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Abstract—In the future 6G intelligent transportation system,
the edge server will bring great convenience to the timely com-
puting service for connected vehicles. To guarantee the quality of
service, the time-critical services need to be migrated according
to the future location of the vehicle. However, predicting vehicle
mobility is challenging due to the time-varying of road traffic and
the complex mobility patterns of vehicles. To address this issue, a
spatial-temporal awareness proactive service migration strategy is
proposed in this paper. First, a spatial-temporal neural network is
designed to obtain accurate mobility by using gated recurrent units
and graph convolutional layers extracting features from spatial
road traffic and multi-time scales driving data. Then a proactive
migration method is proposed to guarantee the reliability of ser-
vices and reduce energy consumption. Considering the reliability of
services and the real-time workload of servers, the migration prob-
lem is modeled as a multi-objective optimization problem, and the
Lyapunov optimization method is utilized to obtain utility-optimal
migration decisions. Extensive simulations based on real-world
datasets are performed to validate the performance of the proposed
method. The results show that the proposed method achieved 6%
higher prediction accuracy, 10% lower dropping rate, and 10%
lower energy consumption compared to state-of-the-art methods.

Index Terms—Lyapunov optimization, proactive service
migration, spatial-temporal mobility prediction, vehicular edge
networks.

I. INTRODUCTION

IN RECENT years, the rise of artificial intelligence (AI) has
pervaded various areas from the 6G-enabled edge computing

networks to the future intelligent transportation systems. With
the help of AI and 6G, it will be possible for intelligent trans-
portation systems to achieve advanced services for connected
vehicles such as driving assistance and autonomous driving [1].
In the 6G era, connected vehicles expect seamless proximal
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services, which require a tremendous amount of real-time data
processing, hyper-fast data rate, and extremely low latency [2].
However, the high-speed movement of vehicles makes it difficult
to guarantee the ultimate experience of the aforementioned
time-critical and low fault tolerance services. It gives rise to
a high possibility of impairment of quality of service (QoS) and
latency increasing [3]. This will further lead to service level ob-
jective violations, service interruptions, and even serious traffic
accidents [4]. Therefore, it is critical to develop a mechanism to
migrate services according to the movement of vehicles.

The problem of developing a robust service migration mecha-
nism for the intelligent transportation system is challenging [5],
[6]. The pivotal issue of service migration is to guarantee that the
services can be migrated to the optimal edge server according to
the movement of vehicles [7]. However, the complex mobility
patterns of vehicles and time-varying road traffic make it chal-
lenging to accurately predict the mobility of vehicles. To avoid
significant adverse effects such as service interruption caused
by misprediction, the prediction models need to be extremely
accurate. Another key issue is to reduce migration costs while
ensuring QoS requirements [8]. During service migration, the
edge server needs to consume energy to transmit service data
to another edge server [9]. Frequent service migration due to
vehicle movement will cause a large amount of data transmis-
sion, resulting in unacceptable energy consumption [10]. On
the contrary, if the service migration is not based on vehicle
movement, the proximity computing requirement of vehicle
services cannot be guaranteed. This makes it hard to make an
optimal migration decision to balance energy consumption and
QoS requirement.

Over the past few years, service migration has been explored
extensively [11], [12], [13], [14]. Many existing migration meth-
ods focus on migrating services reactively [15], which migrate
services based on specific thresholds for various metrics such
as quality loss tolerance [16], proximity requirements [17], and
energy consumption [18]. However, reactive service migration
can not foresee the workload of the server, which will impair the
QoS. When the target server is working under a high workload,
the server will block the migration requests to avoid overload,
which will lead to service interruption. To avoid this problem,
the proactive way is increasingly proposed.

Proactive service migration is a predictive approach that mi-
grates services before the considered metrics reach their thresh-
olds [19]. The performance of the proactive method largely
depends on the prediction accuracy of vehicle mobility [20].
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Recently, in order to predict vehicle mobility accurately, works
in [21], [22], [23], [24] proposed several mobility predic-
tion methods based on probabilistic models [25], the Markov
chain [26], and neural networks [27]. However, considering the
migration failure caused by misprediction and real-time server
workload, how to optimize the migration decision is still an un-
derexplored problem. Furthermore, combining the dynamically
changed traffic conditions to improve mobility prediction is a
promising open issue.

To make appropriate migration decisions, it is crucial to
accurately predict the mobility of vehicles in combination with
dynamic traffic conditions. In this paper, gated recurrent units
and graph convolutional networks are used to extract temporal
trends and cross-correlated road features from real-time driving
data, history trajectory data, and road traffic data. The real-time
driving data and the historical trajectory from other vehicles are
formulated as a time sequence processed by two homogeneous
gated recurrent units. The road traffic is modeled as a graph
structure processed by a two-layer graph convolutional network.
By fusing spatial and temporal features, accurate mobility pre-
diction can be obtained. Meanwhile, considering the migration
failure caused by misprediction and the real-time server work-
load, the migration problem is modeled as a multi-objective
optimization problem. Based on the prediction results, a mo-
bility awareness proactive migration method for vehicular edge
computing networks is proposed to balance the QoS of vehicles
and the energy consumption of the servers.

In light of these discussions, the main contributions of this
paper are summarized as follows:
� An AI-enabled intelligent vehicle mobility prediction net-

work is designed for edge computing service in intelligent
transportation systems. The designed prediction network
can predict vehicle mobility by capturing the complicated
spatial-temporal traffic dependencies from historical traffic
data and real-time driving data. Incorporating gated recur-
rent units and graph convolutional networks, the designed
prediction network can achieve higher mobility predic-
tion accuracy compared to other state-of-the-art prediction
methods.

� To guarantee the reliability of intelligent edge services for
connected vehicles, a proactive migration mechanism is
devised. Considering the reliability of services and the
real-time workload of servers, the migration problem is
modeled as a multi-objective optimization problem. Solv-
ing by Lyapunov optimization, the proposed method can
make utility-optimal migration decisions to best balance
the quality of service and migration cost.

� We perform extensive simulations on the realistic vehicle
trajectories in Bologna and Luxembourg to validate the
superior performance of the proposed proactive migration
method against the state-of-the-art methods. The results
show that the proposed method performs best in terms of
prediction accuracy, service dropping rate, energy cost, and
the queue length of servers. The proposed method achieved
up to 6% higher prediction accuracy, 10% lower dropping
rate, and 10% lower energy consumption compared to
state-of-the-art methods.

The rest of this paper is organized as follows. Relative work is
introduced in the next Section. The system model is presented in
Section III. Section IV introduced the spatio-temporal mobility
prediction network. The formulation of the problem is presented
in Section V. Whereas the numerical results based on the re-
alistic vehicle trajectory in Bologna are presented in Section
VI, followed by the concluding remarks and future work in
Section VII.

II. RELATED WORKS

Service migration is a key mechanism to maintain the con-
tinuity of service when a vehicle changes the coverage of
base stations [28]. A well-designed migration mechanism can
avoid energy consumption and QoS impairment [29]. Generally,
service migration methods can be divided into two categories:
reactive migration and proactive migration.

The reactive method migrates services based on specific
thresholds for various metrics such as quality loss tolerance,
proximity requirements, and energy consumption. To ensure
QoS during reactive migration, a distributed traffic steering live
migration framework was proposed in [11], which can maintain
QoS through dynamic path planning to avoid service interrup-
tion. In [12], a delay-aware bandwidth slicing migration method
was designed to meet the different delay requirements of mi-
gration traffic and non-migration traffic by using the bandwidth
slicing mechanism. Considering the trade-off between migration
cost and user-perceived quality, a migration method based on the
Markov decision process was proposed in [13] for cloud network
migration decisions. Taking the service placement into consid-
eration, the work in [14] further applied the same framework
to the edge. By solving the performance optimization problem
under long-term services quality constraints, a Follow-Me edge
service migration method was developed.

A drawback of these reactive methods is that migration is
triggered by a certain threshold of considered metrics. Since
reactive methods cannot predict the mobility of vehicles, they
assumed that all migration requests will be accepted by the
target server. However, a server with a high workload may block
some migration requests to guarantee the quality of service in
progress, which will cause migration failure. Although it can
be alleviated by the handover or migration again to other idle
servers, considerable energy consumption is unacceptable.

Recently, some proactive service migration methods consider-
ing vehicle mobility have been investigated. Aiming to minimize
the total energy consumption, an energy-efficient service migra-
tion method was proposed in [21], which can make proactive
migration decisions according to the vehicle trajectories. By
modeling the trajectories as a Markov chain, the future locations
of the user can be obtained, and the contents can be migrated
proactively.

Some works further incorporated machine learning methods
into proactive migration. In [22], a LSTM-based user mobility
prediction was proposed for service management, which can
achieve the best match between the expected service qual-
ity of users and the optimal utilization of MEC resources.
In [23], a joint migration and mobility optimization approach
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Fig. 1. The system structure of the vehicular edge computing network. There
are three types of V2N communication links in the system. The vehicle accesses
the edge server and gets feedback through the link shown as the blue line. After
coverage changes, the vehicle accesses the server and gets feedback by service
handover through the backhaul link shown as the red line. After the services are
migrated to the accessed server, the vehicle access the server through the link
shown as the green line.

was designed to minimize the migration cost. Through mobility
prediction and path planning, the formulated optimization
problem can be transformed into a composite utility function
and solved by deep Q-learning networks. Moreover, a mobil-
ity prediction framework incorporating gated recurrent units
and a convolutional neural network was proposed in [24].
It can predict the future vehicle location according to the
real-time azimuth of the vehicle. Based on the prediction re-
sults, a proactive migration decision is made to reduce energy
consumption.

However, the existing work ignored the migration failure
caused by misprediction. Misprediction will cause the service to
be migrated to the wrong server, which will further lead to high
energy consumption and even service interruption. On the other
hand, the mobility prediction in the existing work is not accurate
enough. The time-varying road travel time and dynamically
changed traffic conditions were not considered, which are very
helpful to improve prediction accuracy.

III. SYSTEM MODEL

A. System Overview

The vehicular edge computing network is shown in Fig. 1.
Each base station (BS) provides wireless communication ser-
vices for vehicles in its coverage, and an edge server is deployed
in each BS for computing services. The coverage of the BSs is
non-overlapping and vehicles can request services from an edge

server through the BS. The edge server that hosts the vehicle’s
requests is denoted as the source server shost.

Due to the high wire-deployment costs and ultra-dense BS
deployment mentioned in [30], we assume that edge servers
are interconnected via a wireless backhaul network. If a vehicle
leaves the coverage of shost, the service migration or handover
will be performed to guarantee the service continuity of this
vehicle through the backhaul network.

An example of the handover and migration process is shown in
Fig. 1. Initially, vehicles access the source server shost through
the access BS directly as shown in the blue line. When vehicles
leave the coverage of shost, all the data to and from these vehicles
are handover from their source server shost through the backhaul
link to keep service continuity shown in the red line. If the
backhaul link cannot meet the QoS requirement, the services of
those vehicles will be migrated to the edge server in the current
cell (named access server) through the green arrow.

The migration process consists of two steps. First, the access
server will copy common application data locally to support
the same services. Then the private data of migrated vehicle
will transmit from the source server shost to the access server.
The handover mechanism will ensure service continuity during
migration. Once the migration has been done, the access server
will become the new source server, and the vehicle can request
service from it through the connection shown in the green line.

To design a suitable migration method, two main issues are
addressed in this paper : (i) How to accurately estimate the
mobility of vehicles and workloads of edge servers; (ii) Whether
to migrate them considering the energy cost and the QoS require-
ment of vehicles. To address these issues, the detailed model
formulation is given in the following subsections, and the main
notations used in this paper are listed in Table I.

B. Energy Cost

As a critical indicator, the migration decision is highly influ-
enced by energy consumption. First, we will formulate the en-
ergy consumption of three types of vehicles: directly connected
vehicles, handover vehicles, and migration vehicles.

In this paper, time is divided into time slots t. Suppose
the base station (BS) and the edge server are collocated, and
there are m edge servers in the certain area defined as a set
si ∈ S{s1, s2, · · · sm}. The vehicles served by edge server si at
time t are denoted as v ∈ Vi(t).

Each edge server serves three types of vehicles, divided into
the directed connected set V D

i (t), the handover set V H
i (t), and

the migration set V M
i (t). Vehicles connected to the BS directly

in the same cell as that of server shost belong to V D
i (t). Those

connected to different cells from that of server shost through
the handover mechanism belong to V H

i (t). Those connected to
different cells from that of server shost during service migration
belong to V M

i (t).
In time slot t, the relation between Vi(t) and those three sets

can be defined as

V D
i (t) + V H

i (t)+V M
i (t) = Vi(t). (1)
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TABLE I
SYMBOL TABLE

When vehicle v leaves the coverage of the source server, the
service migration or handover will be performed to guarantee
the service continuity.

The Mv(t) = (δ(t), ϕ(t)) denotes the decision on whether
and where to migrate the services. Where δ(t) ∈ {0, 1} denotes
whether to migrate services, and ϕ(t) ∈ {1, 2, · · ·m} indicates
where to migrate.

If δ(t) = 0, the services will not be migrated. Vehicle v
connecting to the new access BS will be transferred from direct
connection set V D

i to handover set V H .
If δ(t) = 1, the services of v will be migrated to sϕ(t), and v

will be transferred to the migration set V M
i until the migration

process is finished.
Let cup and cdown be the amount of upload and download

requests in time slot t respectively, the direct connection trans-
mission cost ed can be given as

ed =
cup ∗ Pv + cdown ∗ Ps

R(t)
, (2)

where Ps and Pv are the transmission power of BS and the
transmission power of the vehicle. R(t) is the transmission rate
between v and the access BS, which can be given as

R(t) = W · log2
(
1 +

Ps · d(t)−σv,s

I

)
, (3)

where d(t) is the distance between the source server and the
vehicle v. σ is the path loss exponent, and I is the random
Gaussian noise.

In the case of handover, the requests of vehicle v need to
be handover from the accessed BS to the source server, so the
additional backhaul cost (cup+cdown)∗Pb

Rb
will be added to the

energy cost. Where Pb and Rb are the backhaul transmission
power and rate. The handover energy cost eh can be represented
as

eh = ed +
(cup + cdown) ∗ Pb

Rb
. (4)

In the case of migration, the cost consists of the transmission
part and the self-copy part. The transmission part is to migrate
the private data of vehicles, and the self-copy part is to copy
common application data locally to support the same type of
services in a new edge server. Accordingly, the migration cost
em can be given as

em = ed +
(cup + cdown + cs) ∗ Pb

Rb
+ ecopy. (5)

where cs is the size of vehicle’s private data, and ecopy is the
self-copy energy cost, which can be treated as a constant.

Based on (2), (4), and (5), if the server being migrated to can
serve the vehicle in the following time, the migration energy cost
ei(t) of can be formulated as

ei(t) =

{
(1− δ(t))eh + δ(t)em if vi /∈ V D

i ,
ed otherwise.

(6)

Due to inaccurate prediction, there is the risk of migrating
service to the wrong server, so it is necessary to account for the
energy cost caused by prediction errors. Migration errors are cat-
egorized into three types: premature migration, late migration,
and wrong migration.

The premature migration denotes the situation that the mi-
gration is performed too early. In other words, the predicted
server will be a future accessed edge server. In this case, the
packet from the server needs to be transmitted back to the current
access server by the handover mechanism. Thus, the additional
handover cost eh will be added.

The late migration denotes the situation that the migration is
performed too late. In other words, the predicted server is the
accessed server in time slot t, but the vehicle will change the
accessed server in later slot. In this case, vehicles will generate
new private data, which needs to be retransmitted in the future.
Thus the additional transmission energy cost (cs ∗ Ps(t))/Rwill
be added.

In cases of wrong migration, the predicted server is neither
the next edge server in the future nor the previous edge server in
the past. The predicted location is wrong completely. Thus the
whole migration process is wasted, and the migration cost em
will be added.

In summary, the energy cost can be rewritten as

E(t) =

⎧⎪⎪⎨
⎪⎪⎩
ei(t) +

cs∗Ps(t)
R if late migrate

ei(t) + eh if premature migrate
ei(t) + em if wrong migrate
ei(t) otherwise

(7)
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C. Resource Reservation

Resource reservation is a crucial mechanism to guarantee the
QoS. Any migration decision M(t) needs to consider the target
edge server’s load. Services could be migrated if and only if the
target edge server has the computational resource to host those
services. The QoS requirement on queue length and the drop
rate is formulated in this section.

Assume that the future locations of vehicles can be obtained
by the mobility prediction. Based on the prediction, the new
vehicle arrival rate αi(t+ 1) of server si in time slot t+ 1 can
be defined as

αi(t+ 1) =

m∑
j=1;j �=i

μ(j,i)(t+ 1) · δ(t), (8)

where μ(j,i)(t+ 1) is the number of vehicles from server sj
to server si, which can be obtained by the mobility prediction.
Similarly, the departure rate βi(t+ 1) given by

βi(t+ 1) =

m∑
j=1;j �=i

μ(i,j)(t+ 1) · (1− δ(t)) . (9)

Assuming that each vehicle has the probability pg to generate
a new service request, based on (8) and (9), the service arrival
number of server si in time slot t+ 1 can be given as

γi(t+ 1) = [max {φi(t)− βi(t+ 1), 0}+ αi(t+ 1)] · pg,
(10)

where φi(t) is the number of vehicles served by server si in t.
Assume that all the edge servers have the same capacity CL.

Let C be the resource requirement of one service request. Based
on the service arrival rate γi(t+ 1), the queue length of si can
be given as

Qi(t+ 1) = max

{
Qi(t)− CL

C
; 0

}
+ γi(t+ 1). (11)

Considering time-division multiplexing, an On-Off service
queue model [4] is used to formulate the usage of the server.

For ongoing service, there are two states to indicate whether
there are service requests generated. On means the customer
generates service requests in the time slot and Off otherwise.

Let a and b be the average duration of busy and idle, and N
denotes the maximum served vehicular customer number of the
edge server. The probability of the service in the “on” state can
be represented as

pon =
a

a+ b
. (12)

Since the ongoing services don’t always generate service
requests, the max served customer number Nmax can be larger
than CL

C to serve more customers by defining a threshold of
service drop rate related to the QoS requirement.

Theorem 1 (The On-off resources model of max served cus-
tomer number):

Letk be the threshold of service drop rate, the relation between
the max served customer numberNmax and k can be represented

as

Nmax =
CL

pon
− 1

pon

[√
4	(CL + 	)− 2	

]
,

where 	 ≈ k2(1− pon)/4. (13)

Proof can be seen in Appendix-A, available in the online
supplemental material.

If served customer number N > Nmax, the server will work
on the overload state. The services arriving beyond the max
served customer number Nmax would be dropped. Suppose that
there are N (N > Nmax) customers on the On-state, the service
drop rate can be represented as

pd =

N∑
i=CL

(
Nmax

i

)
pon

i(1− pon)
i−Nmax . (14)

A high drop rate will severely affect user experience. It is
necessary to reserve resources to avoid service dropping for
ongoing services.

If N > Nmax, either some migrated services or new services
are blocked. In the case of blocking migration, the whole migra-
tion process is wasted, and the blocking utility loss Eb(t) can be
represented as

Eb(t) = nm · χbm + nn · χbn, (15)

where χbm and χbn denote the new service blocking loss and
the migration service blocking loss. nm and nn are the blocked
number of migration services and new services. Since a blocked
migration service can still be served by its previous server
through the handover mechanism, the χbn is higher than χbm.

D. Problem Formulation

We solve the problem in two steps. First, the mobility predic-
tion of all vehicles is obtained to calculate the vehicle arrival rate
αi(t+ 1) and the vehicle departure rate βi(t+ 1). To address
this issue, a spatial-temporal neural network will be introduced
in Section IV.

Second, an optimal migration decision M(t) = (δ(t), ϕ(t))
is devised based on the mobility prediction results. An utility
function G(M(t)) is defined to make optimal migration deci-
sions considering the energy cost, the queue length of server,
and service drop rate.

Based on (15), the utility function G(M(t)) can be repre-
sented as

G(M(t)) = w1Nχ− w2Eb(t)− w3E(t), (16)

where the χ denotes revenue for serving a customer, and the w1,
w2, and w3 are the weight to normalize different quantity.

The objective of this paper is to maximize the utility function
by selecting the optimal migration decisions M(t), which can
be formulated as follows

max
M

∑
si∈S

∑
v∈si

G(M(t)),

s.t. (a) δ(t) ∈ {0, 1}, ∀t,
(b) ϕ(t) ∈ {1, 2, · · ·m}, ∀t. (17)
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Fig. 2. The proposed AI-enabled spatio-temporal mobility prediction framework to obtain the future location of connected vehicles. Real-time drive data and
historical trajectory are handled by two gated recurrent unit networks to extract temporal features, and road traffic data are handled by graph convolutional networks
to extract spatial features.

To solve this problem, a Lyapunov optimization based service
proactive migration method will be presented in Section V.

IV. SPATIO-TEMPORAL MOBILITY PREDICTION

To migrate services proactively, the first and most important
step is to obtain an accurate vehicle mobility prediction. In
this section, a spatio-temporal mobility prediction network is
designed to improve the accuracy of prediction.

As shown in Fig. 2, three types of data are collected for
mobility prediction. The driving data and the historical trajectory
data are collected through speed, azimuth, acceleration, and
coordination of vehicle location, which depict the mobility char-
acteristics of vehicles. The road-based traffic data are collected
from the road sections through the mean travel time, mean speed,
max speed, vehicle count, and the percentage of lane occupancy.

To fully capture the potential correlations of the data, the
proposed network uses three neural networks to extract fea-
tures. The real-time drive data and the historical trajectory from
other vehicles are formulated as a time sequence handled by
two homogeneous 2-layer gated recurrent units (GRU). The
road-based traffic data is modeled as a graph structure handled
by a 2-layer graph convolutional network (GCN). Then three
extracted features are flattened into a one-dimensional vector as
the input of the 2-layer fully connected network.

The reason why we use the spatio-temporal neural structure
is that the future locations of certain vehicles depend not only on
their underlying characteristics (such as speed and acceleration)
but also on the road traffic and the previous trajectories of other
vehicles [31], [32]. As shown in Fig. 3(a), vehicles passing
through the same trajectories departure in two recent time slots
may have the same trend in travel speed. Since the traffic
condition and road congestion in a certain period are similar,
considering the trajectories of other vehicles is very useful to
improve the accuracy of prediction.

Fig. 3. The illustration of potential relevance on historical trajectory and
road traffic. (a) The potential spatial relevance between vehicles on the same
trajectories at different times. (b) The potential temporal relevance between
traffic flow in the horizontal and vertical directions at the same time slot.

Besides, the traffic condition of adjacent roads is also corre-
lated. As shown at the intersection of the two roads in Fig. 3(b),
there are two opposing traffic speed trends in horizontal and
vertical directions. If the horizontal direction is open to use, the
vertical direction is blocked. Moreover, the next road section’s
travel speed is related to the previous road section’s travel speed.
If the previous road is congested, the next roads are more likely
to be congested in the future. Therefore, road traffic data can
also be used to improve prediction accuracy.

A. Gated Recurrent Unit for Time Sequences

Recurrent neural network (RNN) is a suitable tool to extract
hidden temporal inter-correlation from sequential data. It has
been proved in [33], [34] that among all different types of RNN,

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:23:18 UTC from IEEE Xplore.  Restrictions apply. 



3280 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 4. The illustration of converting real-world road topology to the graph
structure. (a) The real-world road topology includes three road sections. (b) The
corresponding graph structure.

GRU has fewer parameters, faster convergence speed, and has
almost the same performance as LSTM. To avoid over-fitting
and excessive parameters, GRU is chosen as a feature extractor
for the temporal data in this paper.

For GRU, the reset gate r and the update gate z are the core
components to capture long-term dependencies. The reset gate
is used for incorporating input and previous memory, and the
update gate z is used to control the preservation of previous
memory. The transition functions in hidden units of GRU are
given as follows:

rt = σ
(
W irxt + bir +W hrh(t−1) + bhr

)
,

zt = σ
(
W izxt + biz +W hzh(t−1) + bhz

)
,

nt = tanh
(
W inxt + bin + rt ∗

(
W hnh(t−1) + bhn

))
,

ht = (1− zt) ∗ nt + zt ∗ h(t−1),
(18)

where W and b are the model parameters for training. ht is the
hidden state at time t, xt is the driving data at time t, ht−1 is
the hidden state of the layer at time t− 1, and rt, zt, nt are the
reset, update, and new gates, respectively. σ(·) is the sigmoid
function.

Two GRU networks are used to handle driving data Xdrive
t

and historical trajectory Xtrajectory
t . For real-time driving data,

each layer has 8 GRU cells, and the dropout probability is set
to 0.3. Each layer’s final state hn will be the output of the two-
layers GRU part. For historical trajectory, the GRU cell number
is 8, and the output will be the final state hn of the second layer
to capture deep features on the whole trajectory.

B. Graph Convolutional Network for Road Traffic

To capture the complex spatial dependence features in road-
based traffic data, the first step is to convert road traffic into a
graph structure. An example of converting real road topology to
graph structure is given in Fig. 4.

In Fig. 4(a), the real road topology consists of three road
sections. First, road sections are converted to vertices shown in
Fig. 4(b). According to the road connectivity, edges are added
to this graph. For example, when vehicles turn right from road
1, they will reach road 2, and there is an edge connecting road
1 to road 2. Similarly, vehicles that go straight will reach road
3, so there is an edge from road 1 to road 3. In this way, the
whole trajectory and all roads adjacent to it can be modeled as a
graph G.

In this paper, we aim to learn the future traffic trend from adja-
cent road sections. So based on the location of the vehicle, graph
G contains the current road section and 4 adjacent sections. In
graphG, each vertex contains 4 road features including the mean
travel time, mean speed, max speed, and the percentage of lane
occupancy.

Based on the formed graph, a graph convolutional network is
designed to capture the complex spatial dependence. As shown
in the purple part of Fig. 2, the graph convolutional network
(GCN) contains two GCN layers. The channel number of the
first GCN layer is 25, and the output channel number is 5. The
input channel number of the second GCN layer is 5, and the
output channel number is 1. Similar to the GRU layer, a dropout
probability is set as 0.3. The graph convolutional procedure [35]
can be expressed as:

Xout
t = σ

(
ÂRelu

(
ÂXroad

t W 1

)
W 2

)
,

Â = D̃
− 1

2 ÃD̃
− 1

2 ,

Ã = A+ IN , (19)

where adjacency matrix A is used to denote the edge connectiv-
ity of each road, and the element of this matrix equals 1 if and
only if the two roads are connected.W 1 andW 2 are the training
parameter of two graph convolutional layers, Xroad

t is the road
features matrix in time slot t, Xout

t represents the feature matrix
in time slot t, D̃ is a degree matrix, and σ(·), Relu(·) represent
the activation function.

C. Spatio-Temporal Features Fusion

As aforementioned, three feature vectors from the temporal
and spatial aspects can be obtained. To fuse spatio-temporal
features, each vector will be transformed into a one-dimension
vector by passing a flatten layer. Then three one-dimension
vectors will be concatenated into a vector and to be the input
of the Spatio-temporal feature fusion network.

When making migration decisions, we care about the number
of vehicles that have changed their accessed cell. Thus, the
prediction output is a 1× 7 vector, whose element denotes
the probability of the vehicle entering the six adjacent cells or
staying in the current cell.

The probability vector will be converted into the probability
vector ps by passing a soft-max layer.

Loss = −
m∑
i=1

log
exp (psi)

exp

(
m∑
i=1

psi

)yi, (20)
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Algorithm 1: The Training Process of Spatio-Temporal
Mobility Prediction Networks.

Input:Xdrive = (xdrive
t ,xdrive

t−1 , . . .,xdrive
t−τ ),

Output:ps

1: Collect Xtrajectory and Xroad from edge server
database based on target vehicle data Xdrive.

2: epoch← 0
3: repeat
4: epoch← epoch+ 1
5: batch← 0
6: repeat
7: batch← batch+ 1.
8: Extract the temporal features from Xdrive and

Xtrajectory based on (18).
9: Extract the spacial feature from Xroad based on

(19).
10: Concatenate three features as a spatio-temporal

feature vector and get the prediction results.
11: Calculate the loss based on loss function (20), and

back-propagate the loss value.
12: until batch ≥ 	|Epoch|/256

13: until epoch ≥ 500

where y is the label value, which is constructed as a one-hot
code.

The whole training process is shown in Algorithm 1. We set
the batch size to 256. In every epoch, the training loss will be
calculated based on (20). The loss value will be back-propagated
to the parameters of each layer. After the training process,
the maximum value of ps will be chosen as the prediction
result. For the online prediction, we follow the online prediction
offline training principles. The training process is conducted
offline at the beginning to get the initial model parameters for
online prediction. Then the trained neural parameters will be
updated periodically based on the collected data, and the model
parameters will be optimized by Algorithm 1 during the whole
simulation.

In the end, we can obtain which cell each vehicle is expected
to arrive in the next time slot. According to the current cell and
predicted cell of vehicles, we can calculate the vehicle arrival
rate αi(t+ 1) and the vehicle departure rate βi(t+ 1) of any
server si. Based on the vehicle arrival rate and departure rate, we
can further estimate the workload of servers and make optimal
migration decisions.

V. PROACTIVE SERVICE MIGRATION

In this section, we focus on making optimal migration deci-
sions to minimize energy consumption and ensure the QoS of
each vehicle. Based on the obtained vehicle arrival rateαi(t+ 1)
and departure rate βi(t+ 1), we can calculate the arrival rate of
vehicles requesting edge services γi(t+ 1) using (10). Then,
according to (11), the queue length Qi(t+ 1) can be derived.

In this paper, the server workload is formulated as a queue
system. The Lyapunov optimization is a suitable method to solve

the objective function in a stable queue [36] [37]. Considering
the queue length Qi(t), the Lyapunov optimization method is
used to solve the formulated problem.

First, based on (11), the Lyapunov function is defined as

L(t) =
1

2
(Qi(t))

2. (21)

Then one-slot Lyapunov drift can be given as

Δ(Qi(t)) = E[L(t+ 1)− L(t)|Qi(t)]. (22)

Generally, servers are intended to host as many services
as possible to improve efficiency. However, increasing service
numbers will lead to server overload. To maximizeG(M(t)) and
avoid server work on the overload state, the drift-plus penalty
function can be defined as

min
M

∑
si∈S

∑
v∈si

Δ(Qi(t))− V E[G(M(t))|Qi(t)],

s.t. (a) δ(t) ∈ {0, 1}, ∀t,
(b) ϕ(t) ∈ {1, 2, · · ·m}, ∀t,
(c) Ni ≤ Nmax, ∀si, t, (23)

where V is the parameter to balance the different quantities of
two parts. Constraint (a) (b) ensures that migration decisions
M(t) = (δ(t), ϕ(t)) are within the feasible domain. Constraint
(c) is used to prevent server work in an overload state.

Minimizing the drift-plus penalty function is equivalent to
minimizing the upper bound of the drift-plus penalty function.
Based on the upper bound of the drift-plus penalty function, the
objective function (23) can be simplified as

min
M

∑
si∈S

∑
v∈si

E[Qi(t) (γi(t+ 1)−Ni)− V G(M(t))|Qi(t)],

s.t. (a) δ(t) ∈ {0, 1}, ∀t,
(b) ϕ(t) ∈ {1, 2, · · ·m}, ∀t,
(c) Ni ≤ Nmax, ∀si, t.

(24)
Proof can be seen in Appendix-B, available in the online

supplemental material.
To solve this problem, we need to remove the expectation

from the formulated problem first. Since the queue length Qi(t)
only depends on the arrival rate and leaving rate of server si in
the previous time step, the formulated problem can be separated
into per-server problems. Also, Qi(t) at the current time step t
is deterministic, so the condition of Qi(t) can be removed as

min
M

∑
v∈si

E[Qi(t) (γi(t+ 1)−Ni)− V G(M(t))],

s.t. (a) δ(t) ∈ {0, 1}, ∀t,
(b) ϕ(t) ∈ {1, 2, · · ·m}, ∀t,
(c) Ni ≤ Nmax, ∀si, t. (25)

In each time step, each vehicle has the probability pg to gen-
erate a new service request, the service arrival number follows
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Algorithm 2: Lyapunov Optimization-Based Online Proac-
tive Service Migration Method.

Input:Qi(t), ps

Output:M(t) = (δ(t), ϕ(t))
1: Based on the mobility prediction result ps, select the

migration target server sϕ(t).
2: Calculate the Qi(t+ 1) for every server based on

vehicle prediction results and the (11).
3: for i = 1 to m do
4: for v ∈ si do
5: Get migration decision (δ(t), ϕ(t)) by solving (24).
6: if δ(t) = 1 and sϕ(t) overloaded then
7: Select the next closest non-overloaded server of

sϕ(t) and back to Step 5.
8: end if
9: end for

10: end for

the binomial distribution with expectation equal to γi(t+ 1)
given in (10). In (25), only γi(t+ 1) is related to the stochastic
variable, so the expectation can be calculated as

min
M

∑
v∈si

Qi(t) (γi(t+ 1)−Ni)− V G(M(t)),

s.t. (a) δ(t) ∈ {0, 1}, ∀t,
(b) ϕ(t) ∈ {1, 2, · · ·m}, ∀t,
(c) Ni ≤ Nmax, ∀si, t. (26)

Then the formulated optimization problem becomes an inte-
ger programming problem, and we solve it by using the implicit
enumeration method.

In summary, the whole proactive service migration process
is given in Algorithm 2. First, Qi(t+ 1) and γi(t+ 1) for each
server are calculated based on the mobility prediction results
using (9) and (10), and Qi(t+ 1) is used to evaluate whether
the migration will cause any server overload in the next time
step. Then, the implicit enumeration method is used for solving
the formulated integer programming problem in (26). After that,
Qi(t+ 1) is updated based on the obtained solution. If any
migration could lead to server overload, this migration will be
blocked and the selected migration servers will be removed from
the feasible domain at (26b). Then we will solve the problem
again in the updated feasible domain until a feasible solution
is found. In this way, server overload during migration can be
mitigated.

VI. SIMULATION

In this section, extensive simulations are conducted to verify
the superiority of the proposed proactive migration method.
First, we compare the mobility prediction accuracy with Double
GRU, GCN, LSTM, GRU+CNN, and TCP methods. Then, we
compare the migration performance in terms of service drop
rate, energy consumption, and queue length of the edge server.

Fig. 5. The Real-World Bologna simulation SUMO scenario includes a part
of the inner city of Bologna (1500 × 1800 square meters). The whole area is
divided into 21 cells, each cell occupying 200 × 200 square meters. (a) The
real-world map of the simulation area. (b) The SUMO simulation scenario.

Fig. 6. The Luxembourg simulation SUMO scenario includes a part of the
inner city of Luxembourg (2000 × 3000 square meters). The whole area is
divided into 52 cells, each cell occupying 200 × 200 square meters. (a) The
real-world map of the simulation area. (b) The SUMO simulation scenario.

A. Dataset and Network Settings

1) Dataset Setting: In this paper, two real-world datasets are
used to evaluate the performance of the designed neural network.
The first dataset, “Real-World Bologna” [38] contains 2,344,894
data samples taken from 8,779 vehicles during rush hour on
11-13 of 2008. The Bologna scenario includes a part of the inner
city of Bologna (1500 × 1800 square meters), Italy, which in-
cludes the whole area between the two main streets Andrea Costa
and Pasubio shown in Fig. 5(a). Based on the real-world map,
the whole area is divided into 21 cells, and each cell occupies
200 × 200 square meters shown in Fig. 5(b).

The second dataset, “Luxembourg SUMO Traffic” [39], is
larger than the Bologna dataset, and it contains 29,526,813 data
samples taken from 47,152 vehicles during rush hour and covers
more than 4,000 intersections. The raw traffic demand is col-
lected from the internet site of the Luxembourg National Institute
of Statistics and Economic studies. Based on the real-world
map, the downtown area is selected, including the inner city of
Luxembourg (2000 × 3000 square meters) shown in Fig. 6(a).
The whole area is divided into 52 cells, and each cell occupies
200 × 200 square meters shown in Fig. 6(b).

We conducted two case studies on the Bologna dataset and the
Luxembourg dataset. Each dataset is divided into three subsets
according to the vehicles: 70% of vehicles are used as training
data, 10% of vehicles are used as validation data, and the rest
20% of vehicles are used as testing data.
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Fig. 7. The accuracy comparison of cell size under 100× 100 m2,
200× 200 m2, 300× 300 m2, and 400× 400 m2.

2) Parameters Setting: In this subsection, several simulation
parameters including the cell size, window size, and utility
function will be discussed.

The cell size could affect the accuracy of the prediction results.
We chose four cell sizes from 100× 100 m2 to 400× 400 m2

mentioned in [40] [41] for selecting a suitable cell size.
As shown in Fig. 7, we verify the training and validation

accuracy of the proposed method in four different cell sizes.
In the case of 100× 100 m2, the output state number needs
to be increased from 7 to 13 since the vehicle could go be-
yond the adjacent cells. The increased number of output states
leads to model underfitting. In the cases of 300× 300 m2 and
400× 400 m2, the training label of the dataset is somewhat
imbalanced due to the large cell size, which makes the vehicle
barely change the cell. Although their accuracy improved on
the training set, the validation accuracy decreased due to model
overfitting. Among the four cases, the size of 200× 200 m2

performed best, so we choose it as the cell size in the subsequent
simulation experiments. In a practical system, if the real cell size
is substantially smaller than our setting, the duration of the time
slot could be reduced accordingly. If the real cell size is much
larger, it can be divided into smaller sub-cells and predict which
sub-cell the vehicle will be located in the next time slot.

The window size τ is defined to decide how long we want to
learn the vehicle feature from the past. Different window sizes
could affect the accuracy of the prediction results. We select the
window size from 1 to 20 to find a suitable window size.

As shown in Fig. 8, the accuracy of the proposed mobility
prediction method under different window sizes is verified.
Intuitively, the most recent temporal features are beneficial for
improving prediction accuracy. So both the training accuracy
and testing accuracy increase significantly when the window
size increases from 1 to 5. Then, we further increase the window
size from 5 to 20, the improvement is not obvious compared to
that from 1 to 5. Considering the larger window size leads to
higher computation complexity, the window size of 5 is selected
in the subsequent simulation experiments.

3) Neural Network Setting: The architecture of the designed
neural network is given in Table II. For driving features

Fig. 8. The accuracy comparison under different window sizes from 1 to 20.

TABLE II
THE ARCHITECTURE OF NEURAL NETWORK

extraction GRU, each layer has 8 GRU cells. Each layer’s final
state hn will be the output of the two-layers GRU part. For
historical trajectory extraction GRU, each layer has 8 GRU cells,
and the output is the final state hn of the second layer.

To learn the future traffic trend from adjacent road sections,
the input channel of the first GCN is set as 25, which consists of
5-slots road features from the current road section and 4 adjacent
road sections. The output channel number is set equal to the
number of road sections. The input channel number of the second
GCN layer is 5, and the output channel number is 1. The fusion
network contains two fully connected neural layers. The neural
number of the first layers is equal to the element number of the
spatio-temporal vector. Then the 1× 7 vector will be converted
into the probability vector ps by passing a log-softmax layer.

The hyperparameters of the training process are given in
Table III. The two datasets share the same training hyperparam-
eters. The window size τ is set to 5, and the historical window
size is set to 100. The batch size is set at 256, and the drop-out
probability is set at 0.3. Due to the different scales of the two
datasets, the training epoch is set to 500 for the Bologna dataset
and 200 for the Luxembourg dataset. To avoid over-fitting, we
use the step-learning rate to decay the learning rate every 50
epochs with a decay rate of 0.9.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:23:18 UTC from IEEE Xplore.  Restrictions apply. 



3284 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

TABLE III
THE HYPERPARAMETERS SETTING

TABLE IV
THE RAW DATASET FEATURES

B. Dataset Pre-Processing

The dataset used in this paper includes the vehicle features and
the road traffic features in each time slot. As shown in Table IV,
the raw vehicle features consist of the vehicle ID, current road
lane ID, speed, azimuth, and coordinate of this vehicle. The raw
road features consist of the road lane ID, the mean travel time,
mean speed, max speed, and the percentage of lane occupancy.

To fully extract the hidden correlation from raw features, the
raw dataset is converted into three parts shown in Table V. For the
target vehicle, driving data are converted into τ -length driving
data Xdrive = (xdrive

t ,xdrive
t−1 , . . .,xdrive

t−τ ). Each driving data
xdrive
t contains the speed, azimuth, and coordinate of the vehicle

at time slot t. Then, the sequential Xdrive is taken as the input
of the first GRU layer of the driving features extraction network.

In addition to the features of the target vehicle, the hid-
den correlation from the other vehicles that have the same
trajectory as the target vehicle is also beneficial for mobil-
ity prediction. Similar to the driving data, a window with
length l is set to convert the trajectory into τ -length data as
Xtrajectory = (xtrajectory

t−l , . . .,xtrajectory
t−l−τ ), and Xtrajectory

t−l
contains the speed, azimuth, and coordinate of the vehicle at
time slot t− l. Then, Xtrajectory is taken as the input of the
historical trajectory extraction network.

To extract the traffic trend from adjacent road sections, the
current road sections of the target vehicle and four adjacent road
sections are converted as a graph G. Each vertex in G denotes
a road section, which contains four road features. They are the
mean travel time, mean speed, max speed, and the percentage of
lane occupancy. Each edge inG denotes the connectivity of each

road. Then graph G is the input of the road features extraction
network.

C. Performance of Mobility Prediction

Performance Metric: In addition to the correct rate, we further
divide the errors into three categories: premature-prediction er-
rors (PE), late-prediction errors (LE), and mis-prediction errors
(ME), which correspond to three types of migration errors. The
detailed descriptions are given as follows:
� Correct prediction (CP): The predicted cell is the vehicle-

accessed cell at time slot t+ 1. The prediction is correct.
� Premature-prediction error (PE): The predicted cell is the

next accessed cell in the future. The prediction is wrong.
� Late-prediction error (LE): The predicted cell is the current

cell, but the vehicle will change the accessed cell in the next
time slot. The prediction is wrong.

� Mis-prediction error (ME): The predicted cell is neither the
next accessed cell in the future nor the previous cell in the
past. The prediction is wrong completely.

Compared Methods: To evaluate the performance of the pro-
posed spatial-temporal mobility prediction method, we compare
it with the following three state-of-the-art methods and two
baseline methods.
� LSTM: a time series based prediction method adopted

in [22], which predicts the user density in a specific cell by
using two LSTM layers.

� GRU+CNN: a multi-feature fusion method designed
in [24], which extracts features from the driving data
and the sequence of visited cells. The mobility prediction
method consists of two GRU layers and two convolution
layers.

� TCP: a traffic context prediction method proposed in [42],
which predicts accessed cells by combining 4 different
candidate prediction algorithms. The candidate predic-
tion algorithms include two statistical-based algorithms,
simple average and Prophet, and two learning-based al-
gorithms, Auto-Arima and LSTM. The best performance
among the candidate algorithms is used as the prediction
result.

� Double GRU: a baseline method predicts accessed cells
using drive-based data and historical trajectory data, which
is the temporal part of the proposed method and just uses
the temporal features.

� GCN: a baseline method predicts accessed cells by using
road-based traffic data, which is the spatial part of the
proposed method and just uses the spatial features.

1) Case study1: Bologna Dataset: As shown in Fig. 9(a),
the proposed method has the highest training accuracy. LSTM
and GCN methods that use only one type of spatial or temporal
feature can achieve an accuracy of 69% at most. In contrast, for
the Double-GRU and GRU+CNN methods combining multiple
types of features, the accuracy can be further increased to 86%.
Since the TCP method incorporates four different prediction
methods, it can learn the hidden dependencies from different
aspects, and its accuracy can also reach 83%. Combining spatial
and multi-scales temporal features, the proposed GRU+GCN
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TABLE V
THE INPUT FEATURES OF SPATIO-TEMPORAL NEURAL NETWORKS

Fig. 9. Training and validation accuracy comparison during the training procedure in the Bologna dataset and the Luxembourg dataset. (a) The accuracy during
the 500 training epoch in the Bologna dataset. (b) The accuracy during the 200 training epoch in the Luxembourg dataset.

TABLE VI
COMPARISON PERFORMANCE ON PREDICTION ACCURACY

method has the highest accuracy among other methods, reaching
92%.

The prediction results of the validation set and the testing
set are given in Table VI. According to the testing results, the
Double-GRU method is seriously overfitting, and the accuracy
rate is reduced severely from 86% to 70%. The accuracy of
LSTM, GRU+CNN, and the proposed method also decreases.
Nevertheless, the accuracy of the proposed method is the highest
among all methods. For the correct prediction rate, the accuracy
of the proposed method can achieve 92.82% in the training set,

86.06% in the validation set, and 88.32% in the test set, at least
6% higher than other methods.

2) Case study2: Luxembourg Dataset: The training accuracy
of six prediction methods in the Luxembourg dataset is given in
Fig. 9(b). Compared to the evaluation in the Bologna dataset, the
evaluation results in the Luxembourg dataset are more stable
during the training process. The reason causes the difference
is that the Luxembourg dataset is almost 11 times larger than
the Bologna dataset. Data samples in the small dataset have a
higher variance between each other than data samples in the
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large dataset, which increases the variance in prediction results
and causes more fluctuations during the training process [43]. To
avoid the impact caused by the dataset size, a large-scale dataset
in Luxembourg is used for model training.

Similar to the performance comparison in the Bologna
dataset, LSTM and GCN methods that use only one type of
spatial or temporal feature have the lowest accuracy of 61%. The
TCP and GRU+CNN methods that consider more than one type
of feature or incorporate different prediction methods will get
higher accuracy of 83%. Among the six methods, the proposed
method has the highest accuracy of 88%. Since the Luxembourg
dataset is almost 11 times larger than the Bologna dataset, all
six methods can converge within 5 training epochs.

The detailed prediction results in the validation set and the
testing set are given in Table VI. In the large-scale dataset, over-
fitting is alleviated. All six methods achieve similar accuracy
on the training, validation, and testing set. The LSTM method
obtains the lowest accuracy of 51.43% on the testing set and
52.09% on the validation set, followed by the GCN method
which gets an accuracy of 61.25 on the testing set and 57.03%
on the validation set. The results of LSTM and GCN show
that one type of feature is not sufficient for predicting mobility
accurately. The multi-feature method, such as Double-GRU,
GRU+CNN, and TCP can achieve higher accuracy on the testing
set. Considering both spatial and multi-scales temporal features,
the proposed method achieves the highest accuracy of 88.89%
on the training set, 87.25% on the validation set, and 87.52% on
the testing set.

D. Performance of Service Migration

In this subsection, the simulation settings used to evaluate
the performance of the migration method are introduced. The
number of MEC servers is set to match the number of cells in
each case. The total time step number is 5000 corresponding
to the SUMO simulation length and the duration of each time
step is 5 seconds. The cellular size is 200× 200 m2 as discussed
in 6.1.2. The wireless link between the vehicles and the BS is
using the NLOS mm-wave channel model of [44] under the
802.11bd protocol standard [45]. The maximum speed of the
road is from 13.89 m/s to 19.44 m/s based on the real-world road
speed limits in the city center. The average speed of vehicles
varies from 0 m/s to 19.44 m/s in each time step based on
the traffic condition. In this simulation, the service number of
vehicles in each time step varies from 0 to 696, the block number
varies from 0 to 381, and the energy consumption varies from
9.73× 106 J to 1.39× 1010 J. For quantity normalization, the
maximum value in each quantity is selected, and the weights of
the utility functions are set to 0.0014, 0.0026, and7.1712× 10−9

corresponding to the reciprocal of them. In the practical system,
these weights can be flexibly set to different values to trade
off the importance of the three terms in the utility function
according to the practical requirement. Other settings include
transmit power, transmit rate, and capacity referred to the related
migration studies [23] [24], and the detailed simulation setting
is given in Table VII.

To meet the requirements of connected vehicles in practical
networks, three fundamental services are considered in this

TABLE VII
SIMULATION SETTINGS

TABLE VIII
SERVICES SETTINGS FOR PERFORMANCE COMPARISON

paper. Three types of services correspond to three different
network traffic conditions: (1) Low upload traffic and low down-
load traffic; (2) Low upload traffic and high download traffic;
(3) High upload traffic and low download traffic. The upload
traffic data (UL) and download traffic data (DL) are collected
from the real-world mobile cellular traffic scenario under the
topology of the user-to-data center model in [46]. The detailed
settings are shown in Table VIII.

We select the previously mentioned two types of proactive
service migration methods as the compared method, the LSTM-
based method and the GRU+CNN-based method respectively.
The Double-GRU and GCN methods are excluded since those
two prediction methods are part of our method. In addition,
a reactive method is added to the simulation as the baseline
method.

For consistency and clarity, the migration methods are de-
noted by their characteristics. The description of the three com-
pared migration methods is given as follows:
� Reactive: a baseline reactive service migration method

comes from [17] that always migrates services to the access
server.

� Proactive-NRR: a proactive service migration method is
adopted in [22], which does not consider resource reser-
vations. The two-layer LSTM is used to make mobility
predictions, and the prediction result is used to determine
the migration destination of the services.

� Proactive-RR: a mobility-aware dynamic migration
method is designed in [24]. The GRU+CNN is used to
make mobility predictions. The prediction result is used
to determine which server to migrate to and if the target
server does not meet the resource reservation requirement,
the server with the next highest possibility of prediction
will be selected.
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Fig. 10. The performance comparison of service drop rate under three scenarios, navigation, data sharing, and data uploading respectively. (a) The service drop
rate for navigation, which has low UL and DL traffic, and low on-state probability pon = 0.1; (b) The service drop rate for data sharing, which has low UL traffic,
high DL traffic, and middle on-state probability pon = 0.3; (c) The service drop rate for data uploading, which has high UL traffic, low DL traffic, and high on-state
probability pon = 0.5. The results show that the proposed method has the lowest service drop rate in almost all scenarios.

Fig. 11. The performance comparison of energy consumption under three scenarios, navigation, data sharing, and data uploading respectively. (a) The energy
consumption for navigation, which has low UL and DL traffic, and low on-state probability pon = 0.1; (b) The energy consumption for data sharing, which has
low UL traffic, high DL traffic, and middle on-state probability pon = 0.3; (c) The energy consumption for data uploading, which has high UL traffic, low DL
traffic, and high on-state probability pon = 0.5. The results show that the proposed method can save up to 10% of energy compared to other state-of-art methods.

First, the performance comparison of drop rate under three
types of services is shown in Fig. 10. As shown in Fig. 10(a),
the proposed method rarely drops connections under low pon
condition. When pg ≤ 0.5, the drop rate of the Proactive-NRR
and the Reactive method increases to 0.1, which indicates part
of the servers are overloaded. By contrast, the proposed method
and Proactive-RR have the drop rate at or below 10−10 even
when pg = 1. Both are sufficiently low.

In Fig. 10(b), a higher pon are considered. When pon in-
creases, more services need to be hosted by edge servers si-
multaneously. The high drop rate is observed in Proactive-NRR
and Reactive methods since all the services are migrated close
to their locations, which leads to server overload in high-dense
traffic areas. With the consideration of resource reservation, the
proposed method can reduce the drop rate significantly. The
Proactive-RR method gives a dropping rate of 1.51% when
pg = 1, while the proposed method only gives 0.13% in the
same condition. Thanks to the more accurate prediction, the
proposed migration method remains to have the lowest drop rate
of 1.36% even when pon = 0.5 in Fig. 10(c). It is almost a third
of Proactive-RR’s dropping rate of 3.18% in the same condition.

The performance of energy consumption is given in Fig. 11.
Considering the highest connection generation rate in Fig. 11(a),
our proposed method has almost the lowest energy consumption

compared to other methods. Due to the high service dropping
rate and misprediction possibility, the Reactive and Proactive-
NRR methods need to retransmit dropped requests in the previ-
ous time slot, and the energy consumption of those two methods
is relatively high.

A significant energy consumption gap occurred in the high
download case shown in Fig. 11(b). In high download traf-
fic cases, energy consumption increases with communication
links. Because the Proactive-NRR method and Reactive method
always migrate services to the closest server, the energy con-
sumption of those two methods is relatively low.

However, the resource reservation considered method will
block some migrations to maintain a relatively low service drop
rate. Due to the high misprediction rate of the Proactive-RR
method, the blocked services may be migrated to a distant server,
so the highest energy consumption comes from the Proactive-RR
method.

In contrast, our online proactive migration algorithm will
choose the server closest to the predicted server instead of the
second possible server when the migration request is blocked. It
can reduce the risk of migrating services to a remote server.
Therefore, our methods can achieve the lowest energy con-
sumption at 112.46 MJ, which is almost 10% less than the
second-lowest method at 123.90 MJ.
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Fig. 12. The performance comparison of queue length of server. The queue
is on the server with the highest workload among 21 servers during the whole
simulation in the 5000-time steps. The worst case is considered by settingpg = 1
and pon = 0.5. The results show that the proposed method can maintain the
shortest queue even in the worst case.

The high upload traffic case is shown in Fig. 11(c). The gap
is not obvious compared to the high download case since the
transmission power of the vehicle is relatively small. Accord-
ingly, the energy consumption of different methods is close.
But if we focus on the largest generation probability cases, the
proposed method still spends the least energy at 1170.22 MJ,
which has saved 2% compared to the second-lowest method at
1191.95 MJ.

Finally, we verify the real-time performance by illustrating
the queue length of servers. The queue length of the server with
the highest workload servers during the whole simulation in
the 5000-time step is shown in Fig. 12. For the Reactive and
Proactive-NRR methods that ignored the resource reservation,
the queue length is increasing to 140000, which means the delay
will become unbounded. By contrast, the proposed method can
maintain a relatively small queue length by considering resource
reservation. Thanks to the accurate spatio-temporal prediction,
the proposed method can maintain the queue length of 60 in the
worst case, which is almost half of the Proactive-RR method in
the same condition.

VII. CONCLUSION

In this paper, a spatial-temporal mobility awareness proac-
tive service migration method is proposed to make migration
decisions based on the mobility of vehicles. Empowered by
spatial-temporal mobility prediction, the optimal migration de-
cision can be made to improve the QoS and reduce energy
consumption. The extensive experiments validate the superiority
of the proposed spatial-temporal mobility awareness proactive
service migration method in prediction accuracy and migration
performance. The results show that the proposed method has the
highest accuracy among other methods and improved prediction
accuracy by 6% in two real-world datasets. In terms of service
drop rate, our method has one-third of the best-compared method
in the worst case. For energy consumption, the proposed method
can save up to 10% of energy and maintain the shortest queue
length in all cases.

We anticipate the presented method would offer insights and
opportunities to migrate services proactively. For future exten-
sions, more real-world datasets and more types of services will
be considered.
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