and information sets available to the inferrers
Ai across iterations from 0 to k, respectively. Generally,
collusion inferrers can utilize more information to infer xi(0)
than an individual inferrer. If an agent has only one neighbor,
the information sets and state sets in the cases of non-, weak,
and strong collusion inferences are the same. If an agent has
two or more neighbors while all non-inferrer neighbors of
the target agent are the neighbors of inferrers, i.e., Ni\Ai ⊂⋃

j∈Ai
Nj , the information available to the inferrers is the

adjacency weight between the agent and infrerrers and the
exchanged information between the agent and all its neighbors,
i.e.,

IAi
i (0 :k) =

k⋃
h=0

{wji(h), ζl(h) | l ∈ Ni ∪ {i}, j ∈ Ai}. (13)

It is obvious that (13) is also the most information available
to the inferrers in the case of weak collusion inference. Com-
pared with strong and full collusion inference, the information
unavailable to the inferrers in the weak inference case is⋃k

h=0{wij(h) | j ∈ Ni\Ai}. Hence, inferrers can obtain more
information in the case of strong and full collusion inference
than weak collusion inference.

Next, we define privacy preserving in average consensus.
Definition 5: The private information of the target agent’s

initial state xi(0) is preserved if the inferrers cannot utilize
their received information and state sets to estimate xi(0) with
any guaranteed accuracy.

Definition 6: A privacy-preserving average consensus
algorithm should preserve the information of the target
agent’s initial state xi(0) while ensuring that the MAS
accurately converges to x̄.

For quantitatively describing the performance of privacy-
preserving algorithms, we introduce the following metric.

Definition 7 ( [22]): Let x and x̂ denote the true value and
its corresponding inference, respectively, then the MPDP δ
with a given error bound ϵ ≥ 0 is

δ = sup
x̂

P{|x̂− x| ≤ ϵ|I},

where P{·} denotes the probability of an event, I represents
the information set utilized to infer x, sup denote the supre-
mum of a set. For a given ϵ > 0, if

x̂∗ ⟨ϵ⟩ = argsup
x̂

P{|x̂− x| ≤ ϵ|I},

then x̂∗ ⟨ϵ⟩ is called the optimal inference of x with ϵ.
In Definition 7, ϵ and δ are parameters that describe

the privacy-preserving property of the algorithm, and with

a given ϵ, the smaller δ, the better the privacy-preserving
performance of the algorithm. Furthermore, x̂∗ ⟨ϵ⟩ is a variable
related to ϵ, i.e., if ϵ changes, x̂∗ ⟨ϵ⟩ may also change.

Remark 2: In this paper, we choose MPDP instead of DP as
the privacy metric. Comparing with DP, MPDP has advantages
as follows. DP is first utilized as the privacy measure in
the database managements, in which privacy of quantities of
data needs to be protected. DP compare the similarity of two
datasets where only one data in the two datasets is different.
However, in the average consensus, for each agent, only the
privacy of xi(0) needs to be preserved. From the perspective
of the inferrers, they have the capacity to estimate xi(0) in the
limited range based on the information set and state set. While
for each agent, only if the estimation of xi(0) by the inferrers
is close to xi(0), the privacy of the agent is threatened. In [22],
MPDP is developed to measure the performance of privacy
preserving average consensus algorithms, in which the close
degree of the estimated one and the actual one is reflected by
ϵ in Definition 7. While in DP, there is no metric of the close
degree. Hence, we choose MPDP as the privacy metric in this
paper.

As for the four aforementioned inferences, we first discuss
the possibility of privacy preserving in presence of strong and
full collusion inferences. For each agent i, let the averaging
process be expressed as an averaging function fi(·):

x̄ = fi(xi(0)|SNi
(0 :∞), INi

i (0 :∞)). (14)

The following assumption and lemmas are needed.
Assumption 2: Assume that the averaging function fi(·) is

injective.
Lemma 1: For any agent i ∈ V , the averaging function fi(·)

under CAC, PAC and FAC is injective.
Proof: See Appendix A.

Based on the above lemma, we can derive the following
theorem:

Theorem 1: For any privacy-preserving algorithm that
meets Assumption 2, it cannot preserve the initial state of
agent i against strong and full collusion inferences.

Proof: Given the information and state sets INi
i (0 : k) and

SNi
(0 : k) available to the inferrers, the convergence value x̄

is fixed. Then, for any privacy-preserving algorithm meeting
Assumption 2 and Definition 6, by the injectiveness of the
resulting averaging function, the initial state xi(0) is unique.
Hence, the inferrers can uniquely infer xi(0) in the case of
strong and full collusion inferences.

To the best of our knowledge, the state-of-the-art privacy-
preserving algorithms only consider the situations that non-
or weak collusion inferences occur. In addition, traditional
privacy-preserving infinite-time average consensus algorithms
usually add some random variable ϑi(k) into xi(k) to preserve
its privacy, e.g., the updating rule based on CAC is as follows:

x+
i (k) =xi(k) + ϑi(k), (15)

xi(k + 1) =wiix
+
i (k) +

∑
j∈Ni

wijx
+
j (k). (16)

These classical methods can preserve the initial states of
agent i in the case of non- and weak collusion inferences if the
corresponding original average consensus algorithms converge
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at infinite time horizon, which are not suitable for those in
finite-time convergence cases.

IV. PRIVACY-PRESERVING FRAMEWORK

Motivated to handle finite-time convergence cases, in this
section, we present a novel and generic privacy-preserving
average consensus framework. The proposed framework con-
sists of two phases as divided by a phase-switching time
ki > 0 for each agent i ∈ V . In each iteration k within
the first phase (i.e., k ≤ ki), each agent calculates a fusion
result ξi,s(k) based on all the information (ξj,s(k)) received
from its in-neighbors. It also calculates a finite-time error
compensation term zi,s(k). The agent updates its state xi,s(k)
by summing ξj,s(k) and zi,s(k) together, as shown in (20).
Meanwhile, it blurs ξi,s(k) by multiplying a random variable
θi,s(k) and broadcasts the result ζi,s(k) to its out-neighbors,
as shown in (17). In phase 2 (i.e., k ≥ ki), each agent operates
the original consensus algorithm. Note that only s = 1 is
taken into account in the case of CAC. At each iteration, each
agent receives ζj,s(k) and wij(k) from its in-neighbors and
sends ζi,s(k) and wpi(k) to its out-neighbors. Switching from
Phase 1 to Phase 2 is the so-called updating rule jump.

As Fig. 2 shows, the updating rule for the proposed frame-
work is summarized as follows:
• Phase 1: ∀k ≤ ki, the state for agent i is updated by

ζi,s(k) =θi,s(k)ξi,s(k), (17)

ξi,s(k + 1) =wii(k)ξi,s(k) +
∑

j∈N in
i

wij(k)ζj,s(k), (18)

zi,s(k + 1) =zi,s(k) +
∑

p∈N out
i

wpi(k) (ξi,s(k)− ζi,s(k)) ,

(19)
xi,s(k + 1) =ξi,s(k + 1) + zi,s(k + 1), (20)

where ξi,s(0) = xi,s(0), zi,s(0) = 0.
• Phase 2: ∀k ≥ ki + 1, the state for agent i is updated by

ζi,s(k) =xi,s(k), (21)

xi,s(k + 1) =wii(k)xi,s(k) +
∑

j∈N in
i

wij(k)ζj,s(k), (22)

where wij(k) yields to the constraints in the original
updating rules. For example, wij(k) is time-invariant in
FAC, which is also time-invariant at Phase 2.

Remark 3: The proposed framework has two phases. The
main purpose of phase 1 is to preserve the privacy of xi(0),
and that of phase 2 is to converge. In phase 1, we design
the multiplicative noise as the measure to preserve the data
privacy, and develop the finite-time error compensation term
to maintain the accuracy of the average value of the real-time
states, i.e., 1

N

∑
i∈V xi(k). In phase 2, without of generality,

we directly apply the original form of average consensus as it
can guarantee the convergence of the framework.

Remark 4: Note that θi,s(k) is not specified in the proposed
framework, which means a random variable of any proba-
bility distribution except for θi,s(k) = 1 can be utilized in
the proposed framework. θi,s(k) = 1 cannot be applied as
ζi,s(k) = ξi,s(k) holds if θi,s(k) is constant 1, and the privacy

Fig. 2. Updating rules of the proposed framework.

is sure to be disclosed. We will analyze the effects of the types
of random variables in Section V-D.

V. MAIN RESULTS

In this section, we first prove that the proposed framework
converges to the true average value. Then we analyze its
privacy-preserving performance in the presence of collusion
inference. Finally, we discuss the impact of the random
variables θi,s(0).

A. Convergence

For ease of exposition, let k and k denote min{ki, i ∈ V},
and max{ki, i ∈ V}, respectively. The following theorem
proves the convergence of the proposed framework.

Theorem 2: If the original average consensus algorithm
converges, then the proposed framework converges, and the
convergence is irrelevant to the probability distribution of
θi,s(k).

Proof: The detailed proof is given in Appendix B. Briefly,
we first show that, before k ≤ k, the states of the agents main-
tain that

∑
i∈V xi,s(k) =

∑
i∈V xi,s(0). Therefore, at iteration

k + 1, the states of the agents can be viewed as another
set of states that has the same average value. Then, after
k > k, the proposed framework behaves the same as the orig-
inal consensus algorithm and converges to the same average
value.
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Remark 5: The convergence process of the proposed
framework is irrelevant to θi,s(k). Hence, the probability
distributions of θi,s(k) can be designed while the conver-
gence of the proposed framework is not influenced. Even if
θi,s(k) = 0 at each iteration, zi,s(k) = zi,s(k− 1) +

∑
p∈N out

i

wpi(k−1)ξi,s(k−1), and
∑

i∈V xi,s(k) =
∑

i∈V xi,s(0) holds.
Hence, θi,s(k) = 0 does not affect the convergence of the
proposed framework.

B. Privacy-Preserving Performance

Since we have shown that under Assumption 2, the private
information of the agents’ initial states cannot be preserved in
presence of either strong or full collusion inference, we thus
analyze the performance of the proposed framework against
non- and weak collusion inference.

It is obvious that if the proposed framework can protect
the private information under any weak collusion inference,
it can also protect the private information under individual
inference. This is because the elements in the information set
Ii(k) obtained in the case of weak collusion inference are
more than those in the case of individual inference.

Theorem 3: The private information of any agent i, i.e.,
xi(0), can be preserved against non- and weak collusion
inference if and only if there is at least one neighbor who
does not collude with the inferrers.

Proof: See Appendix C.
When all information in IAi

i (0 : k) and SAi(0 : k) is utilized
to deduce the updating process in (17)-(20), the inferrers still
cannot infer xi(0) due to lack of θi,1(k)(k = 0, 1, . . . , ki).

C. Comparison With Adding-Noise-Based Methods

In the literature, the privacy of the agents’ initial states
can also be preserved by the methods that add noises to the
states [22]. Below we show that our framework can achieve the
same privacy-preserving performance as those adding-noise
methods in cases of CAC and PAC. However, in the case of
FAC, our framework still works while the existing adding-
noise-based methods such as those in [19] and [21] cannot.

When the inferrers randomly infer xi(0) by conjecturing
θi,1(k), there exists a probability that they guess xi,1(0) with
a limited error. For quantitatively describing the performance
of random inferring and discussing the impact of the multi-
plicative noise, we adopt MPDP in Definition 7.

1) Comparison in the CAC Case: Under the metric given in
Definition 7, the following results can be obtained for privacy-
preserving CAC.

Theorem 4: Under the non- (resp. weak) collusion infer-
ence in the case of CAC, the proposed framework can achieve
the same privacy-preserving performance in terms of MPDP
as that of adding-noise-based algorithms.

Proof: See Appendix D.
2) Comparison in the PAC Case: Since traditional adding-

noise-based methods are mainly for CAC, we hence construct
the following privacy-preserving method based on the adding-
noise-based method in [19] and [21]. At each iteration, each

agent generates a random variable ϑi(k) by

ϑi(k) =

{
vi(0), if k = 0
φkvi(k)− φk−1vi(k − 1), if k > 0

, (23)

where φ ∈ (0, 1) is a decay factor, vi(k) is a standard normally
distributed noise. Then the agents exchange information and
update their states by

x+
i,s(k) =

{
xi,s(k) + ϑi(k), if s = 1
xi,s(k), if s = 2

, (24)

xi,s(k + 1) =wii(k)x+
i,s(k) +

∑
j∈N in

i

wij(k)x+
j,s(k), s = 1, 2.

(25)

Then we compare the constructed algorithm as in (23)-(25)
with our proposed framework, and we can derive the following
theorem.

Theorem 5: Under the non- (resp. weak) collusion infer-
ence in the case of PAC, the proposed framework can achieve
the same privacy-preserving performance in terms of MPDP
as that of adding-noise-based algorithms.

The proof is similar to that of Theorem 4 and is omitted
herein.

3) Comparison in the FAC Case: It is worth noticing that
traditional adding-noise-based methods such as those proposed
in [19] and [21] cannot solve the privacy preservation problem
under FAC cases. This is because the added noise ϑi(k) in (15)
becomes zero-sum over time and decays as k goes infinity, i.e.,
limk→∞ ϑi(k) = 0, while ϑi(k) does not vanish in finite time
and it is hard to ensure zero-sum over time. Therefore, we have
the following remark.

Remark 6: In the case of FAC, the privacy-preserving meth-
ods proposed in [19] and [21] cannot ensure the accuracy of
convergence of FAC.

Remark 7: To our best knowledge, there is no privacy-
preserving FAC algorithm in the literature. The existing works
rarely use adding-noise-based methods to protect the private
information of FAC, because directly adding noise cannot
make FAC converge properly.

However, due to our proposed finite-time error compen-
sation term and updating rule jump mechanism, the privacy
preservation problem under FAC is addressed, which is the
main difference and innovation compared with adding-noise-
based methods.

D. Impact of the Multiplicative Noise

In the proof of Section V-B, we have found that the inferrers
cannot infer xi(0) under non- or weak collusion inference for
the sake of the existence of 1

θi,1(0)
. However, if the probability

density functions (PDFs) of 1
θi,1(0)

are known to the inferrers,
they can infer the probability distribution of xi(0) to make δ
as large as possible. Here we assume that the PDFs of 1

θi,1(k)

are different at different iterations. Then we can formulate the
problem as follows:

min{
f 1

θi,1(0)
(t)

}
{

sup
x̂i(0)

P
{
|x̂i(0)− xi(0)| ≤ ϵ|Ij

i (0)
}}

. (26)
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Under a given ϵ, the objective of designing 1
θi,1(0)

is to make
the MDPD δ as small as possible. Since Theorem 2 reveals
that the convergence process of the proposed framework is
irrelevant to θi,s(k), the probability distributions of θi,1(k) can
be actively designed. Since normal and Laplacian distributions
are widely used in privacy preserving, we investigate the
impact of 1

θi,1(0)
on the privacy-preserving performance when

1
θi,1(0)

obeys normal or Laplacian distribution, i.e., 1
θi,1(0)

∼
N(0, σ2

i,1(0)) or 1
θi,1(0)

∼ L(0, λi,1(0)), where σi,1(0) and
λi,1(0) are the variances parameters. Then the parameter
design problem becomes to design σi,1(0) and λi,1(0). The
following theorem depicts the impact of σi,1(0) and λi,1(0).

Theorem 6: If 1
θi,1(0)

∼ N(0, σ2
i,1(0)), then the proposed

framework based on any of the CAC, PAC and FAC algorithms
achieves a smaller MPDP with a larger σi,1(0), and the
achieved MPDP is

δ ⟨ϵ⟩ = erf

(
ϵ√

2|ζi,1(0)|σi,1(0)

)
, (27)

where erf(·) denotes the error function. Similarly, if 1
θi,1(0)

∼
L(0, λi,1(0)), the proposed framework can achieve a lower
MPDP with a larger λi,1(0), and the achieved MPDP is

δ ⟨ϵ⟩ = 1− exp
(
− ϵ

|ζi,1(0)|λi,1(0)

)
. (28)

Proof: From the viewpoint of the inferrers, ζi,1(0) is a
known parameter. Since 1

θi,1(0)
∼ N(0, σ2

i,1(0)), they can infer
the PDF of xi(0) via (42):

fxi(0)(t) =
1√

2π|ζi,1(0)|σi,1(0)
exp

(
− t2

2(ζ2
i,1(0)σ2

i,1(0))

)
.

Agent i can achieve less MPDP via designing f 1
θi,1(0)

(t)
and minimizing max f 1

θi,1(0)
(t). Computing the first order of

f 1
θi,1(0)

(t), termed as f 1
θi,1(0)

(t)′, and letting f 1
θi,1(0)

(t)′ = 0,
we have

sup fxi(0)(t) = fxi(0)(0) =
1√

2π|ζi,1(0)|σi,1(0)
.

Hence, sup fxi(0)(t) is monotonically decreasing in σi,1(0).
Similarly, the MPDP for xi(0) under the proposed framework
can be formulated as follows:

δ ⟨ϵ⟩ = sup
x̂i(0)

P{|x̂i(0)− xi(0)| ≤ ϵ|I}

= sup
θ̂i,1(0)

P

{∣∣ 1

θ̂i,1(0)
− 1

θi,1(0)

∣∣ ≤ ϵ

|ζi,1(0)|
| Ij

i (0)

}

= sup
1

θ̂i,1(0)

∫ 1
θ̂i,1(0)

+ ϵ
|ζi,1(0)|

1
θ̂i,1(0)

− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt

=
∫ ϵ

|ζi,1(0)|

− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt

=
∫ ϵ

|ζi,1(0)|σi,1(0)

− ϵ
|ζi,1(0)|σi,1(0)

1√
2π

e−
t2
2 dt

=erf

(
ϵ√

2|ζi,1(0)|σi,1(0)

)
. (29)

The proof process when 1
θi,1(0)

obeys Laplacian distribu-
tion is similar to that of normal distribution and is omitted
herein.

Remark 8: In the above, we only discussed the PDF of
θi,1(0), while those of θi,1(1), θi,1(2), . . . , and θi,1(ki) are
neglected. This is because wii(k) (0 ≤ k ≤ ki) is unknown
under non- and weak collusion inferences, which means agent
i can set the PDFs of θi,1(1), θi,1(2), . . . , and θi,1(ki) arbi-
trarily, and does not worry about the change of the probability
of indirect inferring.

If θi,1(0) obeys normal or Laplace distribution, the initial
state of agent i is sure to be disclosed if xi,1(0) = 0. Because
0 is out of the domain of θi,1(0) if θi,1(0) is generated accord-
ing to the conditions in Theorem 6, the inferrers can easily
infer that ξi,1(0) = 0 via ζi,1(0) = 0. When such a special
case occurs, the agent can add noise instead of multiplying
noise to preserve the private information at iteration 0. Here
we can summarize the method as follows:

ζi,1(0) =

{
ξi,1(0) + θi,1(0), if ξi,1(0) = 0
θi,1(0)ξi,1(0), otherwise

, (30)

where 1
θi,1(0)

∼ N(0, σ2
i,1(0)) or 1

θi,1(0)
∼ L(0, λi,1(0)).

Then we analyze the privacy-preserving performance of the
method (30), and we derive the following corollary:

Corollary 1: If 1
θi,1(0)

∼ N(0, σ2
i,1(0)), then the proposed

framework with the method (30) based on any of the CAC,
PAC and FAC algorithms achieves a smaller MPDP with a
larger σi,1(0), and the achieved MPDP is

δ ⟨ϵ⟩ = max

{
1− erf

(
1√

2|ζi,1(0)|σi,1(0)

)
,

erf

(
ϵ√

2|ζi,1(0)|σi,1(0)

)}
. (31)

Similarly, if 1
θi,1(0)

∼ L(0, λi,1(0)), the proposed framework
can achieve a lower MPDP with a larger λi,1(0), and the
achieved MPDP is

δ ⟨ϵ⟩ = max
{

exp
(
− 1
|ζi,1(0)|λi,1(0)

)
,

1− exp
(
− ϵ

|ζi,1(0)|λi,1(0)

)}
. (32)

Proof: From the perspective of the inferrers, they should
consider if ξi,1(0) = 0. Here we assume that 1

θi,1(0)
∼

N(0, σ2
i,1(0)), and analyze the two cases: ξi,1(0) = 0, and

ξi,1(0) ̸= 0.
Case I: ξi,1(0) = 0.
In this case, ζi,1(0) = θi,1(0) holds, and the inferrers

evaluate the probability of ξi,1(0) = 0 according to the
probability of 1

|θi,1(0)
| ≥ 1

|ζi,1(0)| :

P {ξi,1(0) = 0}

=P
{

1
|θi,1(0)

| ≥ 1
|ζi,1(0)|

}
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Fig. 3. Topology of the undirected graph for simulating CAC.

=
∫ +∞

1
|ζi,1(0)|

f 1
θi,1(0)

(t) dt +
∫ − 1

|ζi,1(0)|

−∞
f 1

θi,1(0)
(t) dt

=2
∫ +∞

1
|ζi,1(0)|

f 1
θi,1(0)

(t) dt

=2
∫ +∞

1
|ζi,1(0)|σi,1(0)

1√
2π

e−
t2
2 dt

=1− erf

(
1√

2|ζi,1(0)|σi,1(0)

)
. (33)

Note that (33) is not relevant to ϵ as the inferrers as the
inferrers directly estimate x̂i,1(0) = 0.

Case II: ξi,1(0) ̸= 0.
The MPDP of case II is (27). The proof is the same as that

of Theorem 6 and is omitted herein.
By summarizing the above two cases, we deduce that the

MPDP of the method (30) is the greater value of (27) and (33),
i.e., (31).

The proof process when 1
θi,1(0)

obeys Laplacian distribution
is similar to that of normal distribution and is omitted herein.

VI. CASE STUDIES

In this section, we demonstrate the effectiveness of the
proposed framework for CAC, PAC, and FAC via simulations.

For the case of CAC, consider an undirected graph with
8 agents, which is depicted in Fig. 3. The initial state vector for
the agents is (1, 2, . . . , 8)T . Each of the weight, wij is set as 1

5
due to dmax = 4. As a case study, we assume that the random
variable noise 1

θi,1(k) ∼ N(0, 102) or 1
θi,1(k) ∼ L(0, 10) and

for each agent, the phase-switching time ki is an integer inde-
pendently and randomly chosen within [1, 100]. The evolution
of the agents’ states under the proposed framework based on
CAC is shown in Fig. 4. It can be observed that all agents
converge to the correct average value of their initial states
validating Theorem 2. Meanwhile, the state of each agent
oscillates intensely before the iteration k = 100, because the
multiplicative noises are added in phase 1 in the purpose of
preserving the states’ privacy.

For the cases of PAC and FAC, consider a directed graph
with 8 agents as depicted in Fig. 5. The multiplicative noise is
chosen as 1

θi,s(k) ∼ N(0, 102), and each ki is set the same as
above. The iteration process of the proposed framework with

Fig. 4. Performance of the proposed framework based on CAC.

Fig. 5. Topology of the directed graph for simulating PAC and FAC.

Algorithm 2 and 3 are shown in Fig. 6 and Fig. 7, respectively.
Similar as above, with the proposed framework based on PAC
and FAC, the state of each agent varies intensively in phase 1
due to the effect of the multiplicative noise for the purpose
of privacy preserving. However, the state x(k) of each agent
converges to an independent value, and the ratio of xi,1(k) and
xi,2(k) converges to the right average value of their initial
states. In particular, as Fig. 7 shows, under the proposed
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Fig. 6. Performance of the proposed framework based on PAC.

framework for FAC, the evolution of the agents’ states steps
at 100, which means the convergence of the states at a finite
time is maintained even with the multiplicative noise injected.

To further demonstrate the performance of the proposed
framework in case of FAC, we conduct simulations and com-
pare it with that of the adding-noise-based method described

Fig. 7. Performance of the proposed framework based on FAC.

in (23), where φ = 0.9. Fig. 8 shows the iteration process
under the method in (23), which converges at step 115.
Compared with the convergence process in Fig. 7, it is obvious
that the MAS converges faster under our proposed framework.
Furthermore, the mean absolute error of the convergence val-
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Fig. 8. Performance of the adding-noise-based method in (23) for FAC.

ues under the method in (23) is 8.175× 10−6, which is larger
than that of the proposed framework, which is 6.055×10−12.
These demonstrate that our proposed framework converges
faster and more accurately than the method in (23).

To illustrate the performance of the error compensation
term, we simulate the proposed framework without (19) based
on CAC. The parameters setting is the same as that of Fig. 4.
As Fig. 9 shows, the states of all agents converge to 0,
while the average value is 4.5. Hence, the proposed error
compensation term is critical to the accurate convergence of
average consensus.

Then we evaluate the proposed framework in terms of
the achieved MPDP under different σi,1(0) and λi,1(0), with
θi,1(0) randomly generated such that 1

θi,s(k) ∼ N(0, σ2
i,1(0))

or 1
θi,s(k) ∼ L(0, λi,1(0)). Since ζi,1(0) is known to the

inferrers, we set ζi,1(0) = xi,1(0). From the results shown
in Fig. 10, we observe that, as either σi,1(0) or λi,1(0)
increases, the achieved MPDP decreases. This indicates that
the agents can choose larger σi,1(0)’s or λi,1(0)’s for better
privacy-preserving performance as showed in Theorem 6.
Moreover, the agents are likely to achieve a smaller MPDP
with larger initial values. For example, since x8(0) > x4(0),
the MPDP of agent 8 is smaller than that of agent 4 as shown
in Fig. 10a. Because according to Theorem 6, with the given
ϵ and σi,1(0) (or λi,1(0)), the proposed framework achieves a
smaller MPDP with a larger ζi,1(0).

Fig. 9. Performance of the proposed framework without error compensation
term based on CAC.

Fig. 10. The MPDP under different σi,1(0) and λi,1(0).

VII. CONCLUSION

This paper has systematically investigated the privacy dis-
closure problem caused by collusion inference in average
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consensus. We have proposed a generic privacy-preserving
framework for CAC, PAC, and FAC, with three novel
mechanisms including multiplying noise, finite-time error
compensation, and updating rules jump. We have proved that
the proposed framework ensures consensus convergence to the
right value while preserving the privacy the initial states of the
agents in the presence of non- and weak collusion inference.
Moreover, we have proved that the proposed framework can
achieve the same MPDP as adding-noise-based methods in the
cases of CAC and PAC. We also have shown that the proposed
framework ensures finite-time convergence with privacy pre-
serving, which cannot be achieved by the existing traditional
adding-noise-based method. Simulation results demonstrate
the effectiveness of the proposed framework.

APPENDIX A
PROOF OF LEMMA1

Proof: We consider CAC first. According to (2), the
averaging process of agent i for iterations k ≥ 1 can be
expressed as:

xi(k + 1) =
k∏

h=0

wii(h)xi(0) +
∑
j∈Ni

wij(k)xj(k)

+
k−1∑
h=0

k∏
l=h+1

wii(l)
∑
j∈Ni

wij(h)xj(h). (34)

Taking limits on both sides of (34), we have

lim
k→∞

xi(k + 1) = lim
k→∞

∑
j∈Ni

wij(k)xj(k)

+ lim
k→∞

k∏
h=0

wii(h)xi(0)

+ lim
k→∞

k−1∑
h=0

k∏
l=h+1

wii(l)
∑
j∈Ni

wij(h)xj(h).

(35)

Combining (14) and (35), we can obtain that

fi(xi(0)|SNi
(0), INi

i (0 : k))

= lim
k→∞

∑
j∈Ni

wij(k)xj(k) + lim
k→∞

k∏
h=0

wii(h)xi(0)

+ lim
k→∞

k−1∑
h=0

k∏
l=h+1

wii(l)
∑
j∈Ni

wij(h)xj(h). (36)

For each agent i, suppose that the state of the agent i evolves
from two potential initial values, i.e., xa

i (0) and xb
i (0), where

xa
i (0), xb

i (0) ∈ R, and R denotes the set of real numbers.
Then

x̄ =fi(xa
i (0)|SNi

(0), INi
i (0 : k))

=fi(xb
i (0)|SNi(0), INi

i (0 : k)).

According to (36), it holds that

lim
k→∞

∑
j∈Ni

wij(k)xj(k) + lim
k→∞

k∏
h=0

wii(h)xa
i (0)

+ lim
k→∞

k−1∑
h=0

k∏
l=h+1

wii(l)
∑
j∈Ni

wij(h)xj(h)

= lim
k→∞

∑
j∈Ni

wij(k)xj(k) + lim
k→∞

k∏
h=0

wii(h)xb
i (0)

+ lim
k→∞

k−1∑
h=0

k∏
l=h+1

wii(l)
∑
j∈Ni

wij(h)xj(h). (37)

Comparing the two sides of the above equation, we have
xa

i (0) = xb
i (0). Hence, fi(·) is an injective function in the

case of CAC.
In a similar argument, we can prove the injection property

of fi(·) in the cases of PAC and FAC. Thus, Lemma 1 is
proved.

APPENDIX B
PROOF OF THEOREM 2

Proof: For ease of description, let ξs(k), ys(k), zs(k),
and xs(k) denote the vector forms of {ξi,s(k)}, {ζi,s(k)},
{zi,s(k)}, and {xi,s(k)}, respectively. Since k ≤ k, we divide
the proof process into three cases, i.e., k ≤ k, k + 1 ≤ k ≤ k
(if k < k), and k ≥ k + 1.

When k ≤ k, (18) can be rewritten into the following form:

ξi,s(k + 1) = wiiξi(k) +
∑

j∈N in
i

wijθj(k)ξj(k),

and if we calculate the sum of all {xi(k) : i ∈ V} in the graph
G at each iteration k, we have

1T xs(k + 1) =1T ξs(k + 1) + 1T zs(k + 1)

=
∑
i∈V

wii(k)ξi,s(k)

+
∑
i∈V

∑
j∈N in

i

wij(k)θj,s(k)ξj,s(k) + 1T zs(k)

+
∑
i∈V

∑
p∈N out

i

wpi(k)(1− θi,s(k))ξi,s(k),

(38)

where 1 denotes the column vector of dimension N × 1 with
all elements equal to 1. Since all the information sent out by all
the agents in V is the same as that received by them, we have∑

i∈V

∑
j∈N in

i

wij(k)θj,s(k)ξj,s(k)

=
∑
i∈V

∑
p∈N out

i

wpi(k)θi,s(k)ξi,s(k). (39)

From (38)-(39), it can be derived that

1T xs(k + 1) =
∑
i∈V

wii(k)ξi,s(k) + 1T zs(k)

+
∑
i∈V

∑
p∈N out

i

wpi(k)(1− θi,s(k))ξi,s(k)

+
∑
i∈V

∑
p∈N out

i

wpi(k)θi,s(k)ξi,s(k). (40)
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By merging similar items of (40), we have

1T xs(k + 1) = 1T ξs(k) + 1T zs(k) = 1T xs(k).

Hence, 1T xs(k +1) = 1T xs(k) holds at any iteration k ≤ k,
and this equality is irrelevant to θi,s(k).

If k < k < k, a part of the agents are in Phase 1, while
others are in Phase 2. We define V1(k) and V2(k) be the
sets of agents that are currently in Phase 1 and Phase 2. The
summation of all xi(k) across the graph G at each iteration k
is

1T xs(k + 1)

=
∑

i∈V1(k+1)

ξi,s(k + 1) +
∑

i∈V1(k+1)

zi,s(k + 1)

+
∑

i∈V2(k+1)

xi,s(k + 1)

=
∑

i∈V1(k)

wii(k)ξi,s(k) +
∑

i∈V1(k)

∑
p∈N out

i

wpi(k)θi,s(k)ξi,s(k)

+
∑

i∈V1(k)

∑
p∈N out

i

k∑
h=0

wpi(k)(1− θi,s(h))ξi,s(h)

+
∑

i∈V2(k)

wii(k)xi,s(k) +
∑

p∈N out
i

wji(k)xi,s(k)

 . (41)

After merging similar items of (41), we have

1T xs(k + 1) =
∑

i∈V1(k)

(ξi,s(k) + zi,s(k)) +
∑

i∈V2(k)

xi,s(k)

=1T xs(k).

Hence, 1T x(k + 1) = 1T x(k) holds when k + 1 ≤ k ≤ k,
and this equality is also irrelevant to θi,s(k).

From the above proof process, we can easily deduce that
1T x(k̄ + 1 + 1) = 1T x(0). Then the updating process for
iterations k ≥ k̄ + 1 can be viewed as another average
consensus process in which all agents operate the original
average consensus algorithms with the initial states as x(k̄+1).
Since we have assumed the original algorithms converge, the
proposed framework also converges. Moreover, based on the
above proof process, we can see that the convergence is
irrelevant to θi,s(k). Thus, we have completed the proof.

APPENDIX C
PROOF OF THEOREM 3

Proof: Inspired by [28], we adopt the data disturbance
method to prove that the proposed framework can preserve
the private information. Specifically, if we change the initial
state xi(0) to an arbitrary value x′i(0) ̸= xi(0), the privacy of
the initial state can be preserved if the information set obtained
by the inferrers is the same; otherwise, the privacy information
cannot be preserved. Without loss of generality, for non- and
weak conclusion inference, let Ain

i and Aout
i denote in- and

out-neighboring inferrers of agent i in the inferrers set Ai,
respectively.

When k = 0, from the perspective of the collusive inferrers,
all elements in IAi

i (0) are

IAi
i (0) = {xi,2(0), wpi(0), ζi,s(0)|p ∈ Aout

i }.

Since wpi(0) is irrelevant to xi(0) and xi,2(0) = 1, the
only clue for the inferrers is ζi,1(0). Obviously, xi(0) can
be inferred via xi(0) = ζi,s(0)

θi,1(0)
. In this case, the estimate of

1
θi,1(0)

decides the estimate of x1(0) as ζi,1(0) is known to
the inferrers. It is obvious that there are numerous xi(0) and
θi,1(0) that satisfy

ζi,1(0) = θi,1(0)xi(0), (42)

then the inferrers cannot infer xi(0) via ζi(0).
When 0 < k ≤ ki, the information set available to the

inferrers is

IAi
i (0 : k) ={xi,2(0), wpi(h), ζi,s(h)|p ∈ Aout

i , 0 ≤ h ≤ k}⋃
{wij(h), ζj,s(h)|j ∈ Ain

i , 0 ≤ h ≤ k − 1}.

With this, we can express ζi,s(k) in the form of (43), as
shown at the bottom of the next page, which is deduced by
combining (17) and (18). Note that (43) is a combination of
the unknown variables θi,1(k) and ξi,1(0). For any x′i,1(0) ̸=
xi,1(0), there always exists θ′i,1(k) such that the resulting
ζi,1(k) by (43) is the same. Thus, the inferrers cannot infer
ξi,1(0), and the privacy of xi(0) in protected.

When k = ki + 1, the information set available to Ai is

IAi
i (0 : ki+1) = {wpi(h), ζi,s(h)|p ∈ Aout

i , 0 ≤ h ≤ ki + 1}⋃
{xi,2(0), wij(h), ζj,s(h)|j ∈ Ain

i , 0 ≤ h ≤ ki}.

Assume one of the non-collusive neighbors is agent m, and
for any xi(0)′ ̸= xi(0), there exists xm(0)′ ̸= xm(0) such
that xi(0) + xm(0) = x′i(0) + x′m(0). Based on the iterative
steps in (18)-(20), we can express ξi,s(ki + 1), zi,s(ki + 1),
and xi,s(ki + 1) in the following forms:

ξi,s(ki + 1) =
∑

j∈N in
i

wij(ki)ζj,s(ki) +
ki∏

h=0

wii(h)ξi,s(0)

+
∑

j∈N in
i

ki−1∑
h=0

wij(h)ζj,s(h)
ki∏

l=h+1

wii(l),

zi,s(ki + 1)

=
∑

p∈Ni

(
wpi(0)ξi,s(0) +

ki∑
h=1

wpi(h)
h−1∏
l=0

wii(l)ξi,s(0)

)

−
∑

p∈N out
i

ki∑
h=0

wpi(h)ζi,s(h)

+
∑

p∈N in
i

ki−1∑
h=0

wpi(h+1)
∑

j∈N in
i

wij(h)ζj,s(h)

+
∑

p∈N out
i

ki−1∑
h=1

wpi(h+1)
∑

j∈N in
i

h−1∑
l=0

wij(l)ζj,s(l)
h∏

s=l+1

wii(s),

xi,s(ki + 1)
=ξi,s(ki + 1) + zi,s(ki + 1)

=
ki∏

h=0

wii(h)ξi,s(0)−
∑

p∈N out
i

ki∑
h=0

wpi(h)ζi,s(h)
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+
ki−1∑
h=0

∑
j∈N in

i

wij(h)ζj,s(h)
ki∏

l=h+1

wii(l)

+
ki∑

h=1

(1− wii(h))
h−1∏
l=0

wii(l)ξi,s(0)

+
∑

p∈N out
i

wpi(0)ξi,s(0) +
∑

j∈N in
i

wij(ki)ζj,s(ki)

+
ki−1∑
h=0

(1− wii(h + 1))
∑

j∈N in
i

wij(h)ζj,s(h)

+
ki−1∑
h=1

h−1∑
l=0

∑
j∈N in

i

wij(l)ζj,s(l)
h∏

m=l+1

wii(m)

−
ki−1∑
h=1

wii(h + 1)
h−1∑
l=0

∑
j∈N in

i

wij(l)ζj,s(l)
h∏

m=l+1

wii(m)

=ξi,s(0) +
ki∑

h=0

∑
j∈N in

i

wij(h)ζj,s(h)−
∑

p∈N out
i

wpi(h)ζi,s(h)

.

(44)

Then, in order to analyze the trusted neighbor m’s influence
on privacy preserving, we divide the situation into the follow-
ing two cases: agent m is an in-neighbor or out-neighbor of
agent i.

Case I: Agent m is an in-neighbor of agent i. First, let
ξ′i,s(0) and w′im(k) denote the assumed fusion information
and the weighted adjacency of the agents i and m when xi(0)
is replaced by x′i(0), respectively. If there exist ξ′i,s(0) and
w′im(k) such that let IAi

i (k) unchanged, the inferrers cannot
obtain xi(0).Then, we replace ξi,s(0) and wim(k) with ξ′i,s(0)
(where ξ′i,1(0) ̸= ξi,1(0), ξ′i,2(0) = ξi,2(0) = 1) and w′im(k),
respectively, and rewrite (44) into the following form:

xi,s(ki + 1) =
ki∑

h=0

w′im(h)ζm,s(h)−
ki∑

h=0

∑
p∈Aout

i

wpi(h)ζi,s(h)

+ ξ′i,s(0) +
ki∑

h=0

∑
j∈Ain

i

wij(h)ζj,s(h). (45)

For the case of s = 2, due to ki > 0, the number of
unknowns (w′im(h)) exceeds the number of equations. Hence,
the inferrers cannot obtain w′im(h) by solving (45). Since
ξ′i,1(0) and w′im(h) (0 ≤ h ≤ ki) are unknown to the inferrers,
for any ξ′i,1(0) ̸= ξi,1(0), there exists w′im(h) (0 ≤ h ≤ ki)
such that (45) holds.

Case II: Agent m is an out-neighbor of agent i. Simi-
larly, we replace ξi,1(0), wmi(k), and wii(k) with ξ′i,1(0)
(ξ′i,1(0) ̸= ξi(0)), w′mi(k), and w′ii(k), respectively, where
w′mi(k) denotes the weighted adjacency of the agents i and

m when xi(0) is replaced by x′i(0), and rewrite (44) in case
of s=1 into the following form:

xi,1(ki + 1) = ξ′i,1(0) +
ki∑

h=0

∑
j∈Ain

i

wij(h)ζj,1(h)

−
ki∑

h=0

∑
p∈Aout

i

wpi(h)ζi,1(h)−
ki∑

h=0

w′mi(h)ζi,1(h). (46)

For the case of s = 2, similarly, the inferrers cannot obtain
w′im(h) by solving (45). Since ξ′i,1(0) and w′mi(h) (0 ≤ h ≤
ki) are unknown to the inferrers, for any ξ′i,1(0) ̸= ξi,1(0),
there exists w′mi(h) (0 ≤ h ≤ ki) such that (46) holds.

Combining Case I and II, we can determine whether agent
m is an in- or out-neighbor of agent i. For any x′i(0) ̸= xi(0),
there always exists w′mi(h) or w′im(h) such that the resulting
xi,1(ki + 1) by (44) based on x′i,1(ki + 1) is the same as that
based on xi,1(ki +1). Thus, the inferrers cannot infer ξi,1(0),
and the privacy of xi(0) in protected.

When k > ki + 1, the proof process follows the same logic
as that for iteration ki + 1 as above and is omitted herein.

In summary, the proposed framework can preserve the
privacy of xi(0).

APPENDIX D
PROOF OF THEOREM 4

Proof: Since for any i ∈ V and s ∈ {1, 2}, the
random variables {θi,s(k) : k = 0, 1, 2, . . .} are independent at
different iterations, according to [22], the MPDP is achieved
if the inferrers infer the initial state at iteration 0. Therefore,
in the following, we analyze the MPDP under adding-noise-
based methods and our proposed framework at iteration 0.

As regards adding-noise-based methods, the initial state
of agent i, i.e., xi(0) in (15) can be viewed as a vari-
able, and E(xi(0)) = x+

i (0) − E(ϑi,1(0)) = x+
i (0) and

D(xi,1(0)) = D(ϑi,1(0)), where E(·) and D(·) denote the
expectation and variance of a random variable, respectively.
For the inferrers, the obstacle of inferring xi(0) is ϑi,1(0),
and the reasonable method to infer xi(0) is estimating ϑi,1(0)
by the PDF of ϑi,1(0). In accordance with Definition 7, the
way to achieve the optimal inference of ϑi,1(0) is maximizing∫ ϑ̂i,1(0)+ϵ

ϑ̂i,1(0)−ϵ
fϑi,1(0)(t) dt, where fϑi,1(0)(t) denotes the PDF of

ϑi,1(0). Without loss of generality, the domain of fϑi,1(0)(t)
is assumed to be R. The MPDP for xi(0) and the optimal
inference ϑ̂∗i,1(0) ⟨ϵ⟩ with the given error range [−ϵ, ϵ] under
the adding-noise-based methods can be formulated as follows:

max
x̂i(0)

{P{|x̂i(0)− xi(0)| ≤ ϵ|I}}

= max
ϑ̂i,1(0)

{
P
{∣∣∣(x+

i (0)−ϑ̂i,1(0))−(x+
i (0)−ϑi,1(0))

∣∣∣≤ϵ

∣∣∣∣I}}

ζi,s(k) = θi,s(k)
k−1∏
h=0

wii(h)ξi,s(0)+θi,s(k)


∑

j∈N in
i

∑k−1
h=0 wij(h)ζj,s(h), k = 1∑

j∈N in
i

(∑k−2
h=0 wij(h)ζj,s(h)

∏k−1
l=h+1 wii(l) + wij(k−1)ζj,s(k−1)

)
, k ≥ 2

(43)
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= max
ϑ̂i,1(0)

{
P
{∣∣∣ϑ̂i,1(0)− ϑi,1(0)

∣∣∣ ≤ ϵ

∣∣∣∣I}}
= max

ϑ̂i,1(0)

∫ ϑ̂i,1(0)+ϵ

ϑ̂i,1(0)−ϵ

fϑi,1(0)(t) dt, (47)

and

ϑ̂∗i,1(0) ⟨ϵ⟩ = arg max
ϑ̂i,1(0)

∫ ϑ̂i,1(0)+ϵ

ϑ̂i,1(0)−ϵ

fϑi,1(0)(t) dt. (48)

Similarly, in our proposed framework, E(xi(0)) =
ζi,1(0)E( 1

θi,1(0)
) and D(xi(0)) = ζi,1(0)2D( 1

θi,1(0)
) if

ζi,1(0) ̸= 0. Here we assume ζi,1(0) ̸= 0. Let f 1
θi,1(0)

(t)

denote the PDF of 1
θi,1(0)

, and assume that

f 1
θi,1(0)

(t) =

{
fϑi,1(0)(t− 1

|ξi,1(0)| ), if t ≥ 1
|ξi,1(0)|

fϑi,1(0)(t + 1
|ξi,1(0)| ), if t ≤ − 1

|ξi,1(0)|
.

(49)

Note that f 1
θi,1(0)

(t) is a piece-wise function, and the domain

is
(
−∞,− 1

|ξi,1(0)|

]
∪
[

1
|ξi,1(0)| ,∞

)
. Hence, we can obtain

that |ζi,1(0)| ≥ 1. Also, the MPDP for xi(0) and the opti-
mal inference 1

θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
with the given error range[

− ϵ
|ζi,1(0)| ,

ϵ
|ζi,1(0)|

]
under the proposed framework can be

formulated as follows:

max
x̂i(0)

{P{|x̂i(0)− xi(0)| ≤ ϵ|I}}

= max
θ̂i,1(0)

{
P

{∣∣∣∣∣ ζi,1(0)

θ̂i,1(0)
− ζi,1(0)

θi,1(0)

∣∣∣∣∣ ≤ ϵ

∣∣∣∣I
}}

= max
θ̂i,1(0)

{
P

{∣∣∣∣∣ 1

θ̂i,1(0)
− 1

θi,1(0)

∣∣∣∣∣ ≤ ϵ

|ζi,1(0)|

∣∣∣∣I
}}

= max
θ̂i,1(0)

∫ 1
θ̂i,1(0)

+ ϵ
|ζi,1(0)|

1
θ̂i,1(0)

− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt, (50)

and

1

θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
=argmax

1
θ̂i,1(0)

∫ 1
θ̂i,1(0)

+ ϵ
|ζi,1(0)|

1
θ̂i,1(0)

− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt.

(51)

It is worth noticing that
[
ϑ̂∗i,1(0)− ϵ, ϑ̂i,1(0) + ϵ

]
and[

1
θ̂i,1(0)

− ϵ
|ζi,1(0)| ,

1
θ̂∗i,1(0)

+ ϵ
|ζ∗i,1(0)|

]
should be in the ranges

of the domains of fϑi,1(0)(t) and f 1
θi,1(0)

(t), respectively.
Then we can obtain the expressions of the MPDP under

adding-noise-based methods and our proposed framework,
denoted by δ0 and δ1, respectively as follows:

δ0 =
∫ ϑ̂∗i,1(0)⟨ϵ⟩+ϵ

ϑ̂∗i,1(0)⟨ϵ⟩−ϵ

fθi,1(0)(t) dt,

δ1 =
∫ 1

θ̂∗
i,1(0)

〈
ϵ

|ζi,1(0)|

〉
+ ϵ
|ζi,1(0)|

1
θ̂∗

i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt.

According to Definition 7, for any α, γ ∈ R that satisfy γ ≤ ϵ,
we have∫ ϑ̂∗i,1(0)⟨ϵ⟩+ϵ

ϑ̂∗i,1(0)⟨ϵ⟩−ϵ

fθi,1(0)(t) dt ≥
∫ α+γ

α−γ

fθi,1(0)(t) dt. (52)

To analyze the relationship between δ0 and δ1, we divide the
situation into two scenarios. For ease of analysis, we firstly
assume that 1

θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
is the unique optimal inference

of (51).
Scenario I: 1

θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
> 0. Considering (49),

we have

δ1 =
∫ 1

θ̂∗
i,1(0)

〈
ϵ

|ζi,1(0)|

〉
+ ϵ
|ζi,1(0)|

1
θ̂∗

i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− ϵ
|ζi,1(0)|

f 1
θi,1(0)

(t) dt

=
∫ 1

θ̂∗
i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− 1
|ξi,1(0)|+

ϵ
|ζi,1(0)|

1
θ̂∗

i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− 1
|ξi,1(0)|−

ϵ
|ζi,1(0)|

fθi,1(0)(t) dt.

Then referring (52), we can derive that

δ1 ≤
∫ 1

θ̂∗
i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− 1
|ξi,1(0)|+ϵ

1
θ̂∗

i,1(0)

〈
ϵ

|ζi,1(0)|

〉
− 1
|ξi,1(0)|−ϵ

fθi,1(0)(t) dt

≤
∫ ϑ̂∗i,1(0)⟨ϵ⟩+ϵ

ϑ̂∗i,1(0)⟨ϵ⟩−ϵ

fθi,1(0)(t) dt = δ0.

Scenario II: 1
θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
< 0. δ1 ≤ δ0 holds, and the

proof follows the same logic as that in Scenario I.
Combining Scenario I and II, we can obtain that δ1 ≤ δ0 if

the PDFs of 1
θi,1(k) and ϑi,1(k) are ruled by (49). If there

exist multiple optimal inferences for 1
θ̂∗i,1(0)

〈
ϵ

|ζi,1(0)|

〉
and

ϑ̂∗i,1(0) ⟨ϵ⟩, δ1 ≤ δ0 also holds, and the proof process follows
the same logic as above. Thus, Theorem 4 is proved.
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