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Abstract—Personalized Federated Learning (pFL) can improve the accuracy of local models and provide enhanced edge intelligence
without exposing the raw data in Mobile Edge Computing (MEC). However, in the MEC environment with constrained communication
resources, transmitting the entire model between the server and the clients in traditional pFL methods imposes substantial
communication overhead, which can lead to inaccurate personalization and degraded performance of mobile clients. In response, we
propose a Communication-Efficient pFL architecture to enhance the performance of personalized models while minimizing
communication overhead in MEC. First, a Knowledge-Aware Parameter Coaching method (KAPC) is presented to produce a more
accurate personalized model by utilizing the layer-wise parameters of other clients with adaptive aggregation weights. Then,
convergence analysis of the proposed KAPC is developed in both the convex and non-convex settings. Second, a Bidirectional Layer
Selection algorithm (BLS) based on self-relationship and generalization error is proposed to select the most informative layers for
transmission, which reduces communication costs. Extensive experiments are conducted, and the results demonstrate that the
proposed KAPC achieves superior accuracy compared to the state-of-the-art baselines, while the proposed BLS substantially improves
resource utilization without sacrificing performance.

Index Terms—Federated Learning, Personalization, Communication Optimization, Mobile Edge Computing.

✦

1 INTRODUCTION

IN Mobile Edge Computing (MEC), an edge server instead
of a cloud server can centrally explore valuable data

residing on mobile clients for model training, which can
reduce latency and bandwidth usage, and enhance overall
system performance [1], [2]. However, transmitting raw data
from mobile clients to edge servers not only consumes
substantial communication resources but also introduces
the risk of data leakage. Federated Learning (FL) has been
emerging as a secure and efficient distributed machine
learning architecture, which can train a shared global model
by aggregating the local model of each client [3]. By avoid-
ing raw data exchange, FL can prevent the exposure of sen-
sitive client information and reduce communication over-
head. Consequently, FL has gained widespread adoption in
MEC, providing edge intelligence in healthcare, intelligent
traffic systems, and industrial engineering [4].

Due to the complexity of the physical environment in
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MEC, data maintained on each mobile client exhibits het-
erogeneity in both classes and quantity, implying that client
data is non identically and independently distributed (non-
IID). Thus, the traditional FL in MEC leads to a significant
degradation in inference accuracy and convergence rate,
which is attributed to the suboptimal solutions derived from
non-IID clients being integrated into the global model [5].
Consequently, Personalized Federated Learning (pFL) is
proposed to mitigate the non-IID issue, which allows dis-
tributed clients to customize their models individually in-
stead of adopting a single global model [6].

Although the integration of pFL and MEC holds poten-
tial benefits, pFL methods encounter several challenges in
MEC. First, insufficient exploration of heterogeneous knowl-
edge within layered deep neural networks (DNN) adversely
affects the performance of mobile clients. The parameters
across different layers in a DNN model encapsulate diverse
knowledge, varying impacts on distinct clients during the
aggregation process [7], [8]. Consequently, employing uni-
form weights for all layers (e.g., in FedAvg [3]) can lead
to the transfer of conflicting knowledge and the omission
of similar knowledge, resulting in inaccurate personalized
models. Particularly in the MEC setting, where unstable
connectivity links prevail, inadequate exploration of layer-
wise knowledge diminishes the utilization of client models
and increases communication rounds to achieve conver-
gence, thereby impeding training efficiency.

Secondly, the substantial computational overhead asso-
ciated with fine-grained collaboration among many clients
makes pFL in MEC impractical. The overhead is primarily
attributed to utilizing model information from all clients to
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explore the layer-wise similarity, incurring a considerable
burden on the server compared to pFL methods [9]. Given
the prolonged training time due to excessive computational
overhead, mobile clients may leave the system, which dis-
rupts the training process. Therefore, the development of
an efficient method to explore fine-grained relationships
among clients becomes imperative.

Finally, the transmission of the entire model between
mobile clients and the edge server results in a substantial
consumption of communication resources, posing an intol-
erable burden on mobile clients with limited resources. Such
high communication costs can lead to increased latency and
packet loss rate, which cause low training efficiency.

To solve the above issues, by extending our previous
work [10], we propose a communication-efficient pFL ar-
chitecture, which is composed of the Knowledge-Aware
Parameter Coaching method (KAPC) to enhance the lo-
cal model of each client and Bidirectional Layer Selection
method (BLS) to efficiently utilize the communication re-
sources. Firstly, the server initializes a personalized model
for each client, where the layer-wise parameters are derived
from a linear combination of all clients’ parameters with
adaptive weights. Then the personalized server model is
distributed to each client as a regularizer to guide the up-
date of local layer-wise parameters. Moreover, the adaptive
weights represented by a relationship cube can be updated
efficiently based on the clients’ parameters with less com-
putation burden on the server side. In order to optimize
the communication costs, we employ the generalization
theory to identify the most valuable layers and upload the
selected parameters instead of the entire parameters. The
main contributions of this paper are summarized as follows.

• Based on the layered property of DNN models, we
propose a Knowledge-Aware Parameter Coaching
method (KAPC) to swiftly and granularly explore
the similarity of layered knowledge across all clients,
aimed at enhancing the personalization of the lo-
cal model. Subsequently, a lightweight optimization
method is designed to update the client parameters
and fine-grained similarities.

• We prove that the proposed KAPC achieves conver-
gence under both convex and non-convex settings.
As far as we know, this is the first paper that proves
the convergence of adaptive aggregation-based fed-
erated learning.

• We design a Bidirectional Layer Selection method
(BLS) based on self-relationship and generalization
bound to optimize the proposed KAPC in com-
munication overhead. This method effectively re-
duces communication costs without sacrificing per-
formance.

• Extensive experiments validate the robustness of the
proposed KAPC across various levels of heterogene-
ity, showcasing its superior accuracy compared to the
state-of-the-art personalized methods. Furthermore,
the proposed BLS successfully reduces communi-
cation costs of upstream and downstream without
compromising performance.

The rest of the paper is organized as follows. The re-
lated works are discussed in Section 2. Both the system

architecture and the preliminary are presented in Section 3.
The knowledge-aware parameter coaching method and its
theoretical guarantees are introduced in Section 4. The bidi-
rectional layer selection method is presented in Section 5.
The communication-efficient pFL method combining the
knowledge-aware parameter coaching method and the layer
selection method is illustrated in Section 6. The experimen-
tal results on various datasets are showcased in Section 7.
Finally, the paper is concluded in Section 8.

2 RELATED WORKS

2.1 Federated Learning in Mobile Edge Computing

The application of FL in MEC has recently gained attention
for its potential to provide edge intelligence while keep-
ing privacy preservation in resource-constrained environ-
ments. Researchers have explored innovative methods to
seamlessly employ FL into MEC architectures, providing
augmented privacy, minimized communication overhead,
and heightened model accuracy. He et al [11] propose a
novel scheme aimed at accelerating the training process
in 6G-enabled MEC by jointly optimizing straggler issues
and resource allocation strategies. Subsequently, Abdellatif
et al [12] concentrate on the reliability of the global model
when local data is dynamic and computational resources are
limited within MEC. Additionally, Li et al [13] introduce an
energy-aware FL training system, enhancing global perfor-
mance while considering bandwidth capacity on an edge
server and energy capacity on individual devices. From
these studies, it can be deduced that the most challenging
problem in FL training within MEC pertains to the limited
resources available on clients.

2.2 Personalized Federated Learning

In order to solve the non-IID issue, many pFL methods have
been developed by customizing the personalized model for
each client to avoid the draft of the global model [14], [15],
[16]. Among the existing methods, the regularization and
layer-wise methods have been widely studied.

The regularization methods limit the local training with
various regularizers to improve the personalization of the
local model. Several studies construct the regularizer with
model parameters to provide direct guidance for local train-
ing [17], [18]. Some works correct the update direction for
each client to reduce the data drift in non-IID settings [19],
[20]. Other works align the prototype of heterogeneous
clients to enforce the learning for global extractor with less
communication cost [21], [22]. Recent works regularize the
local training with the soft label or statistic information to
enhance the knowledge sharing from other clients [23], [24].

Considering the distinct representations of different lay-
ers in DNN, some personalized methods have been pre-
sented by developing layer-wise aggregation. Some meth-
ods keep the batch normalization layer personalized with-
out aggregation in the server to avoid the drift of local
features [25], [26]. Additionally, many works focus on the
aggregation of partial shallow layers of DNN with the
same weights to transfer the general knowledge among
clients [27], [28]. Recently, pFedLA has considered the
impacts of different layers and adopted hypernetwork to
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generate layer-wise aggregation weights for each client,
where the knowledge transfer conflicts can be avoided for
heterogeneous clients [9].

In the abovementioned methods, most regularized pFL
methods take the entire layered DNN model as a whole for
aggregation, which may cause conflict knowledge transfer
from other clients and thus degrade the accuracy of local
models. Some layer-wise methods aim to aggregate the
partial layers with the same weights, so they still explore
the inter-client similarity in a coarse way and cause the
inadequate personalization of local models. In pFedLA [9], a
hypernetwork is used to exploit the fine-grained similarities
among non-IID clients. However, the hypernetwork usu-
ally requires significant training efforts to achieve conver-
gence, which may even prevent adaptive knowledge trans-
fer among clients. Furthermore, these layer-wise methods
have no theoretical guarantee of convergence.

2.3 Communication-efficiency Federated Learning

The traditional FL methods upload all the model parame-
ters to the server, which burdens the limited communica-
tion resources in MEC. Therefore, communication-efficiency
methods have attracted much attention [29]. Several works
adopt communication compressing methods to reduce the
communication cost, commonly including quantization and
sparsification. Specifically, quantization-based methods [30],
[31] represent the model parameters with a lower bit preci-
sion (e.g., 8-bit integers) instead of full precision (e.g., 32-bit
floating-point numbers), which can reduce the amount of
transmission data. Sparsification-based methods [32], [33]
set a significant portion of model parameters to zero to
avoid being transmitted between the server and clients. In
addition, other works focus on the partial layers of the DNN
model to be uploaded to enhance the global model and
reduce the communication overhead [27], [28].

Although compression-based methods can be adopted
in the server and clients to save both upstream and
downstream communication resources, they may degrade
the performance of aggregated models due to the com-
pressed information, such as lower-precision parameters
in quantization-based methods and fewer parameters in
sparsification-based methods. On the other hand, many
partial-layer-based methods send the feature extractor to the
server for aggregation and keep the classifier personalized,
but few works can provide a theoretical performance guar-
antee for the layer selection of the feature extractor.

3 SYSTEM ARCHITECTURE AND PRELIMINARY

3.1 System Architecture

The proposed system architecture is shown in Fig. 1, where
the edge server plays a pivotal role in exploring fine-grained
relationships and updating personalized server model for
each client, and the end device trains the local model.
Specifically, the server initiates and sends a personalized
server model to each client. Subsequently, the client utilizes
the server model as a regularizer to guide local training.
Upon completion of local training, the client sends the
parameters back to the server. Then, the server utilizes these
parameters to update layer-wise weights and generates a

new personalized regularizer, which is shown as the process
on the edge server in Fig. 1. A comprehensive discussion of
this personalized method is provided in Section 4. Further-
more, to address the constraints of limited communication
resources in MEC, the proposed architecture incorporates an
additional communication-efficient component. This com-
ponent minimizes uploading and downloading parameters
between the server and clients by selecting the most infor-
mative layers, which is illustrated in the clients in Fig. 1.
The detailed communication-efficient method is proposed
in Section 5.

mobile devices edge server

entire DNN modelpartial DNN model with selected layers

relation cube

mobile devices edge server

entire DNN modelpartial DNN model 

relation cube

× =

layer selection

Fig. 1: The illustration of the system architecture.

3.2 The Preliminary
Assuming there are N clients in the MEC. Client i is
equipped with a dataset Di = {(xij , yij)}mi

j=1 indepen-
dently and identically (IID) sampled from a distribution Pi,
where i∈[1, N ], xij∈X , yij∈Y and mi is the data number
of dataset Di. In general, suppose Pi ̸= Pj if i ̸= j to
simulate heterogeneous clients. Moreover, the DNN model
is used in our settings, and h(·;wi)∈H with the parameters
wi = [w1

i ,w
2
i , · · ·,wL

i ] is denoted as the model of client
i, where L is the number of DNN layers. An activation
function with 1-Lipschitz continuity ϕ(·) is adopted in DNN
model. Consequently, the output of l-th layer DNN can be
represented as h(h(·,wl−1

i ),wl
i) = ϕ(wl

i·h(·,wl−1
i )) which

can be written as hl
i for short. The bias is neglected for

sample representation.
The local loss function for client i can be defined as

fi (wi) =
1

mi

mi∑
j=1

g (h (xij ;wi) , yij) , (1)

where g(.) is the loss function. Then, the global loss function
of personalized federated learning is given by

F (W) =
N∑
i=1

mi

m
fi (wi) , (2)

where W = {w1,w2, · · ·,wN} is the set of client parameters

and m =
N∑
i=1

mi.

Moreover, since the layer selection method on the client
side is based on the generalization theory, the related defi-
nition is presented as follow. For client i, the empirical loss
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defined as Eq. (1) is denoted as fDi
(wi) in the generalization

theory, while the expected loss can be denoted as

fPi(wi) = E
(xij ,yij)∼Pi

g (h (xij ;wi) , yij) . (3)

4 KNOWLEDGE-AWARE PARAMETER COACHING
METHOD

Based on the above architecture, a Knowledge-Aware Pa-
rameter Coaching method, termed as KAPC, is proposed,
which leverages the layer-wise similarities among clients
and facilitates knowledge sharing in pFL. Specifically, the
server models are updated with the parameters of the clients
weighted by a relationship cube as defined in subsection 4.1.
Subsequently, the updated server model acts as a regularizer
to guide the local training for the corresponding client as
illustrated in subsection 4.2. Once the clients have com-
pleted their training, the relationship cube is updated with
the new parameters of clients in the server as explained in
subsection 4.3.

4.1 Relationship Cube

To explicitly describe the similarity of layer-wise knowledge
among all clients, a relationship cube R∈RN×L×N is de-
fined as

R = [r1, r2, · · ·, rN ] , (4)

where the element ri∈RL×N is a matrix defined as

ri =


r1i1, r1i2 · · · r1iN

r2i1, r2i2 · · · r2iN
...

...
. . .

...

rLi1, rLi2 · · · rLiN

 . (5)

The relationship cube R is composed of the relationship
matrix ri of each client i, i ∈ [1, N ], which represents
the similarity of layered knowledge between client i and
other clients. The relationship matrix ri is composed of
relationship coefficient rlij , j ∈ [1, N ], which represents the
similarity between client i and client j on DNN layer l.
The relationship matrix also can be represented as a vector
of relationship vector, that is, ri = [r1i , r

2
i , · · ·, rLi ], where

relationship vector rli = [rli1, r
l
i2, · · ·, rliN ] is the relationship

between client i and other clients on layer l. A schematic
structure of R is shown in Figure 2.

4.2 Optimization Objective

Unlike general federated learning, the proposed KAPC
maintains a specific server model for each client to aggregate
the beneficial knowledge from other clients. The parame-
ters of the personalized server model are derived by the
linear combination of the clients’ parameters weighted by
the relationship cube. The server parameters are leveraged
as a regularizer to coach the local training. Therefore, the
optimization objective not only minimizes the empirical
loss function of the client as general personalized federated
learning, but also minimizes the distance between the local

1= , , , ,l L

i i i i
  r r r r

N

L

N

1= , , , ,i i ij iN
  r r r r

R

N

N

L

R

1= , , , ,i i ij iN
  r r r r

L

N

N

R

1= , , , ,l L

i i i i
  r r r r

L

N

N

ir

l

ir

Fig. 2: The schematic structure of relationship cube R.
Relationship matrix ri is shown as a yellow block, which
represents the relationship between client i and other clients
on layered knowledge. Relationship vector rli is shown as a
blue block, which represents the relationship of client i with
other clients on layers l.

parameters and server parameters. The formulation of the
local loss function for client i can be represented as

f(wi, ri) =fi(wi) + λ
L∑

l=1

fs

 N∑
j=1

rlijw
l
j ,w

l
i


+
β

2

N∑
j=1

L∑
l=1

∥∥∥∥rlij − 1

N

∥∥∥∥2 ,
(6)

where fi(wi) is the general loss function of client i defined
by Eq. (1), fs is the coaching loss function to guide the layer-
wise local training, and we adopt L2-norm in this paper. The
third term is used to motivate all the clients to share their
layered knowledge equally. λ and β are hyperparameters
that trade off the main loss function and regularization term.

When the loss function is stacked by layer, Eq. (6) can be
rewritten as

f(wi, ri) =fi(wi) + λfs(riW,wi) +
β

2

∥∥∥∥ri − 1

N

∥∥∥∥2 , (7)

where 1∈RL×N is an identity matrix with the same size as
ri.

Then, the global optimization objective can be formu-
lated as

min
W,R

{
Fper(W,R) :=

N∑
i=1

mi

m
f(wi, ri)

}
, (8)

where W is the parameters set of clients in Eq. (2), and R is
the relationship cube defined by Eq. (4).

4.3 Optimization Method

In order to update client parameters and the relation-
ship cube, we develop an alternative optimization method,
which includes two updating steps in the (k + 1)-th it-
eration. Firstly, when client parameter set Wk is fixed,
the relationship cube Rk+1 in the (k + 1)-th iteration can
be updated. Then, after the relationship cube is updated
and the personalized regularizer is determined, the client
parameter set will be optimized.
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To describe the update method in detail, we de-
note the first, second and third term of Fper(W,R) as

F (W) :=
N∑
i=1

mi

m
fi(wi), H(W,R) :=

N∑
i=1

mi

m
fs(riW,wi)

and G(R) :=
β

2

N∑
i=1

mi

m
∥ri−

1

N
∥2, and the global optimiza-

tion objective (8) can be rewritten as

min
W,R

{Fper(W,R) := F (W) + λH(W,R) +G(R)} . (9)

Relationship Cube Update. When the relationship cube
is updated in the (k + 1)-th iteration, the parameters of all
the clients in the k-th iteration have been uploaded to the
server. Then the updated Rk+1 is

Rk+1 = Rk − ηr∇RFper(W
k,R)

= Rk − ηr
(
∇RG(R) + λ∇RH(Wk,R)

)
,

(10)

where ηr is the learning rate for R.
Specifically, for relationship matrix rk+1

i of client i, there
are two detailed update phases. Firstly, with the fixed pa-
rameters of all the clients, the loss function of rk+1

i can be
represented as

f(ri) =λfs(riW
k,wk

i ) +
β

2

∥∥∥∥ri − 1

N

∥∥∥∥2 . (11)

Secondly, rk+1
i can be updated with gradient descent

method as

rk+1
i = rki − ηr∇rif(ri)

= rki − ηr

(
λ∇rifs(riW

k,wk
i ) + β

(
ri −

1

N

))
,

(12)

where the gradient ∇rifs is a matrix with the same size as
ri and can be computed as

∇rifs(riW
k,wk

i )

=

∇rlij
fs

 N∑
j=1

rlijw
l,k
j ,wl,k

i

N,L

j=1,l=1

.
(13)

Client Parameters Update. When the client parameters
are updated in the (k + 1)-th step, the relationship cube
in the current step is fixed. Based on the gradient descent
method, the updated Wk+1 is

Wk+1 = Wk − ηw∇WFper(W,Rk+1)

= Wk − ηw
(
∇WF (W) + λ∇WH(W,Rk+1)

)
,

(14)
where ηw is the learning rate for updating W.

To better clarify the update process in Eq. (14), the
detailed phases for individual client are provided. Firstly,
the relationship matrix rk+1

i is normalized, and then the
personalized regularizer, i.e., the server model, of client i is
calculated in the (k + 1)-th step to guide the local training,
which is denoted as

sk+1
i = rk+1

i Wk. (15)

In Eq.(15), rk+1
i is the fixed relationship matrix in the current

iteration, and Wk is the parameters of all clients in the

Algorithm 1 The procedures of KAPC in the server

Input: the number of communication K , the number of
clients N , the number of update iterations for relation-
ship cube Er, the number of update iterations for all the
clients E

Output: the personalized parameters W =
{w1,w2, . . . ,wN}

1: initialize and distribute w1
i for client i, i∈[1, N ]

2: initialize R1

3: for k = 1 to K do
4: for t = 1 to Er do
5: obtain Rt by Eq. (10)
6: end for
7: Rk+1←REr

8: for i = 1 to N in parallel do
9: obtain the server parameters sk+1

i by Eq. (15)
10: send the parameters sk+1

i to client i
11: wk+1

i ← Algorithm 2(E, sk+1
i )

12: end for
13: end for
14: return W = {wK

1 ,wK
2 , · · ·,wK

N }

Algorithm 2 The procedures of KAPC in client i

Input: the number of update iterations E, the correspond-
ing server parameters at current step sk+1

i

Output: the client parameters wi

1: for t = 1 to E do
2: for each batch in dataset i do
3: update parameters wk+1

i by Eq. (17)
4: end for
5: end for
6: return wk+1

i

server. Next, with the regularizer sk+1
i , the local loss for

updating wi can be reformulated as

f(wi) =fi(wi) + λfs(s
k+1
i ,wi). (16)

Finally, according to Eq. (16), the updated model of client i
in the (k + 1)-th step is

wk+1
i = wk

i − ηw∇wi
f(wi)

= wk
i − ηw

(
∇wifi(wi) + λ∇wifs(s

k+1
i ,wi)

)
.

(17)

Furthermore, the update with Eq. (14) can be divided into
the update with Eq. (17) of all the clients.

4.4 Parameter Coaching Procedures

Based on the above designs, the detailed procedures of the
proposed KAPC in the server and client i are shown in
Algorithm 1 and Algorithm 2, respectively.

As depicted in Algorithm 1, the server initializes the
client parameters and relationship cube randomly, where
the round index starts from 1 (lines 1-2). The relationship
cube is then updated using Eq. (10) with the current client
parameters (lines 4-7). Next, the server aggregates the per-
sonalized model for each client according to Eq. (15) (lines
8-9), distributes them to the respective clients (line 10), and
updates the client parameters with Algorithm 2 (line 11).
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Once all the clients have uploaded their new models to the
server, a new iteration begins. Finally, the server returns the
personalized models of all the clients (line 14).

The training process for client i is outlined in Algo-
rithm 2. Upon receiving the server parameters, the client i
utilizes them as a regularizer to update th local model (lines
1-5), and subsequently, the trained parameters are returned
to the server (line 6).

4.5 Convergence Analysis

In this subsection, the convergence of the proposed KAPC
is analyzed under both the convex and non-convex set-
tings. Different from the existing works in pFL [18], [34],
we introduce the optimization theories of Block Coordi-
nate Descent (BCD) [35], [36] to pFL and give the proof
of the following theorems based on them. We extend the
original BCD method from solving the single-variable with
multi-dimension problem to the multi-variable problem by
viewing the model parameters and the relationship cube as
different dimensions, and thus, prove the convergence of
the proposed method. Then the following assumptions are
supposed.

Assumption 1 (closed). F (W) is a proper closed function.

Assumption 2 (smooth). (i) F (W) is Lf -smooth; (ii) For any
fixed R, H(W,R) is L1-smooth for W. Likewise, for
any fixed W, H(W,R) is L2-smooth for R.

Assumption 3 (convex). (i) F (W) is convex for W; (ii) For
any fixed R, H(W,R) is convex for any W. Likewise,
for any fixed W, H(W,R) is convex for any R.

Now, we provide the convergence guarantee for the
proposed method under the convex setting.

Theorem 1 (Convergence under the convex setting). If
Assumption 2 and Assumption 3 hold, the sequence
(W0,R0), · · ·, (Wk,Rk) generated by Algorithm 1 sat-
isfies

Fper(W
k,Rk)− Fper(W

∗,R∗)

≤2Lmax

k + 4

(∥∥W0 −W∗∥∥2 + ∥∥R0 −R∗∥∥2) , (18)

where (W∗,R∗) is the optimal solution of Eq. (9),
Lmax = max{Lw, Lr}, Lw = Lf + λL1, and Lr =

β + λL2. Moreover, the learning rate of W is ηw =
1

Lw

and the learning rate of R is η2 =
1

Lr
.

Theorem 1 implies that for any ϵ > 0, the pro-
posed method needs at least O(ϵ−1) iterations to find
the sub-optimal solution (Wϵ,Rϵ) of Eq. (9) such that
Fper(Wϵ,Rϵ) − Fper(W

∗,R∗)≤ϵ. It also establishes the
global convergence for the proposed KAPC in a convex set-
ting. The full proofs of Theorem 1 are given in Appendix B.

Then, with Assumptions 1 and 2, the convergence theory
for the proposed KAPC under the non-convex setting is
developed.

Theorem 2 (Convergence under the non-convex setting). If
Assumption 1 and Assumption 2 hold, Algorithm 1 is
convergent, and the subsequence (Wk,Rk) generated

by Algorithm 1 with initial point (W0,R0) can converge
to the critical point of Fper, which satisfies

lim
k→∞

dist
((

Wk,Rk
)
, ω
(
W0,R0

))
= 0. (19)

ω(W0,R0)∈critFper is the set of limit points of the
sequence starting from (W0,R0) and critFper is the
critical points of Fper . dist(a, b) is the distance between
a and b.

Theorem 2 provides the theoretical guarantee of the pro-
posed method under the non-convex setting. The complete
proofs of Theorem 2 are given in Appendix C.

The above analysis is based on G(R) with L2-norm,
which is closed, β-smooth and convex for R. Thus, if adopt-
ing other coaching loss functions with the β-smoothness and
convexity, the above theorems still hold.

5 BIDIRECTIONAL LAYER SELECTION METHOD

In this section, a Bidirectional Layer Selection method (BLS)
is proposed, which aims to optimize communication over-
head for KAPC. As illustrated in Fig. 3, BLS involves trans-
mitting partial layers of the DNN model between the server
and clients without compromising performance. The BLS
process begins with updating the relationship cube in KAPC
using current client models. Next, the layered regularizer
is updated with the relationship vector, excluding vectors
with high self-relationships. Subsequently, the server dis-
tributes the partial-layered regularizer, which guides the
local training of clients as KAPC designs. After local train-
ing, a layer selection method based on generalization bound
is executed, and the parameters of the selected layers are
uploaded to the server for the update in the next round. The
detailed methods in the server and clients are introduced in
Section 5.1 and Section 5.2, respectively.
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Fig. 3: The illustration of BLS method in the server and
clients.
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Algorithm 3 The procedures of layer selection with self-
relationship in the server for client i at k-th iteration

Input: the threshold of self-relationship µ, the current train-
ing round k, the regularizer parameters of client i at k-
th iteration ski , the relationship matrix of client i at k-th
iteration rki

Output: the partial-layer regularizer at current iteration
after layer selection for client i, ŝ

k+ 1
2

i

1: for l = 1 to L do
2: if rl,kii ≥ µ then
3: sl,ki ← ϕ
4: end if
5: end for
6: ŝ

k+ 1
2

i ← ski
7: return ŝ

k+ 1
2

i

5.1 The Layer Selection with Self-Relationship in the
Server
According to the definition of si, the l-th layered regularizer
parameters of client i (i.e., sli) can be expressed as a linear
combination of corresponding layer parameters from other
client models, which is illustrated in Fig. 4.

*= + * + … *+ + … + *

client i
self-relationship

client 1 client 2 client i client N

Fig. 4: The illustration of sli (sli can be derived as the linear
combination of corresponding layer parameters from other
clients).

However, when self-relationship rlii is excessively high,
the value of sli becomes nearly identical to wl

i, which in-
dicates it does not acquire valuable knowledge from other
clients. Consequently, a layered regularizer with a high self-
relationship cannot offer constructive guidance to client i
when acting as a personalized regularizer. In order to reduce
the communications, we avoid distributing sli when its
self-relationship rlii exceeds a predetermined threshold. Al-
though the relationship vector with a high self-relationship
is not used to update the new layered regularizer, it reveals
the accurate inter-layer relationships among clients and is
preserved in the relationship cube in the server.

The detailed layer selection method in the server is
shown as Algorithm 3. Firstly, the regularizer parameters
and relationship matrix of client i are given, then the
selection criterion for undownloaded layers is evaluated
for each layer of client i (lines 1-2). The selected layers of
personalized regularizer are set to empty (lines 3-4). Finally,
the regularizer with partial layers is returned (lines 6-7).

5.2 The Layer Selection with Generalization in the
Client
5.2.1 Layer Selection Criterion
The regularization method can typically reduce generaliza-
tion error and further enhance the performance of model.

However, the reduction of generalization error varies across
different layered for the DNN model. To reduce communica-
tion costs, we select the layers that can reduce generalization
error most effectively when utilized as a regularizer. Specif-
ically, the average generalization error with the selected-
layered regularizer is less than that with a full-layered
regularizer.

In KAPC, shallow layers are responsible for capturing
general features, while deeper layers capture more specific
features. Uploading shallow layers allows the model to
absorb general knowledge from other clients, thereby en-
hancing its ability to recognize basic features. In contrast,
deeper layers, which represent more personalized features,
require less information from other clients. Consequently,
sharing shallow layers more efficiently improves the perfor-
mance of the local model and reduces generalization error,
whereas sharing deeper layers results in a less pronounced
decrease. Moreover, the generalization error can be esti-
mated by the gap between expected loss and empirical loss,
and its derivation requires a continuous loss function [37].
Therefore, the continuous layers from the beginning should
be selected for sharing, and the problem of layer selection
in the client is transformed to determining how many layers
should be uploaded.

For client i, the full-layered regularizer is denoted as si
and fDi

(wi, si) = fDi
(wi) + λ∥wi − si∥2 as the empiri-

cal loss with full-layered regularizer. Likewise, the partial-
layered regularizer is denoted as ŝi and fDi

(ŵi, ŝi) =
fDi

(ŵi) + λ∥ŵi − ŝi∥2 as the empirical loss with partial-
layered regularizer. We define ŝi as

ŝli =

{
rliW

l, if l≤Ωi,

ŵl
i, l>Ωi.

(20)

where Ωi∈[1, L] is the number of uploaded layers for client
i, and ŵl

i is the l-th layered parameters of local model in the
last round. Then, the criterion to select uploaded layers can
be defined as
Definition 1 (The Layer-Selection Criterion of Client i).

fPi
(ŵi, ŝi)− fDi

(ŵi, ŝi)

Ωi
≤fPi

(wi, si)− fDi
(wi, si)

L
,

(21)
where fPi

(ŵi, ŝi) is expected loss with partial-layered
regularizer and fPi

(wi, si) is expected loss with full-
layered regularizer.

5.2.2 The Quantization of the Criterion
In order to quantify the criterion, Theorem 2 in [37] is
introduced to bound generalization error of the loss function
with full-layered regularizer (i.e., fPi

(wi, si)−fDi
(wi, si) in

Definition 1). For client i, the problem to minimize empirical
loss with a full-layered regularizer (i.e., Eq. (16)) can be
reformulated and slacked as

argmin
wi

fDi
(wi) :=

1

mi

mi∑
j=1

g (h (xij ;wi) , yij)

s.t.∥wl
i − sli∥2≤(τ li )2,

(22)

where l∈[1, L] is the l-th layer of the DNN model and τ li
is slack variable of layer l. fDi(wi) is the empirical loss of
client i defined as Eq. (1), and g(·) is a ρ-Lipschitz function.
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The function family of the solution for problem (22) is
denoted as Fsi with bound [a, b]. In addition, we denote the
max∥wl

i∥2 = (Bl
i)

2, then max∥sli∥2 = (Bl
i)

2 can be inferred
according to Eq. (15).

Theorem 2 in [37] can be rewritten as follows to demon-
strate the generalization bound of Fsi .

Theorem 3 (The Generalization Bound of Fsi ). For any
δ∈[0, 1], with the probability at least 1 − δ, the gener-
alization of f∈Fsi can be bounded by

fPi
(wi, si)≤fDi

(wi, si) +
2
√
2ciρAi·2L√

mi
·

L∏
j=1

Bi
j

·
(

τL

2BL
i

+
L−1∑
k=1

τL−k
∏k

j=1

√
nL+1−j

2Bi
L−k

)

+ 3(b− a)

√
log 2

δ

2mi
,

(23)
where ci is the class number of dataset Di, ∥xij∥≤Ai,
and nl is the number of columns in wl

i.

Correspondingly, to bound the generalization error of
the loss function with paritial-layered regularizer (i.e.,
fPi

(ŵi, ŝi) − fDi
(ŵi, ŝi) in Definition 1), the problem to

minimize empirical loss with partial-layer regularizer can
be formulated as

argmin
ŵi

fDi
(ŵi) :=

1

mi

mi∑
j=1

g (h (xij ; ŵi) , yij)

s.t.∥ŵl
i − ŝli∥2≤(τ̂ li )2,

(24)

where τ̂ li is slack variable of layer l. Simultaneously, we
denote max∥ŵl

i∥2 = (B̂l
i)

2 and infer max∥ŝli∥2 = (B̂l
i)

2 due
to the normalized weights for aggregation.

According to the definition of ŝli (i.e., Eq. (20)), we can
bound τ̂ li more precisely, that is,

τ̂ li =

{
τ̂ li , if l≤Ωi,

0, if l>Ωi.
(25)

Likewise, the function family of solution for problem (24)
is denoted as Fŝi , and the bound of Fŝi can be included
in [a, b]. Then, with the same assumption and proof archi-
tecture of Theorem 3, the generalization bound of Fŝi is
provided as follows.

Theorem 4 (The Generalization Bound of Fŝi ). For any
δ∈[0, 1], with the probability at least 1 − δ, the gener-
alization of f∈Fŝi can be bounded by

fPi(ŵi, ŝi)≤fDi(ŵi, ŝi) +
2
√
2dΩi

ρAi·2Ωi

√
mi

·
L∏

j=1

B̂j
i

·
(

τ̂Ωi
i

2B̂Ωi
i

+
Ωi−1∑
k=1

τ̂Ωi−k
i

∏k
j=1

√
nΩi+1−j

2B̂Ωi−k
i

)

+ 3(b− a)

√
log 2

δ

2mi
,

(26)
where dΩi is the output dimension of the Ωi-th layered
DNN hΩi

i .

The complete proofs of Theorem 4 are provided in Ap-
pendix D.

Therefore, the layer-selection criterion of client i (i.e.,
Definition 1) can be quantified as

2
√
2dΩi

ρAi·2Ωi ·
∏L

j=1 B̂
j
i ·M̂(Ωi)

Ωi·
√
mi

≤
2
√
2ciρAi·2L·

∏L
j=1 B

j
i ·M

L·√mi
+∆

(
1

L
− 1

Ωi

)
,

(27)

where M̂(Ωi) =
τ̂Ωi
i

2B̂Ωi
i

+
Ωi−1∑
k=1

τ̂Ωi−k
i

∏k
j=1

√
nΩi+1−j

2B̂Ωi−k
i

, M =

τLi
2BL

i

+
L−1∑
k=1

τi
L−k

∏k
j=1

√
nL+1−j

2Bi
L−k

and ∆ = 3(b−a)

√
log 2

δ

2mi
.

Then inequality (27) is rearranged to obtain

LdΩi
·M̂(Ωi)

Ωi·ci·2L−Ωi
·

L∏
j=1

B̂j
i

Bj
i

+
∆
√
mi(L− Ωi)

2
√
2·ρA·2L·Ωici

∏L
j=1 B

j
i

≤M.

(28)
Since the second term in left of inequality (28) is almost zero
due to exponent and continuous multiplication terms, we
neglect it to obtain the final quantified criterion

LdΩi
·M̂(Ωi)

Ωi·ci·2L−Ωi
·

L∏
j=1

B̂j
i

Bj
i

≤M. (29)

5.2.3 Layer Selection Method with Generalization
In the criterion shown as inequality (29), the bounds of full-
layered regularizer and trained parameters are required (i.e.,
{τ li}Ll=1 and {Bl

i}Ll=1). However, as the proposed method
designed, only the selected layers are able to acquire the
regularizer ŝli and further their corresponding bound τ̂ li .
Therefore, a straightforward approach is proposed to esti-
mate both bounds with the staled information.

When client i is selected for the first time, the full-layered
regularizer is distributed to client i from the server, which
acts as a regularizer to train the local model using Algorithm
2. After training, client i calculates the Frobenius norm of the
l-th layered parameters and the l-th layered regularizer to
estimate Bl

i and τ li , which can be calculated as

Bl
i = ∥wl

i∥, l∈[1, L], (30)

τ li = ∥wl
i − sli∥, l∈[1, L]. (31)

In addition, when Ωi = L, the regularizer is also full-
layered, allowing us to estimate {Bl

i}Ll=1 and {τ li}Ll=1 with
the maximum of original and current values. Similarly, B̂l

i

can also estimated with Eq. (30) when ŵl
i is inputted, and

τ̂ li can also estimated with Eq. (31) when partial-layered
regularizer is inputted.

Once {τ li}Ll=1 and {Bl
i}Ll=1 have been obtained, the right

term in inequality (29) can be determined. Then a heuristic-
based method is proposed to search for the optimal Ωi.
Furthermore, in the k-th step, the neighboring layer to Ωk−1

i

can be searched firstly to reduce the computation costs.
In this end, the layer selection method of client i is

summarized in Algorithm 4. Firstly, the class number ci,
the data size mi and the column number of wl

i, nl are
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Algorithm 4 The procedures of layer selection with gener-
alization in client i at k-th iteration
Input: the number of update iterations for client E, client

parameters at the k-step ŵk
i , current communication

round k, the selected time of client i, q
Output: the max index of uploaded layers Ωk

i at k-th itera-
tion

1: determinate ci, mi, nl, l∈[1, L], according to dataset Di

and model h(·,wi)
2: initialize Bl

i = 0 and τ li = 0 for l∈[1, L]
3: if qi = 0 or Ωk−1

i = L then
4: for l = 1 to L do
5: Bl,k

i ← Eq. (30), τ l,ki ← Eq. (31)
6: Bl

i ← max{Bl,k
i , Bl

i}, τ li ← max{τ l,ki , τ li}
7: end for
8: Ωk

i ← L− 1
9: return Ωk

i

10: else
11: for l = 1 to L do
12: B̂l,k

i ← Eq. (30), τ̂ l,ki ← Eq. (31)
13: Bl,k

i ← Bl
i , τ

l,k
i ← τ li

14: end for
15: Ωi ← Ωk−1

i

16: if inequality (29) is satisfied then
17: repeat
18: Ωi ← Ωi − 1
19: until inequality (29) is not satisfied
20: else
21: repeat
22: Ωi ← Ωi + 1
23: until inequality (29) is satisfied
24: end if
25: end if
26: Ωk

i ← Ωi

27: return Ωk
i

determined for client i based on the dataset and model
(line 1). Then, the bounds of parameters and full-layered
regularizer of all layers are initialized as 0 (line 2). Next,
if client i is first selected (i.e., qi = 0) or the number of
uploaded layers in the last round is L, which indicates that
the regularizer is full-layered, the values for full-layered
parameters and regularizer (i.e., Bl,k

i and τ l,ki ) at current
round can be calculated according to Eq. (30) and Eq. (31),
respectively (lines 3-5). Then, these bounds are estimated
by the maximum of original and current values (lines 6-7).
In this case, the number of uploaded layers can be reset to
L − 1 and returned (lines 8-9). Otherwise, if the regularizer
is partial-layered, B̂l,k

i and τ̂ l,ki can be estimated, while
the previous values can be used for Bl,k

i and τ l,ki (lines
10-14). To save the computation cost, we search for the
optimal layer number starting from the last one (line 15). If
the criterion for layer selection is satisfied with the current
layer, the layers will be decreased until the condition is no
longer met. Otherwise, the layers will be increased until the
condition is satisfied (lines 16-25). Finally, the number of
selected layers is returned (lines 26-27).

6 COMMUNICATION-EFFICIENT PARAMETER
COACHING METHOD

In this section, the communication-efficient parameter
coaching method with the combination of KAPC in Section 4
and BLS in Section 5 is introduced.

However, the layer selection method used by clients
prevents the server from receiving the parameters of the
same layers from all clients simultaneously. As a result,
updating ŝ with Eq. (15) is impossible due to the absence
of the latest layered parameters. However, the relationship
cube has the ability to adaptively learn the similarity of
clients on the corresponding layer, which can be beneficial
even with outdated parameters. Therefore, we fill in the
missing layered parameters with stale values to update r̂i
and ŝi, which are detailed as follows. The update process of
r̂i remains the same as Eq. (12) but with the combined Ŵ
as defined in Eq. (33).

r̂k+1
i = r̂ki − ηr

(
λ∇rifs(riŴ

k+1, ŵk+1
i ) + β

(
r̂i −

1

N

))
,

(32)
where

Ŵk+1 =
{
ŵk+1

i

}N

i=1

=

ŵl,k+1
i , if l≤Ωk+1

i ,

ŵr
i , r = max

t
{ŵl,t

i }, else.

(33)

Correspondingly, the partial-layered regularizer of client i
(i.e., ŝi) can be updated as

ŝki = r̂ki Ŵ
k. (34)

The KAPC with layer selection in the server is summa-
rized in Algorithm 5. Different from Algorithm 1, except
for initializing the relationship cube and client models, the
selected time for each client is set to 0 (lines 1-3). Next,
the clients are randomly selected to participant federated
learning, and the corresponding relationship cube R′ is
sliced based on participants (lines 5-6). Then, the parameters
of client models are stacked using Eq. (33), and the relation-
ship cube R′ is updated with the original method (lines
7-11). After that, the relationship in R̂ among participants is
updated to the full relationship cube R (line 12). The partial-
layered regularizer is updated with Eq. (34), and the layer
selection method is executed based on Algorithm 3 (lines
13-15). Then, the partial-layered regularizer with selected
layers is distributed to the corresponding client, and the
updated model with selected layers is sent back from the
local client based on Algorithm 6 (lines 16-18). Finally, the
personalized client models are returned (lines 19-21).

Furthermore, the training procedures of KAPC with
layer selection in client i is described in Algorithm 6. The
training process follows the same steps as Algorithm 2 (lines
1-5), with the distinction that the layer selection method is
performed after the model training and then the selected
time is counted (lines 6-7). Finally, the model with partial-
layered parameters is returned to the server (line 8).

7 EXPERIMENT

In this section, the experiment settings are introduced in-
cluding the datasets, model structure, implementation de-
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Algorithm 5 The procedures of KAPC with layer selection
in the server
Input: the number of communication rounds K, the num-

ber of clients N , selected ratio β, the number of update
iterations for relationship cube Er , the number of up-
date iterations for all the client E, threshold to filter the
self-relationship µ

Output: the personalized parameters Ŵ =
{ŵ1, ŵ2, . . . , ŵN}

1: initialize R1

2: initialize the client model w1
i for i∈[0, N ]

3: initialize the selected time qi = 0 for i∈[0, N ]
4: for k = 1 to K do
5: randomly select a set Ck to participant federated train-

ing, where |Ck| = N ∗ β
6: slice Rk according to Ck to obtain R′k, and normalize

R′k by row
7: Ŵk ← Eq. (33)
8: for t = 1 to Er do
9: R̂k,t ← Eq. (32) with R′k,t

10: end for
11: R̂k←R̂k,Er

12: update the corresponding relationship in Rk with R̂k,
and normalize Rk by row

13: for client i∈Ck in parallel do
14: ŝki← Eq. (34)
15: ŝ

k+ 1
2

i ← Algorithm 3(β, k, ŝki , r̂ki )
16: distribute the parameters ŝ

k+ 1
2

i to client i
17: ŵk+1

i ← Algorithm 6(E, ŝ
k+ 1

2
i , qi)

18: end for
19: end for
20: Ŵk+1 = {ŵk+1

1 , ŵk+1
2 , · · ·, ŵk+1

N }
21: return ŴK

Algorithm 6 The procedures of KAPC with layer selection
in client i
Input: the number of update iterations for client parameters

E, the corresponding regularizer parameters at the k-
step ŝki , the selected time q

Output: the partial-layered client parameters ŵl
i, l≤Ωi

1: for t = 1 to E do
2: for each batch in dataset i do
3: ŵk+1

i ← Eq. (14)
4: end for
5: end for
6: Ωk+1

i ← Algorithm 4(E, ŵi, k, q)
7: q←q + 1
8: return ŵl

i, l≤Ωk+1
i

tails of the proposed method, and the baselines to be com-
pared. Then, the performance overview of the proposed
methods on the four datasets with various levels of hetero-
geneity is presented, which includes the comparisons with
the state-of-the-art personalized algorithms in accuracy and
convergence speed. Next, the impact of critical hyperpa-
rameters on the proposed methods is evaluated. Finally, the
proposed KAPC and BLS are implemented in the simulated
federated learning system and further the communication

and computation costs are evaluated.

7.1 Experiment Setting

Dataset. Four public benchmark datasets are used to eval-
uate the proposed method, MNIST, FashionMNIST (FM-
NIST), CIFAR10 and CIFAR100. To simulate the hetero-
geneous distribution of all the clients, the latent Dirichlet
distribution method is adopted [38], and the heterogeneity
levels are set to α = {0.1, 0.3}, where a smaller value
indicates more significant heterogeneity. In addition, two
scenarios with and without client selection are considered.
In the client selection scenario, there are 100 clients with
10% participation ratio, and all the training and test data in
the dataset are used. In the scenario without client selection,
there are 10 clients with 100% participation ratio, where 10%
training data and test data from the dataset are randomly
selected.

Model Architecture. For MNIST and FMNIST, a CNN
model is used, which consists of 2 convolutional layers with
5×5 filters followed by 3 fully connected layers with 512
and 128 hidden neurons. For CIFAR10 and CIFAR100, the
same ResNet18 model as that in [39] is used.

Implementation Details. The model is trained by K =
50 rounds on MNIST/FMNIST, K = 100 rounds on CI-
FAR10, and K = 200 rounds on CIFAR100. The local epochs
for W and R are set to E = 5 and Er = 1 for all cases. In
addition, cross-entropy loss and stochastic gradient descent
method are adopted to update the client parameters and
relationship cube [40], and the learning rates for W and R
are both set to 0.01.

Baselines. The proposed method are compared with
various personalized methods as follows.

• Local training is conducted for each client on its
training dataset. For MNIST and FMNIST, the train-
ing epoch is set to 5, while 10 epochs for CIFAR10
and CIFAR100. Then the model is tested on the local
dataset and then the best test accuracy of all the
clients are averaged as the baseline.

• FedAvg [3] aggregates trained models of all the se-
lected clients to obtain a global model. The global
model is tested on the local dataset of each client,
and the averaged best accuracy of all the clients is
adopted as the baseline.

• FedProx [41] introduces proximal term to regularize
the distance between a local model and the global
model.

• FedAMP [42] weights personalized server models
with cosine similarity to guide the local training.

• MOON [40] adopts contrastive learning to make
local and global representations close.

• FedBABU [27] shares the global extractor and trains
the personalized classifier for each client.

• FedBN [25] keeps the batch normalization layer of
each client personalized and aggregates other layers
by weighted averaging to enhance the personalized
model.

• pFedLA [9] learns the personalized model with
layer-wise aggregation weights, where a hypernet-
work for each client is trained to obtain the weights.
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TABLE 1: Best mean accuracy in the scenario without client selection (10 clients) on four datasets with various heterogeneity
levels. Bold fonts highlight the best accuracy.

MNIST(%) FMNIST(%) CIFAR10(%) CIFAR100(%)

α 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

local training 95.91(0.10) 93.13(0.66) 88.33(0.09) 84.77(0.23) 76.50(0.25) 54.15(0.23) 25.81(0.57) 15.56(0.62)
FedAvg [3] 60.06(0.25) 64.78(0.04) 57.85(0.42) 76.47(0.32) 19.60(0.69) 17.92(0.50) 4.53(0.19) 4.11(0.28)
FedProx [41] 97.93(0.66) 95.19(0.14) 96.24(0.19) 87.81(0.45) 86.83(0.76) 64.21(0.83) 37.43(0.42) 25.61(0.38)
FedAMP [42] 97.10(0.84) 95.45(0.65) 94.43(0.12) 84.28(0.34) 78.55(0.58) 48.58(0.69) 18.04(0.24) 11.68(0.17)
MOON [40] 97.77(0.04) 97.43(0.66) 96.61(0.35) 86.77(0.23) 88.27(0.24) 64.88(0.36) 26.33(0.07) 26.83(0.48)
FedBABU [27] 92.69(0.61) 90.39(0.16) 93.66(0.18) 85.54(0.37) 87.46(0.32) 65.19(0.21) 38.04(0.60) 26.96(0.57)
FedBN [25] 83.99(0.72) 95.16(0.74) 75.14(0.13) 82.96(0.33) 71.42(0.92) 63.66(0.46) 36.10(0.08) 21.77(0.13)
pFedLA [9] 97.80(0.31) 96.35(0.40) 91.23(0.28) 85.74(0.25) 86.78(0.84) 64.35(0.78) 29.13(0.93) 25.22(0.05)

KAPC 97.97(0.75) 97.66(0.38) 96.71(0.17) 88.04(0.46) 88.32(0.65) 65.75(0.84) 38.25(0.33) 27.02(0.58)
KAPC+BLS 98.00(0.03) 96.83(0.18) 96.57(0.08) 88.78(0.24) 87.54(0.56) 65.20(0.38) 38.50(0.18) 26.24(0.37)

TABLE 2: Best mean accuracy in the scenario with client selection (100 clients) on four datasets with various heterogeneity
levels. Bold fonts highlight the best accuracy.

MNIST(%) FMNIST(%) CIFAR10(%) CIFAR100(%)

α 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

local training 96.11(0.26) 95.47(0.08) 89.31(0.88) 88.37(0.60) 73.41(0.24) 57.72(0.36) 37.41(0.07) 20.94(0.84)
FedAvg [3] 41.84(0.15) 71.76(0.96) 51.38(0.38) 81.93(0.65) 18.42(0.99) 28.61(0.10) 4.25(0.68) 4.91(0.74)
FedProx [41] 97.41(0.30) 94.94(0.24) 93.94(0.62) 90.18(0.34) 79.91(0.59) 64.76(0.24) 40.72(0.87) 27.92(0.45)
FedAMP [42] 96.23(0.72) 91.52(0.41) 91.91(0.44) 86.11(0.21) 69.62(0.54) 49.62(0.52) 25.63(0.84) 13.08(0.89)
MOON [40] 96.32(0.12) 95.42(0.11) 93.71(0.14) 60.70(0.56) 76.10(0.71) 62.71(0.85) 45.30(0.05) 28.00(0.71)
FedBABU [27] 96.10(0.07) 94.44(0.91) 92.95(0.64) 84.26(0.82) 78.75(0.11) 66.42(0.13) 41.19(0.83) 27.02(0.04)
FedBN [25] 88.31(0.02) 95.56(0.31) 69.15(0.21) 84.24(0.37) 78.70(0.58) 65.24(0.48) 44.45(0.19) 26.88(0.14)
pFedLA [9] 58.35(0.45) 63.49(0.55) 57.23(0.88) 77.36(0.31) 44.35(0.20) 42.74(0.20) 27.37(0.29) 16.16(0.31)

KAPC 97.53(0.61) 96.17(0.21) 94.57(0.25) 90.34(0.67) 80.65(0.78) 66.51(0.68) 45.49(0.55) 28.05(0.67)
KAPC+BLS 97.05(0.80) 96.54(0.49) 95.07(0.01) 90.23(0.53) 79.96(0.64) 65.50(0.21) 46.17(0.36) 27.63(0.94)

In addition, for all the compared algorithms, the rec-
ommended hyperparameters presented in their papers are
adopted, but the number of communication is the same
as that in the implementation details for all the compared
algorithms.

7.2 Performance Overview

Accuracy Comparison. The accuracy for each round is
tested, and then the average accuracy of all the selected
clients is calculated. The best average accuracy from all the
training rounds (i.e., best mean accuracy) is selected as the
criterion to reflect the performance of each baseline and the
proposed methods. The results under the scenarios without
and with client selection are shown in Table 1 and Table 2,
respectively.

Most personalized methods outperform local training,
indicating the benefit of parameter sharing among clients.
Additionally, the performance of global model trained with
FedAvg is evaluated on each client and the results show that
the accuracy declines with increasing client heterogeneity.
This suggests that FedAvg is not adaptive to heteroge-
neous clients. Furthermore, FedAvg exhibits significantly
poorer performance compared to the majority of personal-
ized methods, specifically on realistic datasets like CIFAR10
and CIFAR100. The degraded performance indicates that a
single global model without any personalized approaches

fails to adapt to diverse client data, particularly when the
data exhibit complexity and heterogeneity.

Despite the strong performance of all personalized
methods on heterogeneous datasets, the proposed KAPC
achieves the highest accuracy. In comparison to regulariza-
tion methods such as FedProx, FedAMP, and MOON, KAPC
captures the layer-wise similarities among diverse clients
via the relationship cube, which enhances the personalized
regularizer and provides fine-grained guidance for local
training. Additionally, a lightweight optimization method
have been designed, which can efficiently update both
client parameters and the relationship cube. Consequently,
other layer-wise methods such as FedBABU, FedBN, and
pFedLA converge slower and yield inferior performance
in a few communication rounds. Particularly, the results of
pFedLA demonstrate significant underperformance across
all datasets, indicating that the hypernetwork utilized by
pFedLA for computing the relationship matrix is challeng-
ing to train with fast convergence speed. Furthermore,
KAPC with the BLS achieves comparable or even better
accuracy than the single KAPC, indicating that the proposed
BLS does not degrade the performance with less client
information transmissions.

Convergence Comparison. Theorems 1 and 2 provide
the convergence analysis of KAPC under both the convex
and non-convex settings. Specifically, Theorem 1 establishes
the upper bound and convergence speed under the con-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3464512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:25:51 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 12

(a) CIFAR10 with α = 0.1 (b) CIFAR10 with α = 0.3 (c) CIFAR100 with α = 0.1 (d) CIFAR100 with α = 0.3

Fig. 5: Comparison of convergence speed among the proposed method and personalized baselines on CIFAR10 and
CIFAR100 in the scenario with client selection.

vex setting, whereas Theorem 2 offers the convergence
guarantee under the non-convex setting without explicitly
presenting the convergence speed. Consequently, we con-
duct experiments to evaluate the convergence speed of the
proposed KAPC with a non-convex DNN model.

The performance of KAPC is evaluated on CIFAR10 and
CIFAR100 datasets with α = {0.1, 0.3}, and a ResNet18
model is used. The client selection scenario is adopted,
which follows the same settings as those described in Sec-
tion 7.1. KAPC and KAPC with BLS are compared against
all the personalized baselines mentioned above in accuracy-
round space, and the results are shown in Figure 5.

As illustrated in Figure 5, the convergence speed of
KAPC is comparable to that of partial regularization meth-
ods such as FedProx and MOON. However, it outper-
forms the layer-wise approaches (e.g., FedBABU, FedBN,
and pFedLA) by a significant margin, which indicates that
KAPC efficiently captures the layer-wise similarities among
clients. Moreover, KAPC achieves superior test accuracy
compared to all other methods, providing further evidence
of its effectiveness. Furthermore, the convergence speed of
KAPC with BLS is similar with that of the single KAPC,
which implies the partial-layered regularizer derived by
BLS does not slow the convergence speed.

7.3 Ablation Studies

In this subsection, the effects of hyperparameters are eval-
uated, including regularization parameters λ, β, and the
threshold of self-relationship µ.

7.3.1 Regularization Hyperparameters

As shown in Eq. (7), λ is used to balance the local general
loss and the personalized regularizer when updating client
parameters, whereas β can influence the regularization term
for R. Referring to Eq. (16), a suitably larger λ amplifies
the influence of the personalized regularizer, facilitating the
acquisition of beneficial knowledge from other clients and
consequently enhancing the generalization capabilities of
the local model. Nevertheless, as λ increases, it has the po-
tential to weaken the constraint of equal sharing presented
in Eq. (11), leading to insufficient learning of R.

Considering the intricate influences of the two hyper-
parameters, a comprehensive evaluation on KAPC is per-
formed by exploring various combinations of (λ, β). The

(a) Various λs in α = {0.1, 0.3} (b) Various βs in α = {0.1, 0.3}

Fig. 6: The best mean accuracy with various hyperparam-
eters. (a) The accuracy of the proposed method varying

λ = {0.5, 1, 3} with fixed
β

2λ
= 0.005 when α = 0.1

and varying λ = {0.05, 1, 3} with fixed
β

2λ
= 0.5 when

α = 0.3. (b) The accuracy of the proposed method varying
β = {0.005, 0.01, 0.1} and varying β = {0.1, 1, 10} with
both fixed λ = 1 when α = 0.1 and α = 0.3, respectively.

test accuracy of KAPC is measured on CIFAR10 with
α = {0.1, 0.3} in the scenario without client selection.

To study the individual impacts of λ and β, we set
β

2λ
= 0.005 rather than fixing β alone, to measure the

test accuracy with different λ values varying from the set
{0.5, 1, 3}. Likewise, the influence of β is evaluated by
varying its value among {0.005, 0.01, 0.1} while keeping λ
fixed at 1.

Analysis of λ. As illustrated in Figure 6 (a), the impacts
of λ on the test accuracy of KAPC are analyzed. Since the

sharable knowledge is less with high heterogeneity level,
β

2λ
is fixed with a small value (e.g., 0.005) for α = 0.1 and the
results indicate an excessively large or small λ can actually
degrade test accuracy due to overfitting or underfitting the
personalized regularizer when α = 0.1. Additionally, when

α = 0.3,
β

2λ
is fixed with a larger value (e.g., 0.5) that may

transfer conflicted knowledge from other clients, so λ tends
to a small value to reduce the guidance of the personalized
regularizer.

Analysis of β. The best mean accuracy varying β in
{0.005, 0.01, 0.1} for α = 0.1 and {0.1, 1, 10} for α = 0.3
is shown in Figure 6 (b). The accuracy with small β outper-
forms that with large β for α = 0.1 while the tendency
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(a) FMNIST with α = 0.1 (b) FMNIST with α = 0.3 (c) CIFAR100 with α = 0.1 (d) CIFAR100 with α = 0.3

Fig. 7: The relationship matrix of client 9 on FMNIST and CIFAR100 in the scenario without client selection.

is contrary for α = 0.3, which implies that there is less
sharable knowledge among higher-heterogeneous clients.

7.3.2 Self-Relationship Hyperparameters
As shown in Algorithm 3, µ is used to filter the layers
with a high self-relationship to avoid invalid downstream.
However, a smaller µ can save more communication costs
but less knowledge sharing with other clients, which may
lead to degraded accuracy. A large µ cannot reduce the
communication costs efficiently.

To investigate the effect of µ, several experiments are
conducted by varying µ = {0.3, 0.5, 0.7, 0.9} on CIFAR10
with α = 0.1 in client selection scenario, and the results are
shown in Table 3.

TABLE 3: The accuracy and communication cost of KAPC
with BLS in different µ. U-Comm and D-Comm denote
the uploaded and downloaded communication cost, respec-
tively

µ Accuracy(%) Comm(MB) U-Comm(MB) D-Comm(MB)
0.3 77.79 550.93 387.29 163.64
0.5 80.01 631.80 380.70 251.10
0.7 80.02 708.36 380.88 327.48
0.9 79.70 799.52 373.94 425.58

Analysis of µ. When µ is a small value (e.g., µ = 0.3),
the communication cost is significantly reduced, particu-
larly the downloaded cost. However, the accuracy suffers
a significant drop because a smaller µ makes it much easier
not to distribute the aggregated parameters, resulting in
invalid local training without any knowledge sharing from
other clients. Additionally, when µ has a larger value (e.g.,
µ = 0.9), the communication cost cannot be reduced as
the condition to avoid being downloaded from the server
becomes challenging to achieve, and thus, almost all param-
eters are sent to clients. Meanwhile, the accuracy remains
almost the same with large µ, suggesting that knowledge
sharing with other clients has reached saturation, and there
is no additional knowledge to improve local training.

7.4 Vision of Relationship Cube
In order to verify the effectiveness of the relationship cube,
experiments are performed to capture the inter-layer cor-
relations among clients. Figure 7 presents the relationship
matrix of client 9 on FMNIST and CIFAR100 without any
client selection. The figure displays the client ID on the

horizontal axis and the model layer ID on the vertical axis.
The color shading represents the level of similarity between
corresponding layers across clients.

As shown in Figure 7, clients tend to commonly share the
shallow layers of DNN models, such as layer 0 of the 2CNN
model for FMNIST and layers 0− 7 of the ResNet18 model
for CIFAR100. Conversely, the deeper layers exhibit a more
personalized pattern. Furthermore, clients with the same
heterogeneity (i.e., the same α) exhibit distinctive inter-layer
correlations, providing further evidence to support the nec-
essary for layer-wise parameter sharing, which constitutes
the core principle of the proposed KAPC.

7.5 System Performance

In this subsection, the server and clients in federated learn-
ing are simulated with a multiprocessing approach. CI-
FAR10 with α = 0.1 under the client selection is adopted,
which keeps the settings consistent with those described
in subsection 7.1. To evaluate communication time in real-
world scenarios, we simulate the wireless communication
environment with the model in [43], and the communication
parameters are detailed in Table 4.

TABLE 4: The communication parameter configuration

Bandwidth of client i randomly sampled from [10, 30]MHz
Transmission power of client i randomly sampled from [23, 30]dBm

Path loss constant -40dB
Small-scale fading channel power gain 1

reference distance 1m
Large-scale path loss factor 4

Distance between client i and the server randomly sampled from [100, 500]m
Noise power spectral density -174dBm/Hz

Uplink co-channel interference sampled from Gaussian distribution N(1, 4)
Bandwidth of the server 50MHz

Transmission power of the server 30dBm
Downlink co-channel interference sampled from Gaussian distribution N(1, 9)

In order to present the performance of the proposed
KAPC and BLS in the system, the efficiency of commu-
nication, computation and memory is considered. Com-
munication efficiency is influenced by many factors, such
as the number of communication rounds, the size of the
communication stream, and the quality of the communi-
cation channel. Therefore, the average execution time per
round and the size of the communication stream are evalu-
ated. Furthermore, the number of floating point operations
(FLOPs) is evaluated to reflect the computation efficiency.
Finally, the memory usage in the server is used to represent
the memory efficiency.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3464512

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on November 23,2024 at 18:25:51 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 14

TABLE 5: Average execution time per round among the proposed methods and baselines on CIFAR10 with α = 0.1 in the
client selection scenario, where U-comm, D-comm, Client and Server denote the time of uploading model, downloading
model, local training and model aggregating, respectively. The number in parentheses is the percentage.

methods Time(s) U-Comm(s/%) D-Comm(s/%) Client(s/%) Server(s/%)
FedAvg 32.70 19.28(58.96) 7.16(21.89) 5.81(17.77) 0.45(1.38)
FedProx 37.39 19.34(51.73) 7.16(19.15) 10.37(27.73) 0.52(1.39)
FedAMP 46.51 19.31(41.52) 7.16(15.39) 8.89(19.12) 11.15(23.97)
MOON 39.63 19.21(48.47) 7.16(18.07) 12.87(32.48) 0.39(0.98)
FedBABU 36.04 19.27(53.47) 7.15(19.84) 9.20(25.53) 0.42(1.16)
FedBN 34.37 19.26(56.04) 7.15(20.80) 7.46(21.71) 0.50(1.45)
pFedLA 40.96 19.27(47.05) 7.16(17.48) 10.90(26.61) 3.63(8.86)
KAPC 37.94 19.29(50.84) 7.15(18.85) 8.65(22.80) 2.85(7.51)
KAPC+BLS 36.04 15.93(44.20) 5.49(15.23) 13.18(36.57) 1.44(4.00)

TABLE 6: Communication cost and computation cost per round of the proposed methods and baselines on CIFAR10 with
α = 0.1 in the client selection scenario. U-Comm and D-Comm denote the upload and download communication cost,
respectively. C-Comp and S-Comp denote computation cost of local training on the clients and model aggregation on the
server, respectively.

methods U-Comm(MB) D-Comm(MB) C-Comp(GFLOPs) S-Comp(GFLOPs)
FedAvg [3] 426.54 426.54 424.13 0.22
FedProx [41] 426.54(→) 426.54(→) 524.77 0.22
FedAMP [42] 426.54(→) 426.54(→) 524.77 5.59
MOON [40] 426.54(→) 426.54(→) 848.25 0.22
FedBABU [27] 426.35(↓0.19) 426.35(↓0.19) 424.12 0.22
FedBN [25] 426.17(↓0.37) 426.17(↓0.37) 424.13 0.22
pFedLA [9] 426.54(→) 426.54(→) 424.13 1.12
KAPC 426.54(→) 426.17(↓0.37) 524.77 0.56
KAPC+BLS 380.88(↓45.66) 327.48(↓99.06) 524.80 0.56

Fig. 8: The average selected layers to be uploaded (i.e., Ωi)
per round on CIFAR10 with α = 0.1 in client selection
scenario.

Execution Time. The average execution time of the pro-
posed methods and baselines is shown in Table 5. FedAvg
takes the least time since it does not involve any additional
operations for personalization. FedAMP has the longest
execution time due to its complex aggregation rules, as
indicated by the significant time consumed for aggregation
in the server compared with other methods. pFedLA has
longer execution time compared to other methods except for
FedAMP because it trains the hypernetwork to obtain the
aggregation weights, consuming more server time. MOON
exhibits the third long execution time due to the additional
computation required by a client to obtain representations
of both the global model and the last local model.

The proposed KAPC has a comparable execution time
compared to other regularization-based methods, which is
longer than FedProx but less than FedAMP and MOON.
Although it requires more time to train the relationship
cube and aggregate the personalized model in the server,
the regularizer based on the parameters is easy to train,
which results in a balanced execution time. On the other
hand, KAPC requires less time for aggregation compared
to pFedLA due to the design of the relationship cube and
the optimization method. Furthermore, KAPC with BLS
takes more time in the client as it needs to select the up-
loaded layers. However, it results in less time for uploading
and downloading model due to transmitting partial layers,
which is more significant in the real-world scenarios with
limited communication resources, such as the Internet of
Things and the Internet of Vehicles.

Communication Cost. As shown in Table 6, the com-
munication costs of all selected clients per round are evalu-
ated, including the upstream and downstream. The majority
of the compared methods transmit all model parameters
(e.g., FedProx, FedAMP, MOON, pFedLA and the pro-
posed KAPC), resulting in the same communication costs
as FedAvg. Additionally, FedBABU only shares the feature
extractor, which includes the model except for the last full
connected layer. Consequently, its communication cost is
slightly lower than that of FedAvg. FedBN keeps the Batch
Norm layer personalized, resulting in the decrease of the
corresponding communication cost.

The proposed KAPC with BLS demonstrates a signifi-
cant reduction of 23.22% in download communication cost
(approximately 99.06MB) with µ = 0.7 due to the layer
selection methods based on self-relationship in the server.
Moreover, by utilizing a smaller value of µ, the download
communication costs can be further decreased. For detailed
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results, Table 3 can be referred. Additionally, KAPC with
BLS also achieves a remarkable 10.70% decrease of upload
communication cost (approximately 45.66MB), which can
be attributed to the adoption of the proposed layer selec-
tion method based on generalization bound in the client.
To further demonstrate the effectiveness of layer selection
method in the client, the average value of Ωi per round
is recorded, which is presented in Figure 8. The results
reveal that during the majority of communication rounds,
the parameters of the first 19 layers are transmitted to the
server for personalized aggregation, while the remaining
two layers (i.e., a convolution layer and a fully connected
layer) are deemed unnecessary to be uploaded. Addition-
ally, the average number of uploaded layers varies as the
training progresses, suggesting that the optimal aggregation
part of DNN model may not be invariant.

Computation Cost. The computation costs of local train-
ing and server aggregating are evaluated with the FLOPs
counting tool, pytorch-OpCounter, and the results are pre-
sented in Table 6. The regularization-based methods require
higher computation costs for local training compared to
FedAvg, while other methods except FedBABU keep similar
costs as FedAvg. Because FedBABU only updates the extrac-
tor in the training phase, it incurs slightly lower computa-
tion costs than others. Additionally, FedAMP and pFedLA
require complex operations for aggregation, resulting in
higher computation costs in the server compared with other
methods.

The proposed KAPC has the same computation cost for
local training as other regularization-based methods (e.g.,
FedProx and FedAMP), and the proposed BLS in the client
burdens less training cost. However, KAPC requires addi-
tional aggregation operations, which increases the server
computation costs. This can be supported by powerful
server and is justified by the improvement in accuracy.

Memory Cost. Since KAPC maintains a server model
for each client, the experiments are conducted to demon-
strate the memory cost of KAPC in the server. Since our
experiments are simulated with multiprocessing approach,
we use psutil tool in Python to collect the memory usage of
the server process. For comparison, FedAvg is tested in the
same settings as a baseline.

The memory usage of KAPC in the server is 1101.62MB,
compared to 753.02MB for FedAvg, indicating an increase
of 348.6MB. This increase is attributed to the additional
consumption of personalized server models and the rela-
tionship cube, which is manageable for powerful servers.
Additionally, in case the server’s memory is in shortage,
the update process for the relationship cube in KAPC can
be conducted in a layer-wise manner. Specifically, the l-
th layered parameters of the selected clients and the l-
th layered relationship vector are loaded to the memory
sequentially to further reduce the memory cost.

8 CONCLUSION

In the paper, we have proposed a communication-efficient
pFL architecture with knowledge-aware parameter coach-
ing, which leverages granular knowledge among clients
to guide local training efficiently without inducing ex-
cessive communication overhead. A relationship cube has

been defined to represent the similarity of heterogeneous
knowledge in DNN layers among clients, enabling the fine-
grained aggregation of personalized regularizers to share
mutually beneficial knowledge. Additionally, an efficient
update method has been designed to learn the client param-
eters and relationship cube alternately, accompanied by the-
oretical analysis for the proposed method under the convex
and non-convex settings. To reduce communication costs, a
bidirectional layer selection method based on the general-
ization theory and self-relationship has been proposed, of-
fering performance guarantee for efficient communication.
Finally, the proposed methods have been evaluated on pop-
ular datasets with various levels of heterogeneity, demon-
strating superior performance in accuracy and convergence
speed compared to the state-of-the-art pFL methods, and the
bidirectional layer selection method can reduce at least 10%
and 23% uploaded and downloaded communication costs
without sacrificing performance.
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