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Abstract—Indoor Sound Source Localization (ISSL) is under
growing focus with the rapid development of smart IOT
intelligence. The predominant approaches typically involve
constructing large microphone (Mic) array systems or extract
multiple angles of arrival (AOAs). However, the performance of
these solutions is often constrained by the physical size of the
array. Besides, there has been limited focus on 3D localization
with a single small-sized Mic array. In this paper, we propose
HearLoc, an ISSL system that can locate 3D sources with a
ten-cm Mic array. We demonstrate that the localization ability
and dimensional capability can be significantly enhanced by
incorporating the time differences of arrival (TDOAs) between
the LOS and ECHO signals from nearby reflective surfaces.
Our approach involves a localization method that selectively
sums the correlation powers at useful TDOAs induced by
each location. We also design a data processing pipeline with
interpolation, normalization and pruning techniques to improve
system accuracy and efficiency. To further enhance scalability,
we design an iterative algorithm for the ISSL problem with
multiple sources and an array location calibration scheme.
Experiments demonstrate that the HearLoc can effectively locate
sound sources, exhibiting 2×/3.7× improvements in accuracy
for 2D and 3D localization, respectively, and a 4× increase in
efficiency compared to the existing AOA-based ISSL solutions.

Index Terms—Sound source localization, angle-of-arrival,
indoor acoustics, multipath

I. INTRODUCTION

With the continuous development of AI technology,
intelligent voice assistants have been widely integrated into
Intelligent Agents (IA) such as smart speaker and mobile robot
[1], [2]. As one of the foundations for human to interact
with the IAs, voice commands usually contain abundant
features such as semantics and moods, which help IAs better
understand the meaning of users. In addition to these feature
domains, the growth of the edge computing market has brought
growing demand for sound source localization, especially
in the context of IOT and HCI [3]–[5]. Various scenarios
benefit from this capability, including but not limited to: (I)
A smart speaker can accurately identify illegal break-ins or
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elder falling according to the sound type and location. (II)
A sweeping robot hears a command “clean here” and can
navigate to the exact location where the user (namely the
sound source) stands for cleaning tasks. Compared with other
localization technologies that use radio frequency or visual
signals, localization directly by sound usually has advantages
of less energy consumption, wider field-of-view and less
privacy concerns [6]–[10].

Previous sound source localization technologies typically
rely on deployments of meter-level Mic arrays [11]–[16].
Along with the miniaturization trend of IAs, obtaining the
exact location of an unknown sound source with a small-
sized Mic array (usually ten-cm level) is important yet. This
is because when the source-array distance is several times
larger than the physical size of array, the sound rays that arrive
at different Mics can be considered parallel, making it only
possible to determine the AOA of source, rather than its precise
location. This phenomenon is also called far-field effect [17].
Due to the existence of multipath in indoor environments, the
Mic array can usually receive signals from various directions.
Prior studies have explored calculating multiple AOAs that
sound arrives at the array. Then, the source location can
be determined by the intersection of these AOA rays (i.e.
triangulation method) [18]–[21]. Although significant progress
has been achieved, there are still several unsolved challenges:

• Locating Sound Sources in 3D: Localization in 3D
typically relies on constructing a 2D or 3D Mic array
of meter level [22], [23]. Recent research on using Mic
arrays of ten-cm for source localization is mostly limited
in 2D [18]–[21]. However, in real-life situations, the
source would not always be at a known 2D plane, and the
deviation in height dimension can affect the localization
performance with a small-sized array [21].

• Limited Resolution: According to the array theory [24],
the resolution of AOA estimation is constrained by
the physical size of array, whereas the limited acoustic
sampling rate on commodity IAs also creates significant
ambiguities in AOA estimation. In these cases, previous
AOA-based solutions may fail to work when the obtained
AOA rays are merged or approximately parallel.

• High Computation Complexity: To obtain more precise
AOAs, the processing latency of many existing ISSL
systems is usually at second-level [18]–[20]. This may not
meet the requirements for many real-time applications.

To tackle these challenges, we propose HearLoc, an ISSL
system that can locate 3D sound sources with only a small-
sized Mic array. We simulate the collection of room ECHO
signals by virtual Mic elements. As a result, multiple real
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and virtual Mics can construct a cross-wall 2D Mic array,
whose size is significantly larger than the physical size of
the original array. This equivalent virtual array can enable 3D
localization and improve the accuracy in 2D. Technically, to
handle challenge 1, we build a model of multipath propagation
to show the effectiveness of utilizing several useful TDOAs
among multipath signals for 3D localization. As for challenge
2, we design an ISSL system that can generate localization
heatmaps by searching for the location with the maximal sum
of correlation powers. In order to improve the resolution,
we propose a spectrum interpolation approach on general
cross correlation phase transformation (GCC-PHAT) and a
matrix normalization scheme that can address ambiguities in
the localization heatmap. To solve challenge 3, a pruning
algorithm is adopted by locating some strong correlation peaks
along the strong LOS signals for accelerating. Besides, our
algorithm has a low complexity, and parts of it can be designed
to work offline, further reducing processing time.

Finally, to build a practical system, we first propose to solve
the cases where multiple sound sources exist by an iterative
algorithm. Its core is to set the correlation power at TDOAs
induced by each source location to zero iteratively. Then,
we propose a fine-grained array location calibration scheme
by building an optimization function for the theoretical and
obtained time-of-flight (TOF) information of reflection signals.

The results in datasets created by PyroomAcoustics [25]
demonstrate an overall median error of 0.2m and 0.37m in
2D and 3D. The corresponding processing latency is 0.19s
and 0.2s on a low-end PC. We also conduct experiments in
real rooms for localization and tracking. The median error is
less than 0.44m. Our contributions can be summarized as:
• To the best of our knowledge, we make the first attempt

to directly locate 3D sound sources with a small-sized
microphone array, even using a simple 2-Mic system. Our
source code has been released on Github1.

• We propose a novel ISSL localization framework, mainly
achieved by selectively summing the correlation powers
at several useful TDOAs generated by each location. We
also develop schemes to address the problems with multiple
sources and array location calibration.

• Extensive experiments demonstrate a 3.7× increased
accuracy in 3D localization and 4× improved efficiency of
our scheme over the SOTA AOA-based solutions.
The rest of this paper is organized as: §II presents the

related works. §III outlines the model of ISSL problem with
a small-sized array. §IV describes the system architecture and
§V presents the ISSL system design for a single source. §VI
and §VII discuss the solutions of multiple sources localization
and array location calibration. §VIII and §IX present the
experimental results in simulation and real world. §X gives
the discussions and §XI makes a conclusion.

II. RELATED WORK

A. Indoor Localization
The current most widely-adopted localization system is

GPS, a satellite-based navigation system that can provide

1https://github.com/Lizhaohui2000/HearLoc

precise location information. Although working excellently
outdoors, its performance may significantly decrease when
used indoors because of large signal attenuation and complex
multipath [26]. To overcome this limitation, there are works
that propose to utilize Wi-Fi, UWB and RF signals for indoor
localization [6], [9], [10], achieving an accuracy of dm level.
For example, it is proven feasible to construct a received-
signal-strength (RSS) map collected by multiple access points
to achieve localization [6]. However, these RF-based methods
usually require specific equipment, large-scale deployments
or extensive data collection, which may be expensive and
inconvenient for daily use. The utilization of cameras for
localization purposes is possible, but it may face limited
acceptance at homes due to privacy concerns [7], [8].

Different from these solutions, our system can be directly
deployed with a single small-sized Mic array, which can be
very convenient and low-cost. Besides, our method does not
need a dataset, thereby saving the effort of data collection.

B. Acoustic Source Localization

In recent years, acoustic signal has been widely used for
fine-grained ranging and tracking thanks to its low propagation
speed. Some works have utilized different types of signals
such as sinusoidal, FMCW, OFDM [27]–[29] or pseudo white
noise [30] to achieve movement tracking at cm or even
mm level. Besides these works that transmit and collect
known acoustic signals, unknown sounds, such as human
voices, are also prevalent in our daily life. Conventional
techniques for unknown sound source localization typically
rely on building a large-scaled Mic array or multiple small-
sized Mic arrays [11], [12]. TOF information, TDOA between
Mic elements and acoustic fingerprints have also been widely
utilized in 2D/3D localization [16], [22], [23]. Although
effective, in order to ensure acceptable spatial resolution,
the total physical array size of these systems is usually in
meters. This requirement may not be feasible for space-limited
deployments. Furthermore, some large-scaled Mic systems
may require additional hardware for precise synchronization
[15]. This may also bring additional energy consumption and
high cost. To the best of our knowledge, we are the first to
study source localization with a single small-sized Mic array
of ten-cm level in the scene of 3D localization.

Another common solution for unknown source localization
is to analyze indoor multipath propagation and extract multiple
AOAs that sound arrives at a small-sized array. Several
conventional AOA estimation methods, such as delay-and-sum
and MUSIC, may be vulnerable to coherent signals in indoor
environments [31]. To cope with these limitations, VoLoc
[18] proposes an iterative-alignment-cancellation algorithm
to extract AOAs for the LOS and ECHO paths of voice.
Symphony [19] proposes a localization algorithm by searching
for AOAs according to the linear relationship between
correlation peaks. Furthermore, MAVL [20] proposes a multi-
resolution algorithm that extends the sound localization model
to non-line-of-sight scenarios. Although commendable, many
of these localization systems rely on precise estimation of
AOA, whose accuracy is mainly constrained by the physical
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Fig. 1. (a) An illustration of the ISSL problem in 2D. The blue and green
dotted line are the LOS and ECHO path, respectively. (b) The received signals
in time domain from two Mics.

size of Mic array [24]. The accurate search of AOA may
be extremely time-consuming. Instead, this work directly
addresses the localization problem in delay domain, achieving
a higher efficiency and accuracy.

III. SYSTEM MODEL

A. Sound Propagation Indoors

We consider an indoor environment, where a small-sized
Mic array with M Mics is deployed for sound collection. Let
mi, i ∈ [1,M ] denote the i-th Mic. Supposing that there are
a total of K paths that sounds arrive at the array, the received
signal from the i-th Mic can be described as:

yi(t) =

K∑
k=1

αkai(θk, ϕk)s(t− tk) + ni(t), (1)

where s(t) is the waveform of source signal, αk, tk, θk, ϕk
are the signal strength, TOF, azimuth and elevation angle of
the k-th (k ∈ [1,K]) path, respectively, ai(·) denotes the array
steering value of mi, and ni(t) is the Gaussian white noise
term. Due to the fact that the size of Mic array on most IAs
is usually ten cm-level, the sound propagation follows the far-
field effect assumption [17]. That is to say, the sound ray that
arrives at each Mic can be viewed as parallel. We treat m1

as the reference Mic, and the array steering value for the k-th
path and the i-th Mic of a Unit Linear Array (ULA) can be
presented by:

ai(θk, ϕk) = e−j2π
da(i−1)

λ cos(θk) cos(ϕk), (2)

where da is the element spacing of Mics, and λ is the
wavelength of sound. The objective of addressing the ISSL
problem is to obtain the optimal estimation for the location of
sound source according to the array received signals y(t).

B. Localization with Nearby Reflection

To enable the function of our system, we make one core
assumption: The location of Mic array is close to at least
one reflective surface, such as a wall. For simplification, the
reflective surface will be referred to as “wall” in the following
text. Signals from two paths can be assumed significant: the
LOS signal and ECHO reflected by the nearby wall, as shown
by the blue and green dashed lines in Fig. 1(a), respectively. A
virtual ULA can be generated behind the wall to simulate the
receiving of ECHO signals. As shown by Fig. 1(a), we build a
Cartesian coordinate system in the room space. Mic m1 is set
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Fig. 2. AOA spectrum obtained through several AOA estimation algorithms
in indoor environments.
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at Pm1 = (xa, dw, ha), where xa, ha is the x coordinate and
height of array in the room, and dw is the wall-array distance.
Correspondingly, the location of virtual Mic mv

1 can be given
by Pmv

1
= (xa,−dw, ha). Let Ps = (xs, ys, zs) denote the

coordinates of sound source.
A recently widely adopted approach to address the ISSL

problem is the triangulation method [18]–[21]. It involves
extracting multiple AOAs from source to the array. Then, by
reversing the AOA rays and determining their intersection,
the location of sound source can be obtained. Let θ1 and θ2
denote the AOAs of LOS and ECHO paths, respectively. The
2D coordinates (xs and ys) of source can be calculated as:{

xs =
2dw

tan θ2−tan θ1
,

ys = dw + tan θ1xs.
(3)

C. Issues of Existing Solutions

Utilizing the triangulation method in the ISSL problem with
a small-sized Mic array presents the following two limitations:

(i) Triangulation method typically relies on accurate
estimation of multiple AOAs. According to [24], the angular
resolution of array is linearly related to array size as ∆θ =
0.89λ
D , where D = (N−1)×da is the diameter of array. Given

a sound frequency of 500Hz and D = 0.1m, the angular
resolution is only 6.1◦. This demonstrates that the resolution
of AOA estimation with a small-sized Mic array is usually
error-prone. We consider two scenes in Fig. 2, i.e. when the
AOA difference between LOS and ECHO paths is large and
small. Given a Mic array at (0, 0.4)m and a source at (2, 1)m
or (2, 4)m, the AOA difference between LOS and ECHO of
a nearby wall paths in these two cases are 18.3◦ and 4.6◦,
respectively. We have shown the AOA spectra calculated by
several common AOA estimation algorithms, including general
cross correlation (GCC), GCC-PHAT, Delay-and-Sum (DAS)
and MUSIC [32], [33]. As shown by Fig. 2(b), it is hard for
these algorithms to identify the AOAs of LOS and ECHO
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paths precisely when their difference is small. In this case,
the AOA-based ISSL system may fail to work.

(ii) Triangulation method may not be easily extended
to solve 3D locations. Although the functions constructed
in Eq. (3) are sufficient for 2D localization, they become
undetermined when solving 3D coordinates. As shown by the
black line in Fig. 3(b), there are multiple intersections in 3D
when only the first two TDOAs are utilized for localization.
To address this problem, Voloc search the source in a 2D
plane at known heights [18], whereas Symphony puts the
source source at the same 2D plane with the Mic array [19].
These two limitations both demonstrate the weakness of source
localization with only AOA information.

D. Insight of This Work

Our core observation focuses on the correlation
phenomenon of indoor multipath signals. Fig. 1(b) illustrates
the collected signals from mi and mj (i < j) in time domain,
which are the superposition of LOS and multiple ECHO
signals. Because the source signals are usually unknown in
the real life, cross correlation has been widely adopted to
calculate the relative delay information in different channels
[7], [15]. Based on our assumption that the LOS and one
ECHO signal reflected by a nearby wall are the most typical,
there are mainly four types of TDOAs between the i-th
and j-th channel, i.e., path delays between LOSi-LOSj ,
ECHOi-ECHOj , LOSi-ECHOj , and ECHOi-LOSj signals,
respectively. Supposing that we have obtained these useful
TDOA parameters, a feasible solution for localization is to
build and solve an equation set as:

|Pmj
− Ps| − |Pmi

− Ps| = τmi,mj
c, 1⃝

|Pmv
j
− Ps| − |Pmv

i
− Ps| = τmv

i ,m
v
j
c, 2⃝

|Pmv
j
− Ps| − |Pmi

− Ps| = τmi,mv
j
c, 3⃝

|Pmj − Ps| − |Pmv
i
− Ps| = τmv

i ,mjc. 4⃝

(4)

where τmi,mj
= (tmj

− tmi
) denotes the TDOA from Ps to

Mics mi and mj , tmi =
|Ps−Pmi

|
c is the TOF that sound

arrives at mi, and c is the sound speed, respectively. This
localization model offers three key advantages:

Why is 3D localization feasible: In equation set (4),
the combination of terms 1⃝ and 2⃝ corresponds to the
triangulation method described in Eq. (3), which constructs
two hyperbolas or hyperboloids based on focal points of
< Pmi , Pmj > and < Pmv

i
, Pmv

j
>. As shown by Fig. 3(b),

two localization curves alone are insufficient for determining
3D coordinates because multiple intersections occur. This
work introduces the use of TDOA information between real

Array Location 
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3. Location 
Selector

2. GCC Spectrum 
Generator

3D localization 
services

...
multi-channel 

signals

wall reflections
direct sound

TDOA
parameters
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Iterative ISSL Module

Fig. 5. System architecture of HearLoc. The ISSL system consists of: 1)
delay picker, 2) GCC spectrum generator and 3) location selector. The ISSL
module is used for locating multiple sources iteratively, and the array location
calibrator aims to identify the location of array within a room.

and virtual Mic elements (i.e. terms 3⃝ and 4⃝) for localization.
They can construct two additional hyperboloids based on focal
points of < Pmi , Pmv

j
> and < Pmv

i
, Pmj >. Because term

3⃝ and 4⃝ are independent of 1⃝ and 2⃝, it can be possible to
solve 3D coordinates.

Improved localization ability: Triangulation methods
mainly estimate AOAs by calculating the relative delays in the
LOS and ECHO paths. Their perspectives primarily focus on
the original small-sized Mic array of diameter D. Instead, this
work considers all useful correlation information to construct
and utilize a large virtual cross-wall array with dimensions
(2dw, D) for localization. According to the Fresnel range
equation [24], the distance limit of near field localization is
given by dδ = 2D2

λ . When the distance between source and
array exceeds dδ , only AOA of source can be obtained, not
its precise location. By effectively increasing the array size
from its physical diameter D to a virtual diameter 2dw, the
localization ability can be enhanced by a factor of ( 2dwD )2.

View on correlation power: According to the cross
correlation function, i.e. Corri,j(τ) = E[yi(t − τ)yj(t)],
the correlation powers at the four TDOAs in Eq. (4) are
proportional to {α2

1, α2
2, α1α2, α1α2}, where α1 and

α2 are the path signal strengths for the LOS and ECHO
paths, respectively. Since the ECHO path typically experiences
greater attenuation due to diffuse reflection loss on the wall,
we have α1 > α2. Consequently, these correlation powers
are ranked as (α1)

2 > α1α2 > (α2)
2. Under a same

noise level, estimating the AOA of the ECHO path has the
lowest power (α2)

2, thus is the most challenging. This work
additionally models the correlation information between the
LOS and ECHO signals, whose power is the second largest
(α1α2). By combining all the useful TDOA information,
precise localization can be more easily achieved.

Though promising, precisely extracting and utilizing the
values of useful TDOAs remains challenging due to the
presence of other unpredictable multipath signals. To address
this, we present our system overview and design details.

IV. SYSTEM OVERVIEW

Different from previous works that estimate multiple AOAs,
this work directly solves the ISSL problem in delay domain.
We design the HearLoc with three core functions:
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• ISSL System (§V): Assuming that the location of array
within a room has been calibrated by the Array Location
Calibrator (§VII), we first generate the TDOA parameters
based on the geometric relationship between sound source
and array by the Delay Picker. Utilizing the GCC
spectrum obtained by the GCC Spectrum Generator, we
then formulate a signal processing scheme to selectively
pick and sum the GCC power at TDOAs computed
by each location (i.e. Location Selector). We design
techniques of GCC spectrum interpolation, localization
matrix normalization and pruning to improve system
accuracy and efficiency. Finally, the optimal estimation
for source location can be obtained by selecting the
maximal output of Location Selector.

• Iterative ISSL Module (§VI): To solve the scene of
multiple sources, an iterative algorithm is designed that
sets the GCC power induced by each estimated location
as zero iteratively. The ISSL system will continuously
updated GCC spectra for localization of other sound
sources in each iteration round.

• Array Location Calibrator (§VII): The built-in
loudspeaker and Mic array collaborate to calibrate the
location of array within a room. It is achieved by
constructing an optimization function that minimizes the
difference between theoretical TOF of wall ECHO and
TOF obtained by signal processing.

The relationship of these modules is shown in Fig. 5.

V. ISSL SYSTEM

We outline the workflow of the ISSL system for a single
source in Alg. 1. It begins with the initiation of delay picker,
which generates the useful TDOAs at each location (§V-A).
Subsequently in the location selector (§V-C), the location
support energy is computed based on the TDOA parameters
obtained by the delay picker and GCC spectrum of multiple
Mic pairs obtained by GCC spectrum generator (§V-B).

A. Delay Picker

We define a delay picker as the set to contain the useful
TDOAs in Eq. (4). Mathematically, the delay picker for Mic
pair mi and mj , denoted by Ti,j , can be expressed as:

Ti,j = {τmi,mj , τmv
i ,m

v
j
, τmi,mv

j
, τmv

i ,mj}. (5)

The TDOA parameters in Eq. (5) can be precisely calculated
by Eq. (4). We should note that the delay picker has infinite
resolution. But in signal level, the delay picker should be
rounded at the sampling point level as Ti,j = ⌈Ti,j×Fs⌋/Fs,
where Fs is the sampling rate and ⌈·⌋ is the rounding process.

Modeling more than one ECHO: It should be noted that,
this paper is mainly under the assumption that the LOS and one
strong ECHO signal are present. However, it is also promising
to model more ECHOs and help localization. Supposing that
the array is at a corner, there can exist two significant ECHO
signals. Two virtual arrays can be generated correspondingly,
denoted by v1 = {mv1

1 , · · · ,m
v1
M} and v2 = {mv2

1 , · · · ,m
v2
M}.

Algorithm 1 Workflow of ISSL system for a single source
Input: Array received signal y(t)
Output: Estimated location of sound source P ∗

s

1: Generate a location grid in the room space as Ωroom;
2: for each Pus ∈ Ωroom do
3: Generate the delay picker Ti,j at Pus for each Mic pair

< mi,mi > by Eq. (5) and Eq. (8), i, j ∈ [1,M ], i < j;
4: end for
5: Compute the GCC spectrum of each Mic pair by Eq. (7)

as {Ci,j};
6: Extract the top W peaks in C1,M as CW ;
7: Initialize localization array Earr as a whole zero array;
8: for each Pus ∈ Ωroom do
9: if R(τm1,mM

(Pus )) ∈ CW then
10: Compute Evec at Pus by Eq. (9);
11: Update the d-th row of Earr as Evec(Pus );
12: end if
13: end for
14: Normalize each column in Earr in range 0−1 to get Êarr;
15: Sum Êarr along each row to get the array of location

support energy E;
16: According to Eq. (10), select the location that produces

the maximal E as the estimated source location P ∗
s .
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Fig. 6. Relative delays in delay picker generated by ground truth (GT) and
non-source locations on the GCC-PHAT spectrum.
The multipath signals correlate with each other, and the delay
picker in this case can be given by:

Ti,j = {τmi,mj , τmv1
i ,m

v1
j
, τmi,m

v1
j
, τmv1

i ,mj
,

τmv2
i ,m

v2
j
, τmi,m

v2
j
, τmv2

i ,mj
, τmv1

i ,m
v2
j
, τmv2

i ,m
v1
j
}.

(6)

It is consisted of four parts: the relative delay between Mics
in (I) real array, (II) real and array v1, (III) real and virtual
array v2, and (IV) array v1 and v2, respectively. Supposing that
signals from K paths are modeled, the number of TDOAs
in the delay picker will be K2. We evaluate the effects of
modeling more ECHOs in §VIII-A5.

B. GCC Spectrum Generator
After generating the delay picker according to the locations

of source and array within the room, we utilize General Cross
Correlation-Phase Transform (GCC-PHAT) for its robustness
in multipath environments [32], which can also be seen in
Fig. 2. In the following, GCC-PHAT is abbreviated as GCC
for simplification. The GCC power at delay τ for the i-th and
j-th channels can be computed in frequency domain as:

Ci,j(τ) =

N−1∑
n=0

Re
(
Rphati,j e−j2πfnτ

)
, (7)
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Algorithm 2 Process of FFT interpolation

Input: Conjugate multiplication term Rphati,j , interpolation
factor I

Output: GCC spectrum with sub-sampled delay bins Ĉi,j
1: Perform FFT shift in Rphati,j to obtain Rphat,shifti,j ;
2: Compute Npad = N × (I − 1)/2;
3: Rphat,shift,padi,j =[zeros(Npad); Rphat,shifti,j ; zeros(Npad)];
4: Perform inverse FFT shift on Rphat,shift,padi,j to obtain
Rphat,padi,j ;

5: Compute Ĉi,j = Re(IFFT (Rphat,padi,j )).

location 
ambiguity

clear peak

Fig. 7. Localization heatmap (a) without (b) with interpolation. The Mic array
is at (0, 0.3)m and 0.3m away from a wall. For a better view, the LSEs in
the heatmap are normalized and computed to their fourth power.

where Rphati,j =
Yi(fn)Y

∗
j (fn)

|Yi(fn)Y ∗
j (fn)| is the conjugate multiplication

term with phase weighting, Yi(f) denotes the frequency
representation of yi(t), N is the number of sampling points,
fn is the n-th (n ∈ [1, N ]) frequency component, | · |, Re(·)
and (·)∗ denote taking amplitude, real part, and complex
conjugation, respectively. Instead of computing the correlation
power for all delays, it is feasible to utilize inverse FFT (IFFT)
on Rphati,j to obtain the GCC spectrum more efficiently.

We set a 4-Mic ULA whose da = 0.05m and 0.3m away
from a wall. Unless specified, the array in the following text
is set to this configuration. Let the 2D location of Mic be
(0, 0.3)m. According to Eq. (5), we generate the delay pickers
for the source and non-source locations, which are at (2, 2)m
and (1, 2)m, respectively. Fig. 6 shows the obtained spectrum
with GCC-PHAT for Mic 1 and 4. As indicated by the red
and blue dashed lines, it can be observed that the correlation
powers are strong at TDOAs generated by the source, where
weak at TDOAs associated with non-source locations.

Interpolation to address localization ambiguity: Since
the sampling rate on most off-the-shelf acoustic devices is
48kHz at most [16], we observe a serious location ambiguity
phenomenon when determining adjacent points. According
to the location selector (§V-C), we set a sound source at
(2, 2)m and the search step to 0.1m. As shown by Fig. 7(a),
it is observed that there are locations with the same location
support energy. The problem occurs in the rounding process
of Ti,j , which rounds it to a closest sampling point with a step
of 1/Fs. Adjacent locations may have the same delay picker
because of the rounding process. To address this problem, we
perform FFT interpolation on Rphati,j to improve the resolution
of GCC spectrum. As described in Alg. 2, this method involves
in padding zeros on the conjugate multiplication term in
frequency domain and then perform IFFT. The delay picker

2. normalization

C12
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…
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Fig. 8. Scheme of GCC normalization. The GCC powers are normalized by
columns to balance their ratio differences.

with an interpolation factor I(≥ 1) can be rewritten as:

T̂i,j =
⌈Ti,j × Fs× I⌋

Fs× I
. (8)

In this way, the TODA in delay picker can fall into sub delay
bins with a resolution of 1

Fs×I . This helps improve both the
temporal and spatial resolution in localization.

Fig. 7(b) shows the LSE heatmap with an interpolation
factor of 9. It can be observed that the interpolation process
can enhance the distinctiveness of LSEs for adjacent points.

C. Location Selector

1) Location Support Vector: An intuitive idea for
localization is to extract multiple local GCC peaks and then
utilize their corresponding TDOAs to solve Eq. (4). However,
we discover that the GCC peaks induced by the GT location
are usually hard to identify accurately in such multipath-rich
environment, as shown by Fig. 6. If the wrong TDOAs are
picked, there would produce a significant localization error
in solving the equation set. Instead, we define the existence
likelihood of source location as the power sum of the GCC
power induced by each location. Mathematically, the location
support vector at Pus , where u ∈ [1, U ] and U is the number
of generated points on grid, is defined by the sum of GCC
powers at each type of TDOA as:

Evec(P
u
s ) =

M−1∑
i=1

M∑
j=i+1

Ci,j(T̂i,j(P
u
s )). (9)

The GCC powers are summed across all Mic pairs to improve
robustness. The size of Evec(Pus ) is equal to the delay picker,
i.e., 1×K2 (1× 22 in the main part of this work).

2) GCC Power Normalization: We have attempted to
directly sum all the GCC powers in the location support
vector for localization. However, a suboptimal localization
performance is observed with this method. It is primarily due
to the magnitude difference of GCC peaks at these four types
of TDOA. As depicted in Fig. 4, their ratio rank of GCC power
satisfies (α1)

2 > α1α2 > (α2)
2 in theory. Directly summing

the GCC powers may produce increased attention towards the
direction with a higher GCC power.

To address this problem, we adopt a min-max normalization
approach on the localization array, which aims to balance the
difference power of GCC peaks. The scheme can be illustrated
in Fig. 8. The location support vectors computed by multiple
locations can construct an array, i.e. the localization array
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Fig. 9. Localization heatmap (a) without (b) with GCC normalization.
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Fig. 10. Localization heatmaps in different iteration round.

Earr, and its size is U × K2. Normalization is applied on
each column of the localization array. Let Êarr denote the
GCC power array after normalization. We define the location
support energy (LSE) at Pus by the sum of normalized GCC
power in each row as E(Pus ) =

∑K2

i=1 Êarr,i(P
u
s ).

After the normalization process, the optimal estimation
of sound source location, denoted by P ∗

s , can be obtained
by extracting the maximal LSE in a room space Ωroom =
{P 1

s , · · · , Pus , · · · , PUs } as:

P1: P ∗
s = argmax

Pu
s

(E(Pus )), ∀Pus ∈ Ωroom. (10)

Different from the triangulation method that has infinite
solution space, we solve P1 by grid search in limited
room spaces. The search space is set in 2D or 3D to
accommodate the respective localization requirements. Fig.
9 shows the localization heatmaps before and after adopting
GCC normalization. It can be observed that the blurry regions
near the true AOA direction can be clearly reduced with the
proposed normalization process.

3) Reduction of Searching Space: Directly searching for
all the locations in a room space may be time-consuming and
redundant for many real-time applications. We thus propose to
reduce the search space by locating the LOS-LOS correlation
peak first. The idea comes from the fact that the sound source
has a higher possibility that comes from the direction inferred
by some strong LOS-LOS correlation peaks. To improve fault
tolerance, we select the top W largest peak candidates in R1,M

to be the constrained search range. We only compute the LSE
at delay picker that contains these . In this work, we define
the amount of W as:

W =

⌈
βI × DFs

c

⌉
, (11)

where β is the percentage of pruning, I is the aforementioned
interpolation factor, DFs

c is the largest sample shift between
Mic pair m1 and mM , and ⌈·⌉ represents rounding up. We
only compute the support energy at locations that can produce
the W peaks at R1,M for saving time. Along with the GCC
normalization process, our method can place greater emphasis
on the local peaks on the GCC spectrum.

VI. ITERATIVE ISSL MODULE TO DETECT MULTIPLE
SOURCES

In practical scenes, there may exist multiple sound sources
simultaneously. The correlation peaks produced by different
sources will occur on each correlation spectrum, and in this
case, it could be challenging to identify the attribution of each
correlation peak. However, because the ECHO path mainly
experiences the reflection and path attenuation losses [20],
the strength of the ECHO path can be written as ωlaα,
where ω is the material reflection coefficient on wall, la is
the path attenuation in air, and α is the source strength.
Furthermore, the path attenuation of the ECHO path is related
to its additional traveling distance, which is 2dw maximal.
Given dw = 0.4m and the attenuation factor in air γ =
5 × 10−3dB/m2 , la satisfies e−γ×2dw = 0.996 ≈ 1,
which follows the exponential decay law. This shows, the
additional attenuation of the ECHO path in air is negligible,
and the ratio of useful correlation powers can be simplified
as {α2, ω2α2, ωα2, ωα2}. For a fixed room and wall material,
ω can also be viewed as a constant. Thus, all the correlation
powers produced by each source are only determined by its
source strength α. We also note that, according to the cross
correlation properties, the collected correlation spectrum is
the linear superposition of multiple correlation phenomena
produced by different sources.

Based on these observations, we propose an iterative
ISSL algorithm. Our insight is to extract the current most
significant combination of correlation peaks on the collected
cross correlation spectrum iteratively. Specifically, For each
iteration, we can obtain one optimal estimation of sound
source by running Alg. 1. Then, we set the GCC powers
at TDOAs induced by this location to all zeros. In the
next iteration, a new localization heatmap can be generated
according to the updated GCC spectrum. This process can
eliminate the impact of each source iteratively because the
combination of useful correlation peaks of one source can be
viewed as a whole. Note that, the process of setting zero is
applied on the original GCC spectrum without interpolation
because of the physical sampling limits. The interpolation
process is then performed again for localization before the
next iteration. The technical details are presented in Alg. 3.

We examine the localization performance in different
iteration rounds by setting two sources at (2, 3)m and (5, 2)m.
The Mic array is at (3, 0.3)m and 0.3m away from a wall. We
illustrate the localization heatmaps for two rounds in Fig. 10. It
can be observed that the LSEs of the two sources are different
in Fig. 10(a) because of their distinct path signal strength.
Furthermore, as shown by Fig. 10(b), the impact of source 1
can be well eliminated by our setting zero process.

VII. ARRAY LOCATION CALIBRATOR

The location selector assumes that the array’s location
is known in advance. However, in practical scenarios,
determining the initial location of the array is often challenging
or prone to fluctuations because of external interference. As

2The values of attenuation factor γ in air are from [34].
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Algorithm 3 Iterative ISSL algorithm for multiple sources
Input: Array received signal y(t), number of sources F
Output: Location set of F sources {Ps,1, · · · , Ps,F }

1: Compute the original conjugate multiplication term as
R = {Rphati,j }, where i, j ∈ [1,M ], i < j;

2: Compute GCC spectrum with interpolation factor I as
Ĉ = {Ĉi,j};

3: for each f ∈ [1, F ] do
4: Run Alg. 1 on Ĉ to obtain the optimal estimation of

source location Ps,f ;
5: for each i ∈ [1,M ] do
6: for each j ∈ [i+ 1,M ] do
7: Perform IFFT on Rphati,j to obtain Ci,j without

interpolation;
8: Set Ci,j(T̂i,j(Ps,f ))) = 0;
9: Perform FFT on Ci,j to obtain Rfi,j ;

10: Input Rfi,j and interpolation factor I to Alg. 2 and
obtain the interpolated Ĉfi,j ;

11: Update Ĉi,j to Ĉfi,j .
12: end for
13: end for
14: end for

a result, there is a need for an effective and accurate array
location calibration scheme to ensure system usability.

Besides the Mic array, most IAs such as smart speakers
and sweeping robots, are usually equipped with a built-in
loudspeaker, which can be controlled to actively produce
known sounds. This makes it possible for us to calculate the
actual TOFs of sound from the built-in loudspeaker to the
Mic array. The geometric relationship between the array and
room can be inferred by analyzing the propagation delays.
Fig. 11 illustrates the sound propagation when performing
array location calibration. Let dw and ψ denote the wall-array
distance and Mic orientation, respectively. The location of the
i-th Mic in a ULA can be expressed as:

Pmi
= ((i− 1)da cos(ψ), dw + (i− 1)da sin(ψ)) . (12)

As mentioned before, the location of the i-th virtual Mic Pmv
i

has the same x but inverse y coordinates as Pmi . Supposing
the location of loudspeaker Ps is set in the middle of array,
its position can be given as (D2 cos(ψ), dw + D

2 sin(ψ)).
In order to obtain the geometric relationship between room

and array, we build an optimization function for a fine-grained
result. This is achieved by minimizing the delay difference
between the real measurements and model based results. The
optimization parameters are wall-array distance dw and Mic
orientation ψ. The function can be constructed as:

P2: min
dw,ψ

M∑
i=1

( |Ps − Pmv
i
| × Fs

c
− tmv

i

)2

, (13)

where tmv
i

is the estimated TOF from loudspeaker to Mic mv
i .

Note that, both Ps and Pmv
i

are functions of dw and ψ. The
combination of dw and ψ that can produce the minimal value
in P2 is selected to be the optimal estimation result of the
array location.
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Fig. 11. Array location calibration.
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Fig. 12. Channel response
spectrum before and after direct
components elimination (DCE).

To solve P2, the accurate extraction of tmv
i

is still a problem.
We design to transmit Zadoff-Chu (ZC) sequences due to
their property of strong autocorrelation [35]. Because audible
sound for array location calibration can interfere with daily
human activities, we design the ZC sequences in 18k-22kHz,
which is inaudible to most people. Then we can obtain the
channel information by performing cross correlation on the
received signal y(t) and s(t). As shown by the results in
Fig. 12(a), it can be observed that there is an extremely
high peak caused by the direct path due to its strong power,
whereas the GCC peak caused by the ECHO path is less
apparent. To address this problem, we eliminate the direct
sound components by subtracting the signal that only contains
the sound from loudspeaker to Mic array, which can be
collected in advance. Fig. 12(b) shows the result after direct
components elimination. It can be observed that the GCC
peak induced by the nearby wall reflection becomes clear
and easy for identification. Meanwhile, an iterative algorithm
similar to Alg. 3 can be developed to calculate the geometric
relationships between the array and multiple walls.

VIII. SIMULATION

Settings: We generate the simulation datasets with
Pyroomacoustics [25], which is a widely-adopted room
acoustic simulator [13], [16], [36], [37]. A 4-Mic ULA of
0.15m (spacing is 0.05m) is placed close to a wall at 0.4m
by default. In fact, other distances are also acceptable and
will be evaluated next. We choose three types of rooms in our
experiment, i.e., room 1: 4 × 4 × 2.8m3, 2: 4 × 6 × 2.8m3

and 3: 8× 5× 3.2m3. Their reverberation time levels (RT60)
are set to 0.5s, 0.4s and 0.3s, respectively. The sound speed
is set to c = 343m/s. In 2D experiments, the source is set at
the same plane with the Mic array and the step size of 0.4m.
In 3D experiments, the height of source is additionally set to
0-0.8m higher over the array with an interval of 0.2m. Trigger
words, including “OK Google”, “Hi siri” and “Alexa” are
randomly selected to be the source signal, and their duration
is 1s. During data collection, the audio sampling rate is set to
48kHz. The search step along all directions is set to 0.1m.
The search space is set in the 2D plane of room and 1m
higher over the array. With regard to parameter configuration,
the factors of FFT interpolation I and pruning β are set to 9
and 0.2, respectively. The evaluation metric is defined by the
euclidean distance between the GT and estimated location. If
not specifically mentioned, the experiments are in room 3 with
2D simulation by default.
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Implement Details: Because the parameters in the delay
picker and array location calibrator are independent of source
signals, we optimize the system efficiency by dividing it into
offline and online parts. The offline part involves generating
the delay picker and running the array location calibrator,
which is a one-time effort. The online part involves the
processes of GCC spectrum generator, location selector and
iterative ISSL module for signal processing.

Baselines: We choose a recent relevant work Symphony
[19] as the baseline. Symphony proposes a different algorithm
that extracts the linear relationship of LOS-LOS and ECHO-
ECHO correlation peaks between ULA elements for AOA
estimation. Then, triangulation method is used for localization.
Due to the 2D assumption of Symphony, the solution space is
set at the 2D plane that the Mic array locates.

A. Marco Benchmarks
1) Overall performance: Fig. 13 shows the cumulative

distribution function (CDF) of localization errors in different
dimensions. We have achieved a median error of 0.2m and
0.37m in 2D and 3D across different rooms, respectively. The
results demonstrate the ability of our system to locate sound
source accurately in both 2D and 3D. The median localization
error of Symphony is 0.4m in 2D, which is slightly weaker
than that of our system. This is mainly because we have
additionally considered 2 more LOS-ECHO correlation peaks
for localization. In the context of 3D localization, the median
error of Symphony is 1m, which is significantly affected by
the height estimation error.

2) Error in AOA estimation: Fig. 14 illustrates the accuracy
of AOA estimation with three methods, i.e. ours, Symphony
and GCC-PHAT [32]. Different from our method, Symphony
considers the TDOAs of LOS and ECHO path, while GCC-
PHAT only models the LOS-LOS correlation peak. Their
median AOA errors of LOS path are 0.07◦, 0.9◦ and 1.7◦,
respectively. We have achieved the highest accuracy of AOA
estimation over the baseline methods. This is owing to our
consideration of more TDOA information for localization.

3) Room type: Fig. 15 shows the localization performance
in different rooms (i.e., room 3). The median errors in
the large, medium and small rooms are 0.14m, 0.3m, 0m,
respectively. The result demonstrates the effectiveness of our
system for deployments in different types of room. We have
achieved the best localization performance in the small-sized
room, even though its reverberation level is the strongest.
Although there are more strong unmodeled ECHO signals in
this room, the correlation powers at interested TDOAs are also
more significant in this case.
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4) Source height: Fig. 16 examines the influence of source
height on the localization error. We vary the source from 0.2m
to 0.8m higher than the array in increments of 0.2m. The
blue, red and yellow bars in the figure represent the median
localization error in 3D, 2D and height, respectively. The
results demonstrate an error of < 0.5m in 3D localization and
≤ 0.1m in z-axis at all heights. Meanwhile, it is worth noting
that introducing the 3D localization model can effectively
ensure the error of 2D localization at a low level.

5) Modeling Multiple ECHOs: The main part of our model
relies on the assumption that the LOS and one strong ECHO
signals are present. In cases at a corner, there may be other
strong ECHO signals that are not modeled. To investigate
this problem, we set the Mic array at a corner, with its
distance to two near walls of both 0.3m. As shown by 17,
the median error when modeling one or two ECHO paths
is 0.58m and 0.22m, respectively. Although the localization
performance decreases in the corner, the system accuracy can
be significantly improved by modeling more ECHOs, showing
an improvement of 2.6× in localization accuracy. Additionally,
in scenes with multiple sources, modeling more ECHOs can
also help improve the localization performance for the first
and second sources by 2.7 and 1.8 times, respectively.

6) Multiple sources: To deal with scenes with multiple
sources, we place 2 sources randomly in room 2. Then,
we compute the CDF of Euclidean distance error for these
2 sources. As shown by Fig. 18, we achieve a median
localization error of 0.1m and 0.42m for the first and second
strong sources (namely source 1 and 2). The localization
performance of the second source decreases slightly. This is
mainly because this work only sets zero at 4 TDOAs on
the GCC spectrum, while some other interference correlation
peaks induced by multipath may affect the localization
accuracy in subsequent iterations. Compared with the baseline
method Symphony [19], we have achieved a 4 × /1.5×
improved localization accuracy for multiple sources.

7) Array location calibration: Fig. 19 shows the effects of
array location calibration. The Mic array is set close to a wall
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Fig. 21. Ablation study.

Name
Median error (m) Latency (s)
2D 3D 2D 3D

Symphony [19] 0.4 1 0.82
Ours 0.2 0.37 0.19 0.2

w/o. norm 0.36 0.51 0.19 0.2
w/o. interp 0.36 0.58 0.03 0.05

w/o. pruning 0.20 0.46 0.2 0.21
w/o. all 0.50 0.63 0.04 0.06

First 2 TODAs 1.14 1.3 0.19 0.2
First 3 TODAs 0.32 0.68 0.19 0.2

论文结果：

at a distance of 0.2-0.8m with a random inclination angle.
The calibration algorithm is then run to infer the wall-array
distance and angle. The results show that we have achieved
small median errors of 0.006m and 1.32◦ in distance and
angle, respectively. This demonstrates the effectiveness of the
proposed location calibration scheme, which is the foundation
of the entire localization system.

8) Efficiency: We evaluate the processing latency of the
four modules of our system. The algorithm is run by Matlab
on PC of Intel i5-11400, 2.6GHz. For the online part, the GCC
spectrum generator costs 0.193s for a one second speech, and
the location selector for 2D and 3D localization costs 0.014s
and 0.022s, respectively. For the offline part, the delay picker
and array location calibrator cost 0.23s and 0.03s to complete.
Because Symphony performs signal correlation for multiple
times to obtain more precise AOAs, its latency is about 4
times larger than our system.

9) Ablation study: We conduct ablation studies to verify
the effectiveness of our approach. Table. 21 shows the
median localization error and latency in 2D and 3D under
different settings. Firstly, we observe a large localization error
increase when not adopting the normalization and interpolation
schemes. This is because normalization eliminates the power
differences between different cross correlation types. Besides,
interpolation can improve the resolution of GCC spectrum. We
also observe that pruning can improve the efficiency but ensure
the accuracy. The reason is that, although pruning reduces
search space, it forces the localization along AOA directions
with high correlation powers. Furthermore, in order to examine
our design of delay picker, we selectively only utilize the first
two and three TDOAs in Eq. (5) for localization. We have
observed a significant increase in accuracy when additionally
considering the third and fourth TDOAs. This is because they
also provide useful TDOA information that can be utilized in
localization.
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Fig. 22. Impact of wall-array
distance.

0.14

0.36

0.7

1

48k 36k 24k 12k

Sampling rate (Hz)

0

0.2

0.4

0.6

0.8

1

M
e

d
ia

n
 e

rr
o

r 
(m

)

Fig. 23. Impact of sampling rate.

(1) ULA

(2) UCA

1
4

2 3
ψ

1

4
3

2
ψ

wall

wall

15cm

10cm

0.22 0.22

1.46

0.1 0.12

0.31

30° 60° 90°

Array orientation

0

0.5

1

1.5

M
e

d
ia

n
 e

rr
o

r 
(m

)

ULA
UCA

Fig. 24. Impact of Mic orientation.

B. Micro Benchmarks

1) Mic number and spacing: Fig. 20 shows the system
performance with changes of Mic number and spacing. We
first only use 2 and 3 adjacent Mics in the 4-Mic ULA
for localization. It can be found that the localization error
increases with the decrease of Mic number. This is because
more Mics allow for a greater number of combinations for
cross correlation, which can lead to a more robust estimation
for the source location. We also investigate the impact of Mic
spacing on the localization performance. We use a two-Mic
pair with spacing of 0.1m and 0.15m in the 4-Mic ULA.
Compared with the benchmark, their localization accuracy
decreases by 0.22m and 0.03m, respectively. The reason
is that the increase of array size can improve the spatial
resolution. It is worth noting that the localization error of 2-
Mic with a spacing of 0.15m is comparable to that of the
original 4-Mic ULA. This observation highlights the potential
of our system for utilization on other IAs with a small-sized
two-Mic array, such as smartphones and mobile robots.

2) Wall-array distance: Fig. 22 shows the results under
different wall-array (WA) distances, which are set at
{0.1, 0.2, ..., 0.8}m. The results reveal that, as the WA distance
increases, the localization error gradually decreases to a small
value. This because a larger WA distance can construct a cross-
wall array of larger size, which improves the spatial resolution.
In real-life scenario, the WA distance is not supposed to be
too large because the power of ECHO signal may decrease
significantly due to a long attenuation path in air.

3) Sampling rate: Fig. 23 demonstrates the impact of
sampling rate. We use downsampling on the original dataset of
48kHz to construct the downsampled datasets. As shown by
the figure, it can be found that the localization error gradually
increases with the decrease of sampling rate. The reason is
that, a higher sampling rate can provide delay bins with a finer-
grained resolution, which helps improve the discriminability
between close source locations.

4) Array orientation: There can be multiple array
orientations in real life. To investigate their impact, we vary
the orientation angle ψ of a ULA and 4-Mic UCA from 0-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3507035

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 19,2025 at 03:43:30 UTC from IEEE Xplore.  Restrictions apply. 



11

0.31

0.26

0.14

0.53

0

0.01 0.05 0.1 0.15 0.2

Search step (m)

0

0.2

0.4

0.6

M
e

d
ia

n
 e

rr
o

r 
(m

)

Fig. 25. Impact of search step.

0 0.01 0.02 0.03 0.04

d
w

 error (m)

0

0.5

1

L
o
c
 E

rr
 (

m
)

0 1 2 3 4 5

 error (°)

0

0.5

1

L
o
c
 E

rr
 (

m
)

Fig. 26. Error propagation with
errors in dw and ψ.

10 15 25 30

Room temperature (oC)

0

0.2

0.4

0.6

0.8

M
e

d
ia

n
 e

rr
o

r 
(m

)

0.45 0.45

0.77
0.82

0.22

0.31 0.31 0.31

w/o. correction

w/. correction

median error at 20
o
C

Fig. 27. Impact of room temperature
and sound speed correction.

0 2 4 6

Error (m)

0

0.2

0.4

0.6

0.8

1
C

D
F

10dB
20dB
30dB
40dB
50dB

Fig. 28. Error CDF at differnt SNRs
of white noise.

90◦. The spacing of the UCA is 10cm. Fig. 24(a) is the
illustration of array orientation changes. As shown by Fig.
24(b), orientation has a more significant impact on the ULA.
This occurs because, when the orientation of the ULA is 90◦,
the constructed 2D cross-wall array becomes a 1D linear array.
In this case, the array can not distinguish between left and right
positions. In contrast, the UCA maintains localization errors
below 0.31m across all orientations, as its virtual cross-wall
array remains a 2D array, regardless of orientation changes.

5) Search step: Fig. 25 shows the results under different
search steps. It can be found that reducing the search step
can not improve the localization performance. This outcome
can be attributed to the limited temporal and spatial resolution
of off-the-shelf Mic arrays. With the decrease of search step,
more location ambiguity may incur, thereby affecting the
localization performance. Note that, the localization error is
large when the search step is 0.15m. This is because in this
case, the search grid does not correspond to the grids of
placing sources, which is set to 0.4m.

6) Error propagation: Fig. 26 illustrates the changes of
localization error with different estimation errors in wall-array
distance and orientation (i.e., dw and ψ). The red dashed
line represents the result with no estimation error in the
stage of array location calibration. The results reveal that the
localization accuracy significantly reduces with the increase of
error in dw and ψ. This is mainly because the delay picker is
dependent of array location, and its error will accumulate in
the localization stage. However, as reported in §VIII-A7, the
results of the proposed array location calibration scheme can
ensure that the localization error remains below 0.5m.

7) Room temperature: In the above experiments, the sound
speed is set to 343m/s under room temperature of 20◦C by
default. To investigate the impact of temperature changes, we
set the room temperature at 10◦C − 30◦C with a step of 5◦C
but the sound speed is still set to 343m/s. The blue bars in
Fig. 27 demonstrates an obvious increase of localization error
when temperature deviation exists, and the maximal error even
reaches 0.82m. Fortunately, this issue can be alleviated by

Raspberry Pi

Mic array
sound source

Mic 
element

Seeed ULA  (15cm)

Fig. 29. (a) 4-Mic ULA and Raspberry Pi (b) Experimental scene.
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(a) Hall

不同房间
0.1414
0.3
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Fs dw c I 훽

48kHz 0.4m 343m/s 9 0.2

4m

3m
4m

4m

(b) Bedroom

Fig. 30. Error distribution in a (a) 3×4m2 hall and (b) 4×4m2 room. The
red line represents the location of Mic array.

measuring the ambient temperature with temperature sensors.
We correct the sound speed by c = 331.4+0.6×T , where T
is temperature in degree Celsius [27]. As shown by the results
in red bars of Fig. 27, it is observed that the localization error
can be significantly reduced by the correction process.

8) Noise level: Fig. 28 evaluates the system performance
change under SNRs of environmental noise from 50dB to
10dB. We achieve this by adding Gaussian white noise on the
original recordings. It can be observed that high level of noises
can significantly affect the localization accuracy (0.76m at
10dB). This is mainly because strong white noises can induce
numerous fake peaks on the GCC spectrum.

IX. REAL-WORLD EXPERIMENTS

For validations in the real world, we collect data with
Seeed ReSpeaker 4-Mic ULA (spacing da = 5cm) [38],
which is mounted to a Raspberry Pi 3B+ [39]. The source
is a smartphone that plays trigger words. The hardware and
experimental scene are shown in Fig. 29(a) and Fig. 29(b). We
collect data in a 3 × 4m2 hall, bedroom 4 × 4m2 and office
8×8m2. Other settings are the same as the simulation section.
Localization in different rooms: Fig. 30 illustrates the
heatmap of localization error in two rooms. We have achieved
an average error of 0.22m and 0.21m in hall and bedroom,
respectively. Compared with our simulations, the performance
only decreases slightly. The main reason is that the simulation
room is empty, with only walls and no other objects. Instead,
the existence of windows, doors and other reflective objects
in real environments can make the collected signals more
complex. Because the reflection coefficients of these non-wall
materials are usually smaller than the wall [34], they only have
a limited impact on the localization performance.
Source trajectory tracking: We investigate the system
performance of tracking mobile sources in office. The frame
length is set to 0.5s. Fig. 31(a) and Fig. 31(b) show 2D
trajectories with line and circle (radius is 3m), respectively.
The results reveal an average error between the estimated
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locations and ground truth trace of 0.12m. Fig. 32(a) describes
a source movement by line from point (1, 1, 0.8)m to
(7, 4, 0.2)m, and Fig. 32(b) illustrates the tracking results in
a scene of multiple sources. Their average errors in the two
cases are 0.44m and 0.16m, respectively.
Moving interference: To verify our robustness against
interference, we collect data of a sound source with the
interference from a walking human, either in silence or talking.
The settings are shown in Fig. 33(a). The results in Fig.
33(b) show that, interference on either side of the source only
slightly affects the accuracy. However, when the interference
is in front of the source, it can obstruct the line-of-sight
sound propagation to the Mic array. In this case, the accuracy
decreases significantly. Additionally, when the interference is
talking, the accuracy also decreases due to the presence of
additional unmodeled cross correlation peaks.
Efficiency on Raspberry Pi: The algorithm is locally
deployed on a Raspberry Pi 3B+ with Python 3. The average
latency of signal processing with a multi-channel speech of
size (24k, 4) for localization in 2D and 3D is 1.58s and 3.44s,
respectively. We believe that the latency can be further reduced
by implementing the algorithm in C++.

X. DISCUSSIONS

How large can the wall-array distance be: We observe the
limit of wall-array distance is constrained by three aspects.
The first one is that, the SNR ratio between LOS-LOS
and ECHO-ECHO correlation should not be smaller than
a threshold. This is because the ECHO-ECHO correlation
peak can be hard to identify in this case. The second and
third are that the sound pressure levels of ECHO speech
and ultrasound signals for array location calibration should
not be lower than a noise level. We define three signal
strengths, including the LOS speech: ALOS = A0e

−γD,
ECHO speech AECHO = ωA0e

−γ(D+2×dw) and ECHO
ultrasound AuECHO = ωA0e

−γu(2×dw), where A0 = 10
Ps
20

is the amplitude of source, Ps is the sound pressure level
of source, γ is the sound attenuation factor in air, D is the
distance between source and array, γ and γu are the attenuation
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Fig. 33. Moving interference. L and R: walking forward in left and right,
and N: walking in front of source.

factor of speech and ultrasound in air, and ω is the reflection
coefficient. Mathematically, the constraints can be given by:

(
AECHO

ALOS

)2

= (ωe−2γdw)2 > SNRRδ 1⃝
20 log10(AECHO) > Pδ 2⃝
20 log10(A

u
ECHO) > Puδ 3⃝

(14)

In 1⃝, given γ = 5 × 10−3dB/m, ω = 0.75 and SNRRδ =
1/2, the wall-array distance should be less than dsw =
1
4γ ln(ω

2/SNRRδ) ≈ 3.7m. In 2⃝ and 3⃝, because ultrasound
experiences 10× larger attenuation in air than speech in low
frequency range, constraint 3⃝ is stricter. Given Ps = 60dB,
γu = 0.39dB/m and Pδ = 20dB, dw should be less than
duw =

log10 β+(Ps−Pu
δ )/20

2γu
≈ 2.4m. The actual limit of wall-

array distance of our system should be min{dsw, duw} = 2.4m.
Why not consider the TDOA between mi and mv

i : Note
that, we do not consider the localization hyperbola on focal
points of < Pmi , Pmv

i
>. This is because the relative delay

that signal reaches mi and mv
i can only be obtained by

autocorrelation of the collected signal at mi itself. However,
autocorrelation can not incorporate phase weighting because
the term Yi(f)Yi(f)

|Yi(f)||Yi(f)| equals to a constant 1. Additionally,
Fig. 2 shows that autocorrelation without phase weighting
has poor accuracy for speech signals. A further advantage
of considering the relative delays of < mi,m

v
j > and

< mv
i ,mj > is that we can calculate them simultaneously

while performing cross correlation on two channels to obtain
relative delays for < mi,mj > and < mv

i ,m
v
j >.

Scenes with array mobility: This work assumes that the Mic
array is in a static state, while the source can be mobile.
However, if the array itself is with mobility, the collected
signals can become more complex due to significant changes
in reflective surfaces and potential device vibrations. We leave
this intriguing problem for future work.

XI. CONCLUSION
This paper presents HearLoc, an ISSL system for unknown

sources in 3D with a ten-cm Mic array. By effectively utilizing
the correlation among multipath signals, the localization
ability and dimension can be significantly improved from
the original small-sized array to a large cross-wall virtual
array. Technically, we design algorithms to localize single
and multiple sources, and a calibration scheme for array
location within a room. Experiments in various settings show
the effectiveness of the proposed scheme, outperforming the
existing AOA-based ISSL solutions in both accuracy and
efficiency. In our future endeavors, we aim to investigate
source localization algorithms for Mic arrays with mobility.
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