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Abstract

Financial markets present unique challenges for Federated Learning (FL) due to fragmented
datasets, dynamic participation, and the critical need for precise and reliable predictions.
Isolated local datasets often fail to capture the full spectrum of market dynamics, block-
ing accurate realized volatility predictions. Unlike traditional FL methods that focus on
improving convergence during the training process, we propose Federated Learning with
Adaptive Robustness and Efficiency for Local Adaptation (FLARE-LA), a novel framework
designed to optimize predictive performance after the global training phase. FLARE-LA
leverages Taylor-based local linearization and probabilistic optimization to efficiently adapt
global models to local data distributions, enabling fast responsiveness to new market condi-
tions. This adaptability ensures trained local models align with real-world scenarios, making
FLARE-LA particularly suited to dynamic financial applications. Extensive experimental
evaluations demonstrate FLARE-LA’s superior performance, showcasing its ability to signifi-
cantly enhance post-FL outcomes compared to state-of-the-art FL algorithms. The results
underscore FLARE-LA’s unique capability to drive advancements in financial forecasting
and other high-stakes, rapidly evolving domains.

1 Introduction

Predicting realized volatility is a cornerstone of financial forecasting, essential for effective risk management
and informed investment strategies within the framework of deep hedging (Buehler et al., 2019; Vuletić &
Cont, 2023; Mueller et al., 2024). However, financial markets naturally generate fragmented and asynchronous
data across multiple trading venues. These platforms are unable to share data with third parties due to
stringent privacy concerns, regulatory constraints, and technical challenges (Kairouz et al., 2021). The data
fragmentation poses significant obstacles to the accuracy and reliability of realized volatility predictions.
When data is distributed across multiple platforms, the collective market understanding becomes incomplete,
limiting the ability to accurately capture price movements and liquidity dynamics. Volatility prediction,
which depends on comprehensive market data, is particularly vulnerable to inaccuracies and biases under
these conditions. Furthermore, discrepancies in liquidity levels and pricing for the same asset across exchanges
exacerbate these challenges, potentially leading to incorrect volatility estimates when one platform’s data
fails to reflect broader market trends (Otero, 2002; Madhavan, 2000). Federated Learning (FL) offers a
promising solution by enabling collaborative model training across distributed data sources while preserving
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data privacy, which addresses key privacy and regulatory concerns by ensuring data remains local to each
trading platform (Yang et al., 2019; Yu et al., 2020; Tan et al., 2022; Chen et al., 2023a; Meng et al., 2024).

Financial markets impose uniquely demanding requirements on FL due to the critical need for high precision,
reliability, and robustness. Unlike other domains, where minor inaccuracies may be tolerable, small errors
in financial forecasting can result in significant financial losses or missed opportunities (Ning et al., 2023).
Volatility prediction, in particular, presents a highly challenging task as it requires models that not only
identify complex and rapidly evolving trends in market behavior but also provide robust and interpretable
risk estimates (Bergeron et al., 2021). The fragmented nature of financial data intensifies these challenges.
Trading platforms operate independently, each generating datasets that reflect its unique market conditions,
liquidity levels, and trading behaviors. The data decentralization introduces substantial obstacles to achieving
consistent, high-quality predictions across platforms.

While data heterogeneity and dynamic participation are common challenges in FL, their impact is amplified
in financial markets. The inherent variability in datasets across trading platforms leads to significant
discrepancies in local and global data distributions. Additionally, trading platforms frequently enter and
exit the training process due to operational constraints, creating a dynamic and unpredictable training
environment. Maintaining robustness under such conditions is essential to ensuring consistent model
performance across all participants. Beyond these technical challenges, the necessity for interpretable and
trustworthy predictions is particularly acute in financial applications. Models must go beyond delivering
accurate forecasts, which must also quantify uncertainties effectively, enabling informed decision-making in
high-stakes environments. Traditional FL methods often lack the precision, adaptability, and interpretability
required for such applications, limiting their practical utility in financial forecasting.

To address these challenges, we introduce Federated Learning with Adaptive Robustness and Efficiency for
Local Adaptation (FLARE-LA), a cutting-edge framework designed to address the distinct requirements of
financial markets. FLARE-LA utilizes Taylor-based linearization to achieve computationally efficient and
accurate local adaptations, effectively aligning the global model with platform-specific datasets. Moreover, it
incorporates a probabilistic mechanism that leverages the Jacobian matrix of the global model, facilitating
localized optimization and delivering interpretable uncertainty quantification to enhance reliability and
support informed decision-making. This integrated approach ensures robust performance in dynamic and
fragmented environments while maintaining computational efficiency. By blending global insights with
fine-tuned local adjustments, FLARE-LA substantially improves the accuracy of realized volatility predictions,
satisfying the stringent precision and reliability demands of financial forecasting.

Although FLARE-LA is rigorously evaluated within the context of financial markets, its underlying principles,
such as efficient local adaptation and uncertainty-aware predictions, are broadly applicable to a wide range
of domains. The financial market serves as a challenging and representative scenario that underscores
the framework’s capabilities, providing valuable insights into its potential for other complex and dynamic
environments. Experimental evaluations demonstrate that FLARE-LA consistently outperforms state-of-the-
art baselines, achieving lower mean loss, Value at Risk (VaR95%), and Conditional Value at Risk (CVaR95%)
across diverse platform distributions and participation rates. These results highlight the framework’s
scalability, adaptability, and robustness, making it well-suited for general federated learning tasks where data
heterogeneity, dynamic participation, and computational efficiency are critical.

In the following sections, we provide an overview of related work in Section 2, positioning our contributions
within the broader landscape of FL and financial forecasting. Section 3 introduces the fragmented nature
of financial markets and formulates the problem addressed by our framework. In Section 4, we detail our
proposed approach, highlighting the integration of probabilistic frameworks and efficient local adaptation
techniques. Empirical evaluations of our method, showcasing its effectiveness and robustness across various
scenarios, are detailed in Section 5. Finally, we summarize our findings, and outline potential directions for
future research in Section 6.
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2 Related Work

In the context of financial markets, predicting realized volatility using order book data is a challenging task
due to the decentralized nature of data acquisition (Banabilah et al., 2022). Order books, which capture buy
and sell orders for securities, form a dynamic and fragmented data environment, often referred to as "data
islands." These characteristics make FL an appealing approach for such environments (Hasbrouck, 2007). FL
enables collaborative model training across distributed data sources while preserving data privacy, a critical
requirement in financial markets.

Existing FL methods face specific challenges when applied to predicting realized volatility in financial markets,
such as high data heterogeneity, rapid changes in data patterns, and the need for timely model updates.
Methods like FedProx (Li et al., 2020), which introduces a proximal term to the local objective function to
stabilize optimization, mitigate the effects of heterogeneity by reducing the impact of local updates that
deviate significantly from the global model. However, while FedProx offers stability, its proximal term may
not fully capture the dynamic nature of financial data, and it can slow convergence, a critical drawback
in fast-paced trading environments (Arthur et al., 2018; Cantillon & Yin, 2011). To address local-global
mis-alignments, SCAFFOLD (Karimireddy et al., 2020) incorporates control variates to correct the drift in
local updates, improving alignment with the global model. However, the rapidly evolving financial landscape
can still lead to misalignments that adversely affect prediction accuracy (Boukherouaa et al., 2021). While
effective in certain scenarios, the introduction of control variates increases computational complexity and
communication overhead, posing challenges for deployment in high-frequency trading environments.

Personalized FL methods, such as FedPer (Arivazhagan et al., 2019), decouple shared global parameters
from client-specific local parameters to provide personalization. Despite this, the high variability and
unpredictability in financial markets require frequent adjustments to personalized models, making the process
resource-intensive and limiting scalability in large-scale financial networks. Similarly, LG-FedAvg (Liang
et al., 2020), APFL (Deng et al., 2020), and pFedMe (T Dinh et al., 2020) adopt approaches to balance global
and local knowledge but face challenges in handling the feature and distributional heterogeneity prevalent in
financial markets.

Recent innovations, including Ditto (Li et al., 2021), FedRep (Collins et al., 2021), and SuPerFed (Hahn
et al., 2022), have explored various personalization techniques, such as interpolating global and local models
or applying proximity regularization. These methods highlight progress in adapting global models to client-
specific data. However, they often require fine-tuning or additional computational resources for new clients,
reducing scalability in highly dynamic environments like financial trading. Meng et al. (2024) explores
techniques to enhance global generalization and local personalization through adaptive aggregation and dual
optimization, which aligns with our goal of striking a balance between global insights and local adaptations
in heterogeneous FL settings. While their work focuses on representation learning and aggregation strategies,
our method introduces a Taylor-based linearization approach combined with a probabilistic framework to
achieve more precise and interpretable local adaptation. Tan et al. (2022) provides insights into handling
client-specific model updates using personalized layers and meta-learning, offering a solution for improving
local performance in non-IID settings. This is relevant to our method in FLARE-LA, which also aims to
achieve strong local adaptation but does so through efficient linearized updates and probabilistic adjustments,
eliminating the need for additional network layers or meta-learning components. Chen et al. (2023a) focuses
on sparse model adaptation to enhance scalability and computational efficiency in personalized FL, a strategy
particularly useful in resource-constrained environments. Similarly, Yu et al. (2020) highlights the importance
of localized training adjustments to address the limitations of federated aggregation in heterogeneous datasets.
Both approaches emphasize the need for effective local training, which resonates with our method’s focus on
dynamic participation and efficient adaptation. However, our approach extends these ideas by leveraging
Jacobian-based linearization and uncertainty quantification, enabling robust local updates tailored to the
fragmented and rapidly changing nature of financial data.

Advances in neural network behavior further inspire solutions for FL. Research has revealed that infinitely wide
deep neural networks (DNNs) exhibit behaviors similar to their Taylor expansions around initialization (Chizat
et al., 2019). Extensions of this analysis to finite-width DNNs demonstrate that their training dynamics
resemble linear models (Seleznova & Kutyniok, 2022), while the inductive biases of linearized neural networks
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effectively summarize full network functions (Maddox et al., 2021). These findings motivate the development
of FL approaches that better address the unique characteristics of local trading platforms, where global
models often fail to capture localized data patterns.

To address these challenges, the proposed FLARE-LA framework introduces adaptive local training mechanisms
that go beyond traditional FL approaches by focusing on post-training performance optimization. FLARE-LA
leverages insights from neural network linearization to enable precise and computationally efficient local
adaptations, ensuring that global models are effectively refined to meet the specific needs of individual trading
platforms. Unlike existing methods, FLARE-LA is designed to address the dynamic and heterogeneous nature
of financial markets by rapidly adapting to new data and evolving conditions, ensuring that local models
remain robust and aligned with real-world scenarios. The proposed innovative approach is a transformative
solution for achieving high-precision and reliable predictions in decentralized and fragmented financial
environments.

3 Fragmented Financial Markets

3.1 Background

In financial markets, trading occurs across a wide range of exchanges and platforms, resulting in highly
fragmented datasets. Each platform independently maintains transaction and order book data, capturing
buy and sell orders as well as their execution details. This fragmentation provides an incomplete view of
market activity for any given asset, with notable variations in pricing, liquidity, and order depth across
platforms (Hasbrouck, 2007).

The order book plays a critical role in market analysis, offering traders insights into short-term trading
dynamics. By displaying order imbalances and identifying potential support and resistance levels for a stock,
the order book supports informed trading decisions. Heightened market activity and uncertainty are often
reflected in increased realized volatility, which arises from frequent directional price movements. Trading
data, which records executed transactions, complements the order book by offering valuable insights into
market dynamics, such as price trends, trading volumes, and liquidity conditions.

Predicting short-term realized volatility is essential for effective risk management and the development of
trading strategies (Chen et al., 2023b). By analyzing order book and trade data over fixed time intervals,
traders and institutions can forecast future volatility levels, enabling improved decision-making and enhanced
risk mitigation. Realized volatility predictions help market participants manage exposure, optimize portfolio
allocations, and design robust trading strategies.

Extracting meaningful insights from order book data is vital for understanding market dynamics and assessing
stock values. Key metrics, such as the bid-ask spread, weighted average price, and volume-related indicators,
provide a wealth of information about market liquidity and potential volatility. However, the fragmented
nature of financial markets poses significant challenges for comprehensive analysis, as data silos limit access
to the full scope of market activity.

3.2 Problem Formulation

By leveraging diverse data sources, FL facilitates the development of a robust global model that enhances
local predictions, preserving both data privacy and confidentiality, which allows trading platforms to benefit
from a comprehensive understanding of market dynamics while maintaining compliance with regulatory
requirements and addressing privacy concerns.

Consider a distributed dataset consisting of n data sample pairs {xi, yi}n
i=1 across |E| trading platforms.

Each data sample pair represents features extracted from order book and trading data, with xi denoting the
feature vector and yi representing the corresponding label, which is the volatility. There are 363 features
for each sample generated from order book and trading data, capturing essential market dynamics such as
bid-ask spreads, price movements, and trading volumes.
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We denote the local dataset of the c-th trading platform as Pc, which contains nc training samples. The union
of all local datasets from each trading platform, P1 ∪ P2 ∪ · · · ∪ P|E|, covers the entire dataset, guaranteeing
that each sample is assigned to exactly one trading platform’s dataset. For trading platform c, the labels
{yi}i∈Pc

represent the volatility levels observed in the corresponding platform’s trading data. These volatility
labels are used as the ground truth for training the predictive model.

We aim to develop a predictive model, represented by a deep neural network function f , which maps an input
feature vector x to an output volatility prediction y. The model is trained using the distributed dataset
across multiple trading platforms, leveraging the features extracted from order book and trading data to
predict future volatility levels accurately. The local objective function for trading platform c is defined as

minimize
w

Lc(w) = 1
2

∑
i∈Pc

(f(xi, w)− yi)2 for c = 1, · · · , |E|, (1)

where w represents the trainable parameters of the model. Meanwhile, the global objective function,
aggregating the local objectives across all trading platforms, is given by

minimize
w

L(w) = 1
|E|

|E|∑
c=1

Lc(w). (2)

Realized volatility prediction poses unique challenges due to the fragmented nature of financial data, and
the rapidly evolving market conditions. Each platform’s dataset captures only a localized perspective of the
broader market, leading to non-IID data distributions that complicate the development of a unified model.
Furthermore, the predictive task demands a model capable of capturing complex, non-linear interactions
between features to provide reliable and interpretable outputs. By leveraging FL, trading platforms can
train a global model that integrates diverse data sources, improving predictive accuracy while maintaining
data privacy. This collaborative framework enables financial institutions to optimize their trading strategies,
enhance risk management, and make informed decisions in volatile market conditions.

4 Federated Learning with Adaptive Robustness and Efficiency for Local Adaptation

In this section, we introduce our proposed approach FLARE-LA, a framework designed to address the
challenges posed by heterogeneous local datasets and dynamic participation in financial markets. While
the global objective function in (2) captures general patterns across all trading platforms, it may fail to
fully represent the unique characteristics of each platform’s local dataset, potentially resulting in suboptimal
performance for individual platforms as outlined in (1). To overcome this limitation, FLARE-LA provides an
innovative mechanism for trading platforms to adapt the globally trained model to their specific local data.

The FLARE-LA framework operates through a two-stage process. In the initial stage, trading platforms
collaboratively train a global model while ensuring strict data privacy. This is accomplished by aggregating
model updates from each platform without transmitting raw data, thereby preserving confidentiality and
compliance with privacy regulations. The global model, built from the collective knowledge of all participating
platforms, effectively captures shared patterns and structures across the distributed datasets. This stage
provides a robust baseline for subsequent local adaptation. Moreover, FLARE-LA is designed to seamlessly
integrate advanced federated learning techniques into this collaborative training stage, enhancing flexibility
and adaptability to various use cases.

In the second stage, FLARE-LA introduces an innovative local adaptation mechanism that fine-tunes the
globally trained model to align with the specific characteristics of each trading platform’s dataset. This process
leverages Taylor-based linearization and probabilistic frameworks to achieve computational efficiency and
precision. By utilizing the Jacobian matrix of the global model, FLARE-LA integrates localized optimization
with interpretable uncertainty quantification, enabling platforms to adapt the global model dynamically while
maintaining robustness in predictive accuracy. This approach ensures that FLARE-LA excels in addressing
the challenges of non-IID data distributions, enhancing model performance in diverse and fragmented
environments.
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By combining the strengths of FL with tailored local adaptations, FLARE-LA effectively addresses the
inherent heterogeneity of financial market datasets and accommodates the dynamic participation of trading
platforms. This dual-stage approach ensures that each platform benefits from the collaborative insights of FL
while achieving optimal performance for its specific market conditions.

4.1 Federated Training equipped with Efficient Local Adaptation for Financial Market Dynamics

The initialization of model weights plays a pivotal role in determining the efficiency and stability of the
training process. Arbitrary or poorly chosen initialization methods can block progress, leading to issues such
as slow convergence or training stagnation (Xie et al., 2017). To address these challenges, it is essential to
ensure that the activation distributions maintain consistent variance as the network deepens, preventing
common pitfalls like vanishing or exploding gradients. To achieve this, the initial weights are drawn from a
Gaussian distribution with a mean of zero and a standard deviation inversely proportional to the square root
of the number of input units feeding into the layer as

w0 ∼ N
(

0,
1
√

nin

)
, (3)

where w0 denotes the initial weight vector, and nin represents the number of input units in the layer. This
tailored initialization ensures a balanced variance in the activation distributions across layers, fostering a
smoother gradient flow and more stable training dynamics.

Federated training operates in a dynamically evolving environment where the participation of trading
platforms fluctuates unpredictably. At each training round, a subset of trading platforms, denoted as
St ⊆ |E|, is selected to participate. This mirrors real-world scenarios where platform availability is influenced
by operational constraints, market activity, or other factors. To capture these dynamics, the set St is sampled
from predefined distributions, including Exponential, Geometric, Gamma, and Chi-square distributions,
reflecting a variety of participation patterns.

The dynamic nature of platform participation introduces additional complexity to the federated training
process, as the global model must adapt to fluctuating contributions without compromising performance.
By incorporating realistic participation patterns into our simulation, we ensure that the training procedure
reflects the challenges of real-world financial environments, enhancing the robustness and applicability of our
approach.

Once the active participants for round t are determined, the current global model wt is distributed to the
selected trading platforms in St. Each platform initializes its local model for the training round as

{wt
c,0 = wt}c∈St , (4)

where wt
c,0 represents the initial local model weights for trading platform c at the onset of round t. This

initialization ensures that all participating platforms begin the round with identical copies of the global
model, fostering a collaborative and unified starting point in the dynamic participation environment.

During local training on trading platform c, the model undergoes iterative updates using financial market
data. The k-th step of this update process is defined as:

wt
c,k+1 = wt

c,k − αl∇Lc(wt
c,k), (5)

where αl is the local learning rate, tailored to the unique dynamics and characteristics of each platform’s
dataset. This localized learning process allows each platform to refine the model in alignment with its specific
market conditions. The local training procedure continues for K iterations, resulting in a final local model as

wt
c,K = wt −

K∑
k=1

αl∇Lc(wt
c,k), (6)

which integrates the cumulative effects of gradient-based updates, highlighting how each platform adapts the
global model to its specific data through weighted gradient descents.
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To quantify the divergence between the locally adapted model and the initial global model, we define the
model discrepancy for trading platform c after K iterations as

△wt
c = wt

c,K −wt, (7)

measuring the extent to which each platform’s local updates diverge from the global model parameters, and
reflecting the influence of its unique market data on the learning process.

The aggregated local updates are used to compute the global model for the next iteration as

wt+1 ← wt +
αt

g

|St|
∑
c∈St

△wt
c, (8)

where αt
g is the global learning rate for round t, and the contribution of each local model is normalized by

the number of participating platforms |St|. This normalization ensures equitable integration of local updates
into the global model, promoting fairness and robustness across platforms. The updated global model wt+1

marks the conclusion of the t-th round of training and serves as the starting point for the next round of FL.

The above iterative process allows FLARE-LA to adaptively refine the global model by incorporating diverse
contributions from participating platforms within the dynamic and heterogeneous environment of financial
markets. Essentially, the federated iterations in FLARE-LA are designed to be modular, enabling the seamless
integration of any advanced FL solutions. This flexibility enhances the scalability and generalization of the
framework, allowing it to adapt to evolving methods and leverage state-of-the-art advancements in FL. By
combining tailored local training with equitable aggregation, FLARE-LA effectively addresses the challenges
of data heterogeneity and fluctuating participation rates, ensuring robust performance and broad applicability.

The global model w∗, obtained after FL training, may not be fully optimized or may exhibit poor local
performance due to the diverse nature of local datasets and the dynamic participation. Nonetheless, it serves
as the baseline for adaptive local training. To derive the local adaptive training strategy, we consider a given
neural network model function f . We can approximate f around the trained model parameters w∗ using a
Taylor expansion

f(x; w) ≈ f(x; w∗) + Jw∗(x)T (w −w∗), (9)
where Jw∗(x) denotes the Jacobian matrix of partial derivatives of f with respect to the model parameters
at w∗, with dimensions p × |Pc| and we use p to denote the size of the model parameters. This Jacobian
represents the sensitivity of the output with respect to changes in the model parameters near w∗.

We formulate the probabilistic model governing the output y, given input features x extracted from order
book and trading data, and model parameters w as

p(y |x, w) = N
(
f(x; w), σ2

c

)
= 1√

2πσ2
c

e
− (y−f(x;w))2

2σ2
c , (10)

where σ2
c represents the variance associated with the Gaussian noise, capturing the inherent uncertainty and

noise in the model predictions of volatility. This distribution’s mean is specified by the linear approximation
obtained from the Taylor expansion of f , with a variance σ2

c .

For volatility prediction in financial markets using FL, deviations from the baseline global model w∗ influence
the mean prediction through the Jacobian adjustment, while the Gaussian term N (0, σ2

c ) accounts for the
stochastic nature of the predictions. This framework establishes a robust basis for trading platforms to adapt
and retrain the global model locally, ensuring performance optimization tailored to the unique characteristics
of individual datasets.

For each trading platform c with its local dataset {(xi, yi)}|Pc|
i=1 , the likelihood function quantifies the probability

of observing the given data. It incorporates both the individual variances from the Gaussian noise and the
deviations of the model predictions from actual data points. This integration is captured by the model’s
output and its linear approximation around w∗ which is formulated as

Pc(w) = 1
(2πσ2

c )
|Pc|

2

exp

− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2

 , (11)
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which enables trading platforms to effectively assess the fit between their local data and the global model,
guiding them in refining the model parameters to better capture the underlying patterns in volatility dynamics.

For rapid local adaptation within our financial market volatility prediction, we transform the likelihood
function into its logarithmic form as

log(Pc(w)) = −|Pc|
2 log(2πσ2

c )− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2, (12)

which simplifies the expression by converting the product of probabilities into a sum of logarithms, linearizing
the effects of the parameters and enhancing the tractability of the optimization problem. Importantly,
− 1

2σ2
c

∑|Pc|
i=1(yi − f(xi; w))2 represents the sum of squared residuals, adjusted by the inverse of the noise

variance σ2
c . Therefore, the local adaptation process can be formulated as minimizing the following loss

function

L̂c(w) = 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2 + |Pc|
2 log(2πσ2

c ), (13)

which comprises a term that evaluates the sum of squared deviations between the predicted volatility and the
actual volatility, scaled by the noise variance σ2

c , and a constant term that standardizes the loss based on the
dataset size and noise level in the context of local financial market data.

We define Jw∗ = {Jw∗(xi)}Pc
i=1 as the collection of Jacobian matrices of the model’s predictions with respect

to the features generated from order book and trading data, evaluated at w∗. The sum of the outer products
of these Jacobian matrices across all data points forms a symmetric matrix as

|Pc|∑
i=1

Jw∗(xi)Jw∗(xi)T = Jw∗JT
w∗ , (14)

which reflects the covariance structure of the gradients, capturing the sensitivity of the model’s predictions to
the features derived from the trading platforms’ data. To simplify computations in practice, the loss function
can be reformulated as

L̂c(w) = (w −w∗)T 1
2σ2

c

Jw∗JT
w∗(w −w∗)− (w −w∗)T 1

σ2
c

Jw∗(yc − fc)

+ 1
2σ2

c

(yc − fc)T (yc − fc) + |Pc|
2 log(2πσ2

c ),
(15)

where fc = {f(xi; w∗)}Pc
i=1 and yc = {yi}Pc

i=1. It quantifies the balance between the model’s internal
predictions and the observed deviations from the actual volatility outcomes, scaled by the noise variance, σ2

c .
This local loss function is critical for adapting the global model to better fit the specific characteristics of the
local trading platform’s data. The local model adaptation is achieved by setting the gradient of the designed
local loss function, ▽▽▽L̂c(w), to zero as

▽▽▽L̂c(w) = 1
σ2

c

Jw∗JT
w∗(w −w∗)− 1

σ2
c

Jw∗(yc − fc) = 0. (16)

By solving the stationary condition of the linearized local loss, we identify the local adaptation for platform c
as

w = (Jw∗JT
w∗)−1 Jw∗ (yc − fc) + w∗, (17)

which typically serves as a minimum for a well-defined convex function. This formulation indicates that
the local model adaptation is proportional to the inverse of the aggregated Jacobian product, adjusted by
the residuals between the observed volatility yc and the model’s baseline predictions fc. Importantly, the
matrix-vector product (Jw∗JT

w∗)−1Jw∗ only needs to be computed once per platform, providing significant
computational efficiency during repeated local adaptations. And

ŷi = f(xi; w∗) + Jw∗(xi)T
(
Jw∗JT

w∗
)−1

Jw∗ (yc − fc) +N
(
0, σ2

c

)
, (18)
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governs the local model’s predictions for a new data sample xi, where the term N (0, σ2
c ) captures the inherent

noise variance in volatility forecasting.

Although (17) and (18) assume Jw∗JT
w∗ is invertible, rank-deficient or ill-conditioned Jacobians can arise

under real-world data constraints, e.g., when local data are limited or collinear. To ensure reliable adaptation
in such scenarios, we introduce a small regularization parameter λ > 0 on the diagonal of Jw∗JT

w∗ , and we
can obtain

w = w∗ +
(
Jw∗JT

w∗ + λI
)−1

Jw∗ (yc − fc). (19)

In this modification, every eigenvalue of Jw∗JT
w∗ is shifted by at least λ, thereby ensuring positive definiteness

and invertibility. Therefore, the predictive step becomes

ŷi = f(xi; w∗) + Jw∗(xi)T
(
Jw∗JT

w∗ + λI
)−1

Jw∗(yc − fc) +N (0, σ2
c ). (20)

This diagonal shift has minimal impact on the model’s geometry while resolving degenerate eigenvalues and
stabilizing local adaptation. Therefore, FLARE-LA accommodates a wide range of data conditions and
ensures the final adaptation step remains both computationally feasible and theoretically sound, even when
the Jacobian product matrix is poorly conditioned.

Algorithm 1 Federated Learning with Adaptive Robustness and Efficiency for Local Adaptation (FLARE-LA)
Input: Global model initialization w0, learning rates αl, {αt

g}, participation distribution, local datasets
{Dc}c∈C , regularization parameter λ ≥ 0, ill-condition tolerance ε > 0.
Output: Updated global model wT , optionally adapted local models {w∗

c}
1: Initialize: w0 ∼ N (0, 1/

√
nin)

2: for t = 1 to T do
3: Sample active platforms St ∼ Participation Distribution
4: for each platform c ∈ St in parallel do
5: Initialize local model wt

c,0 = wt

6: for k = 1 to K do
7: wt

c,k ← wt
c,k−1 − αl∇Lc(wt

c,k−1)
8: end for
9: wt

c,K ← final local model after K steps
10: △wt

c ← wt
c,K −wt

11: end for
12: Aggregate global model: wt+1 ← wt + αt

g

|St|
∑

c∈St△wt
c

13: end for
14: Set w∗ ← wT {Final global model after T rounds}
15: Efficient Local Adaptation:
16: for each platform c (if local adaptation is needed) do
17: Compute Jacobian Jw∗ on Dc, and residuals rc ← yc − fc

18: Compute the eigendecomposition: Jw∗JT
w∗ = U Λ UT

19: Obtain the smallest eigenvalue: λmin = mini λi

20: if λmin ≤ ε then
21: Jw∗JT

w∗ ← Jw∗JT
w∗ + λI

22: end if
23: Update local model: w∗

c ← w∗ + (Jw∗JT
w∗)−1 Jw∗ rc

24: Prediction for new data xi: ŷi ← f(xi; w∗) + Jw∗(xi)T (Jw∗JT
w∗)−1Jw∗ rc +N (0, σ2

c )
25: end for

By combining the baseline prediction using the global model parameters f(xi; w∗) with a local refinement
term Jw∗(xi)T (Jw∗JT

w∗)−1Jw∗(yc − fc) and explicitly modeling the inherent variability through a Gaussian
noise term N (0, σ2

c ), FLARE-LA offers an adaptive strategy tailored to each trading platform’s data
heterogeneity. This hybrid prediction process leverages the global model as a baseline while swiftly capturing
local requirements, ensuring robust and accurate volatility forecasts under dynamic market conditions. When
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Jw∗JT
w∗ is rank-deficient or ill-conditioned, a small diagonal shift λI is introduced to preserve positive

definiteness and maintain a well-defined local update. The full procedure of FLARE-LA, incorporating both
federated training and efficient local adaptation, is summarized in Algorithm 1.

4.2 Analysis of the Local Adaptation Mechanism

FLARE-LA integrates the federated training phase with a Taylor-based local adaptation mechanism, effectively
addressing the challenges of non-IID data and dynamic participation in financial markets. By uniting collective
insights from distributed platforms with precise local refinements, FLARE-LA produces a volatility prediction
model that balances global consistency with platform-specific accuracy. To complement the federated
training phase, FLARE-LA introduces an advanced Taylor-based linearization strategy for computationally
efficient and precise local adaptations. By leveraging the Jacobian matrix of the global model, FLARE-LA
approximates complex local adjustments, enabling trading platforms to quickly tailor the global model to their
unique data distributions without extensive computational overhead. Additionally, the framework integrates
probabilistic modeling to capture prediction uncertainties, enhancing interpretability and reliability, which is
key for high-stakes financial decision-making. This modular and extensible approach ensures that FLARE-LA
remains a scalable, adaptive, and generalizable framework for FL in financial markets and beyond.

FLARE-LA incorporates adaptive regularization and probabilistic modeling to address the volatility and
heterogeneity typical in financial data. Each platform is characterized by its own σ2

i , encapsulating local noise
levels. The Hessian of the local objective, ∇2L̂i(w∗), is assumed to be bounded within (µi, βi), and we have

µi ≤
∥∥∥ 1

σ2
i

Jw∗JT
w∗

∥∥∥ ≤ βi. (21)

To ensure numerical stability and predictable convergence during local adaptation, we first provide the
analysis that the local gradient w.r.t w∗ can be bounded. According to the quadratic upper bound and the
linear lower bound of the local objective function, we can obtain the inequality as

Li(w∗)− Li(w) = Li(w∗)− Li(z) + Li(z)− Li(w)

≤∇Li(w∗)T (w∗ − z) + ∇Li(w)T (z − w) + βi

2 ∥z − w∥2

= ∇Li(w∗)T (w∗ − w) + (∇Li(w∗) − ∇Li(w))T (w − z) + βi

2 ∥z − w∥2.

(22)

We define
z = w − 1

βi
(∇Li(w) − ∇Li(w∗)), (23)

and then, we have

(∇Li(w∗) − ∇Li(w))T (w − z) = − 1
βi

∥∇Li(w∗) − ∇Li(w)∥2,

βi

2 ∥z − w∥2 = 1
2βi

∥∇Li(w∗) − ∇Li(w)∥2,

(24)

hence,
Li(w∗)− Li(w) ≤∇Li(w∗)T (w∗ − w)− 1

2βi
∥∇Li(w∗) − ∇Li(w)∥2, (25)

which leads to

Li(w)− Li(w∗)−∇Li(w∗)T (w − w∗) ≥ 1
2βi

∥∇Li(w∗) − ∇Li(w)∥2. (26)

Since
1
|E|

∑
i∈E

(Li(w)− Li(w∗)) = L(w)− L∗, (27)

10
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then, we have
2βi(L(w)− L∗) ≥ 1

|E|
∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2. (28)

The bound on the local gradient can be found as

1
|E|

∑
i∈E

∥∇Li(w)∥2 = 1
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗) + ∇Li(w∗)∥2

≤ 2
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2 + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2

≤ 4βi(L(w)− L∗) + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2.

(29)

Therefore, we define the local gradient w.r.t w∗ is bounded by ϵi, i.e., ∥∇L̂i(w∗)∥ ≤ ϵi, and w∗
i is the

optimal model for trading platform i. The improvement of local adaptation in the model space can be
bounded by

∥w − w∗
i ∥ = ∥w∗ − (∇2L̂i(w∗))−1∇L̂i(w∗) − w∗

i ∥
= ∥(∇2L̂i(w∗))−1[∇L̂i(w∗) + ∇2L̂i(w∗)(w∗

i − w∗)]∥.
(30)

Since
∇L̂i(w∗

i ) = ∇L̂i(w∗) + ∇2L̂i(w∗)(w∗
i − w∗), (31)

we obtain that

∥w − w∗
i ∥ = ∥(∇2L̂i(w∗))−1[∇L̂i(w∗

i ) − ∇L̂i(w∗)] + (∇2L̂i(w∗))−1∇L̂i(w∗)∥. (32)

We assume the local gradient w.r.t w∗ is bounded by ϵi. Then, we have

∥(∇2L̂i(w∗))−1∇L̂i(w∗)∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗)∥ ≤ ϵi

µi
. (33)

Furthermore, we have

∥(∇2L̂i(w∗))−1[∇L̂i(w∗
i ) − ∇L̂i(w∗)]∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗

i )−∇L̂i(w∗)∥

≤ βi

µi
∥w∗

i − w∗∥.
(34)

Therefore, we have

∥w − w∗
i ∥ ≤ βi

µi
∥w∗

i − w∗∥ + ϵi

µi
(35)

to illustrate how closely each platform’s adapted weights, w, align with its own local optimum, w∗
i . This

result shows that the deviation of the adapted solution from the local optimum depends on the curvature
factors (µi, βi) and the magnitude of the global model’s misalignment with the true local optimum. Therefore,
even if the global model w∗ is not fully optimized for platform i, FLARE-LA’s closed-form local adaptation
draws the parameters significantly closer to w∗

i .

Another key benefit of local adaptation appears in the reduction of the local objective function. By expanding
L̂i(w) in a second-order Taylor series around w∗, it can be shown that

L̂i(w) = L̂i(w∗)− 1
2 ∇L̂i(w∗)T

(
∇2L̂i(w∗)

)−1∇L̂i(w∗). (36)

Hence, the local adaptation step decreases the objective by

L̂i(w∗)− L̂i(w) = 1
2 ∇L̂i(w∗)T

(
∇2L̂i(w∗)

)−1∇L̂i(w∗). (37)
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Since ∇L̂i(w∗) is proportional to 1
σ2

i
Jw∗(yi − fi), the extent of this loss reduction is bounded by curvature

terms and the squared residual ∥yi − fi∥2, giving

L̂i(w∗)− L̂i(w) ≤ βi

σ2
i µi
∥yi − fi∥2. (38)

This result confirms that local adaptation can substantially cut down on the local error to provide the
promising local adaptation.

By combining global insights with localized precision, FLARE-LA addresses the fragmentation of market
data without sacrificing data privacy or model stability. Its Taylor-based linearization efficiently refines model
parameters, while the adaptive regularization and variance-aware modeling capture uncertainty in volatile
markets. The bounding of Hessian eigenvalues and gradients ensures that each trading platform’s updates
remain well-controlled and that performance gains are both significant and predictable. Through the seamless
integration of federated collaboration and an efficient yet robust local adaptation mechanism, FLARE-LA
ensures enhanced performance across diverse and dynamic environments.

5 Experimental Evaluation

This experimental evaluation validates the efficacy and adaptability of the proposed FLARE-LA framework
in addressing the challenges of FL across both domain-specific and general scenarios. Our primary focus lies
in the financial domain, where the demands for high precision, robustness, and scalability are particularly
pronounced. We first utilize a dataset for realized volatility prediction, consisting of order book and trade
data from multiple trading platforms. These experiments aim to demonstrate FLARE-LA’s ability to handle
extreme data heterogeneity, dynamic participation, and the fragmented nature of financial datasets while
maintaining robust predictive performance.

To further evaluate the generalizability of FLARE-LA, we extend our experiments to CIFAR10 and MNIST,
two well-established datasets in FL research. These datasets allow us to test FLARE-LA’s performance under
non-IID data distributions, varying client participation rates, and label noise scenarios, mimicking real-world
challenges. By incorporating these datasets, we provide complementary evidence of FLARE-LA’s versatility
and scalability, demonstrating its utility across diverse applications beyond financial forecasting.

In our experiments, client participation is dynamically regulated using a participation ratio, simulating high
variability in client engagement during federated training. Non-IID data distributions are modeled using a
Dirichlet distribution, with the concentration parameter α controlling the heterogeneity of client data. For
α → 0, clients primarily have data from a single class, while α → ∞ results in a uniform distribution of
classes across clients. We evaluate the performance of FLARE-LA against several state-of-the-art FL methods,
including FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedPer (Arivazhagan et al., 2019),
LG-FedAvg (Liang et al., 2020), pFedMe (T Dinh et al., 2020), Ditto (Li et al., 2021), FedRep (Collins et al.,
2021), and SuPerFed (Hahn et al., 2022). For local training, we utilize the ResNet model, which provides
a robust architecture for handling diverse data distributions. The evaluation metrics include mean loss,
VaR95%, and CVaR95%, offering a comprehensive assessment of model performance. These metrics underscore
FLARE-LA’s ability to deliver superior predictive accuracy, adapt effectively to dynamic environments, and
maintain computational efficiency, even in challenging FL scenarios.

5.1 Experiments on Realized Volatility Prediction

We aim to forecast short-term volatility for stocks spanning multiple sectors (Andrew Meyer, 2021). The
dataset comprises both order book and trade data for these stocks, aggregated into multiple time buckets.
The values in the order book represent the latest snapshots of market activity, taken at one-second intervals.
Each time bucket comprises order book data spanning the 600 seconds. Our experiments involve predicting
the volatility for each time bucket of the stocks. There are 428, 932 samples in the entire dataset, where
107 of the stocks have data for 3830 time buckets, while 3 stocks have data for 3829 time buckets, 1 stock
has data for 3820 time buckets, and another stock has data for 3815 time buckets. The entire dataset is
divided into 10, 000 trading platforms based on a Dirichlet distribution-based non-IID setting (Hsu et al.,
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2019). The Dirichlet distribution’s concentration parameter, α, determines the stock distribution for each
trading platform which is set to 0.5 in our experiments. Each trading platform randomly splits its data into a
training set and a test set, with 20% allocated for testing. This setup allows us to estimate the performance
of each FL algorithm on each trading platform’s test set using its personalized model.

5.1.1 Performance Comparison
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Figure 1: Comparison of FLARE-LA with Individual Train and other FL baselines (FedProx, SCAFFOLD, and FedPer) across
different epochs.

In Fig. 1, we compare the performance of FLARE-LA against Individual Train and baseline FL methods
as FedProx, SCAFFOLD, and FedPer over 50 epochs as shown in Fig. 1(a) and 200 epochs as shown in
Fig. 1(b). The Individual Train baseline performs training independently for each trading platform without
leveraging federated collaboration. Despite identical numbers of parameter updates, FLARE-LA demonstrates
significantly superior performance, emphasizing the value of FL in leveraging global insights while tailoring
models to local data.

As shown in Fig. 1(a), after 50 epochs, FLARE-LA achieves a remarkably lower mean loss of 7.726× 10−5

compared to Individual Train (0.0132), FedProx (0.0031), SCAFFOLD (0.0015), and FedPer (0.0017). In
Fig. 1(b), after 200 epochs, FLARE-LA continues to outperform all baselines, maintaining its lead in terms of
mean loss, VaR95%, and CVaR95%. The results highlight FLARE-LA’s ability to balance global knowledge
with precise local adaptation, resulting in superior performance in federated settings. This demonstrates that
FLARE-LA not only accelerates convergence but also ensures higher accuracy and robustness compared to
individual and baseline federated training methods.

Across all experimental settings as shown in Fig. 2, FLARE-LA consistently outperforms baseline methods,
including FedProx, SCAFFOLD, FedPer, and SuPerFed, in terms of Mean Loss, VaR95%, and CVaR95% for
realized volatility prediction tasks.

With low client participation rates as10%, FLARE-LA demonstrates exceptional robustness and precision.
As shown in Fig. 2(a), after 5 training rounds, FLARE-LA achieves a Mean Loss of approximately 0.0001,
compared to significantly higher values for SuPerFed (0.0008), FedPer (0.0017), SCAFFOLD (0.0031), and
FedProx (0.004). The advantage becomes even more pronounced in risk-sensitive metrics such as VaR95%
and CVaR95%, where FLARE-LA achieves much lower values, highlighting its ability to effectively manage
tail risks even with limited trading platforms participation. These trends persist in Fig. 2(b), with 20 training
rounds further consolidating FLARE-LA’s dominance in all metrics.

When the participation rate increases to 30% as shown in Figs. 2(c) and 2(d), the overall model performance
improves across all methods. However, FLARE-LA retains a clear advantage, achieving substantially
lower Mean Loss values. For instance, in Fig. 2(d), FLARE-LA reaches a Mean Loss of approximately
0.00005, outperforming SuPerFed (0.0003), FedPer (0.0005), SCAFFOLD (0.0010), and FedProx (0.002). The
improvement in FLARE-LA’s performance with higher participation rates underscores its ability to fully
leverage the increased availability of local data while maintaining its computational efficiency and accuracy.
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Figure 2: Performance comparison with varying participation rates and training rounds on realized volatility prediction.

Furthermore, the impact of increasing the number of federated training rounds is evident. FLARE-LA
demonstrates rapid convergence to low loss values within a few rounds, significantly reducing the computational
burden compared to other methods. Even after just 5 training rounds, FLARE-LA achieves results comparable
to or better than the baseline methods after 20 rounds, as shown in Figs. 2(b) and 2(d). This efficiency
highlights FLARE-LA’s capability to deliver robust performance even in scenarios with limited training
rounds or participation rates.

As shown in Fig. 3, we provide the comparative analysis across various participation distributions to evaluate
the efficacy of FLARE-LA in addressing the inherent challenges of FL with dynamic participation. The
experiments were conducted with a 20% participation rate, 10 federated rounds, and 10 local epochs in each
round. As shown in Fig. 3(a) where trading platforms are sampled from an exponential distribution, with a
scale parameter of 1.0, FLARE-LA demonstrates a remarkable ability to achieve a mean loss of 7.358× 10−5,
VaR95% of 2.284× 10−4, and CVaR95% of 3.978× 10−4, outperforming FedProx, SCAFFOLD, and FedPer
by an order. As shown in Fig. 3(b), where trading platforms are sampled from a geometric distribution with a
probability of success of an individual trial set at 0.35, FLARE-LA once again emerges as the top-performing
algorithm. Fig. 3(c) explores the performance of algorithms when trading platforms are sampled from a
Gamma distribution, with a shape parameter of 2.0 and a scale parameter of 1.0. In Fig. 3(d), where trading
platforms are sampled from a chi-square distribution with the number of degrees of freedom set at 2.0,
FLARE-LA continues to outshine the baseline algorithms.

By consistently delivering superior performance metrics, FLARE-LA showcases its adaptability in scenarios
characterized by varying levels of data availability and participation. By consistently achieving lower mean
loss, VaR95%, and CVaR95% values, FLARE-LA underscores its resilience and adaptability in optimizing
federated model training across a spectrum of trading platform distributions. These results demonstrate
FLARE-LA’s capability in managing volatile market conditions and optimizing federated model training
despite unpredictable trading platform participation patterns.
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Figure 3: Illustrations of distributions: (a) Exponential, (b) Geometric, (c) Gamma, and (d) Chi-square.

Table 1: The Computation Cost Comparison for One Round

Participation Rate Fedprox (s) SCAFFOLD (s) FedPer (s) SuPerFed (s) FLARE-LA (s)
30% 74.39 105.9 46.18 99.63 48.16
60% 144.83 208.51 90.42 186.67 94.43

5.1.2 Computation Cost Comparison

The computation cost comparison for one round of FL is presented in Table 1, showcasing FLARE-LA’s
computational efficiency across varying participation rates. All experiments were conducted on an experimental
platform featuring an 8-core CPU, a 14-core GPU, and 16GB of RAM. This setup ensures consistent
benchmarking across all evaluated FL methods.

At a participation rate of 30%, FLARE-LA achieves a computation time of 48.16 seconds, significantly
outperforming SCAFFOLD (105.9 seconds) and SuPerFed (99.63 seconds). While FedPer demonstrates a
slightly faster computation time of 46.18 seconds, its slower convergence rate necessitates more training
rounds to achieve comparable results, thereby increasing the overall computational burden. FLARE-LA’s
superior balance between computational demands and model accuracy ensures efficient and timely model
updates, even under challenging participation scenarios.

When the participation rate increases to 60%, FLARE-LA continues to excel with a computation time of
94.43 seconds, outperforming Fedprox (144.83 seconds) and SCAFFOLD (208.51 seconds) by substantial
margins. Although FedPer achieves a comparable time of 90.42 seconds, FLARE-LA’s faster convergence
significantly reduces the total training cost, making it a more efficient and scalable solution for large-scale FL
applications in financial markets.
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The experimental results demonstrate FLARE-LA’s robustness and adaptability in addressing challenges
such as fragmented datasets and irregular client participation. By achieving competitive computation
times, FLARE-LA ensures privacy-preserving collaboration and timely model updates, addressing critical
requirements for FL in decentralized financial environments. Its ability to provide reliable volatility predictions
is particularly valuable for effective risk management and investment decision-making in dynamic financial
markets.

5.2 Experiments with CIFAR10 and MNIST

To extend our evaluation beyond the financial domain, we conducted experiments using the CIFAR10 and
MNIST datasets, partitioned into 1000 clients. These datasets serve as benchmarks to demonstrate the
generalizability and robustness of FLARE-LA in broader FL scenarios.

To simulate real-world challenges, we introduced artificial label noise into the training sets, employing two
commonly used noise schemes: pairwise flipping (Han et al., 2018) and symmetric flipping (Van Rooyen
et al., 2015). The pairwise flipping scheme models scenarios where labels transition to semantically similar
neighboring labels with a noise ratio ϵ, while retaining the correct label with a probability of 1 − ϵ. The
symmetric flipping scheme assumes uniform mislabeling across all incorrect labels, distributing the noise ratio
ϵ evenly among them, while preserving the correct label with a probability of 1− ϵ.

For both schemes, the test sets remain clean to ensure a fair and accurate evaluation of model performance.
This setup allows us to rigorously assess FLARE-LA’s ability to handle noisy labels, which is a critical
capability for FL applications in dynamic and unpredictable environments. By addressing label noise
effectively, FLARE-LA demonstrates its robustness and adaptability in diverse scenarios, further validating
its utility across domains.

5.2.1 Convergence Analysis

We assessed the convergence performance of FLARE-LA compared to state-of-the-art FL methods using the
CIFAR10 and MNIST datasets. These experiments evaluated FLARE-LA’s ability to handle FL challenges,
such as non-IID data distributions, dynamic participation, and prolonged training, while maintaining robust
convergence across various training rounds. Model performance was measured in terms of Mean Loss, VaR95%,
and CVaR95%.

On the CIFAR10 dataset, as shown in Fig. 4, FLARE-LA consistently outperformed the baselines, including
FedRep, Ditto, and SuPerFed, across all training stages. At 300 training rounds as illustrated in Fig. 4(a),
FLARE-LA achieved a Mean Loss of approximately 1.2, significantly lower than SuPerFed with 2.1, Ditto
with 2.7, and FedRep with 4.3, while demonstrating superior tail-risk management with reduced VaR95%
and CVaR95%. As training progressed to 400, 500, and 600 rounds as shown in Figs. 4(b)(c)(d), FLARE-LA
maintained its dominance, achieving a final Mean Loss of 0.8, solidifying its position as the most robust and
reliable method. Compared to the baselines, which struggled with slower convergence and less effective local
adaptation, FLARE-LA demonstrated faster convergence and superior overall performance.

We also compare their performance on the MNIST dataset as shown in Fig. 5, FLARE-LA outperformed
LG-FedAvg, pFedMe, and FedRep across all training rounds. As shown in Fig. 5(a) with 300 rounds,
FLARE-LA achieved a Mean Loss of 0.3, compared to 1.0 for LG-FedAvg and 0.8 for FedRep, while also
demonstrating lower VaR95% and CVaR95%, reflecting its superior risk management. As training progressed
to 400 and 500 rounds as shown in Figs. 5(b) and 5(c), FLARE-LA’s advantage became more pronounced,
achieving a Mean Loss of 0.2 by 500 rounds, compared to 0.7 for LG-FedAvg and 0.6 for FedRep. Even as
pFedMe slightly narrowed the gap, it failed to match FLARE-LA’s efficiency in managing tail risks. By 600
training rounds as shown in Fig. 5(d), FLARE-LA achieved a Mean Loss of 0.1, significantly outperforming
FedRep with 0.5 and LG-FedAvg with 0.6, while maintaining lower VaR95% and CVaR95%. These results
shown in both Fig. 4 and Fig. 5 highlight FLARE-LA’s scalability and adaptability, demonstrating faster
convergence and superior performance across diverse FL settings.
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Figure 4: Convergence analysis of model performance across different federated training rounds using the CIFAR10 dataset.

5.2.2 Analysis of Label Noise

We evaluated the robustness of FLARE-LA under symmetric and pairwise label noise conditions using
the CIFAR10 and MNIST datasets. These experiments tested FLARE-LA’s ability to maintain strong
performance under varying levels of label noise, comparing it to several baseline methods in terms of Mean
Loss, VaR95%, and CVaR95%.

As shown in Fig. 6, FLARE-LA consistently outperformed FedRep, Ditto, and SuPerFed across noise ratios
ranging from 0.2 to 0.8 on the CIFAR10 dataset. At a noise ratio of 0.2 as shown in Fig. 6(a), FLARE-LA
achieved a Mean Loss of approximately 1.5, significantly lower than SuPerFed with 2.3, Ditto with 2.0, and
FedRep with 3.2. As noise levels increased to 0.4 and 0.6 as illustrated in Figs. 6(b) and 6(c), FLARE-LA
maintained its competitive edge, with lower losses and risk metrics than the baselines, showcasing its resilience
to intermediate noise levels. Even under extreme noise at 0.8 as shown in Fig. 6(d), FLARE-LA demonstrated
remarkable robustness, maintaining strong performance, while the baselines exhibited significant degradation,
emphasizing FLARE-LA’s superior adaptability.

As shown in Fig. 7, FLARE-LA demonstrated similar robustness against symmetric label noise, outperforming
LG-FedAvg, pFedMe, and FedRep across all noise levels on the MNIST dataset. At a noise ratio of 0.2,
FLARE-LA effectively mitigated the adverse effects of noise, achieving superior predictive accuracy and risk
management. As noise levels increased to 0.4, 0.6, and 0.8, FLARE-LA maintained a substantial performance
advantage, with significantly lower losses and risk metrics, highlighting its scalability and effectiveness in
handling challenging scenarios with noisy labels.

Under pairwise label noise conditions on the CIFAR10 dataset, as shown in Fig. 8, FLARE-LA continued to
demonstrate resilience. At a noise ratio of 0.2 illustrated in Fig. 8(a), FLARE-LA achieved a Mean Loss of 2.2,
outperforming SuPerFed with 2.5, Ditto with 2.5, and FedRep with 3.0, along with significantly lower VaR95%
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Figure 5: Convergence analysis of model performance across different federated training rounds using the MNIST dataset.

and CVaR95%. At a higher noise ratio of 0.6 as shown in Fig. 8(b), FLARE-LA maintained its superiority,
achieving a CVaR95% of 3.5, compared to 3.8 for SuPerFed, 4.1 for Ditto, and 6.6 for FedRep. These results
emphasize the efficacy of FLARE-LA’s probabilistic local adaptation mechanism in mitigating noise effects
and leveraging the structure of local data distributions. FLARE-LA consistently demonstrated superior
resilience to label noise across both symmetric and pairwise scenarios, outperforming baseline methods in all
metrics. Its robust local adaptation mechanism ensures stable and accurate performance under challenging
noisy label conditions, making it a reliable solution in real-world settings.

5.2.3 Analysis of Local Data Heterogeneity

We analyzed the impact of local data heterogeneity on the performance of FLARE-LA compared to baseline
methods using the CIFAR10 and MNIST datasets. Data heterogeneity was controlled through the Dirichlet
distribution’s concentration parameter α, where smaller α values indicate higher heterogeneity, i.e., non-IID
data, and larger α values correspond to more homogeneous distributions, i.e., near-IID data.

The performance compared on the CIFAR10 dataset is shown in Fig. 9, where FLARE-LA consistently
outperformed FedRep, Ditto, and SuPerFed across both heterogeneity settings. Under the moderately
heterogeneous scenario with α = 10.0 as shown in Fig. 9(a), FLARE-LA achieved a Mean Loss of approximately
1.2, significantly lower than SuPerFed, Ditto, and FedRep, all of which reported values above 2.5. FLARE-
LA also achieved lower VaR95% and CVaR95%, demonstrating its superior ability to handle diverse data
distributions and mitigate tail risks. In the near-IID scenario with α = 1000.0 as shown in Fig. 9(b), all
methods improved due to reduced heterogeneity, but FLARE-LA maintained its performance advantage,
achieving a Mean Loss of 1.5, compared to 2.6 for SuPerFed and Ditto, and 3.0 for FedRep. These results
highlight FLARE-LA’s adaptability across varying levels of heterogeneity, consistently delivering robust
performance.
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Figure 6: Impact of varying symmetric label noise rates on model performance during federated training with the CIFAR10
dataset.

When compare their performance on the MNIST dataset as shown in Fig. 10, FLARE-LA demonstrated
similar dominance over LG-FedAvg, pFedMe, and FedRep. In the highly heterogeneous scenario with α = 10.0
illustrated in Fig. 10(a), FLARE-LA achieved the lowest Mean Loss, significantly outperforming the baselines
while also maintaining lower VaR95% and CVaR95%, reflecting its superior risk management capabilities.
The baselines struggled to generalize effectively under these conditions, with LG-FedAvg and FedRep showing
higher losses and slower convergence. Although pFedMe performed competitively, it lagged behind FLARE-LA
in accuracy and convergence speed. In the near-IID scenario with α = 1000.0 as shown in Fig. 10(b), the
performance gap narrowed due to the more uniform data distribution. However, FLARE-LA maintained
its advantage, achieving the best results in terms of Mean Loss and risk metrics, while also demonstrating
computational efficiency by requiring fewer training rounds to achieve convergence. These results shown in
both Fig. 9 and Fig. 10 underscore FLARE-LA’s ability to adapt to varying levels of data heterogeneity,
consistently outperforming baseline methods across diverse FL scenarios. Its probabilistic local adaptation
mechanism and Taylor-based linearization effectively balance global and local contributions, ensuring robust
and efficient performance in both non-IID and IID-like settings.

5.2.4 Analysis of Client Participation Rates

Then, we analyzed the impact of varying client participation rates on the performance of FLARE-LA
compared to baseline methods using the CIFAR10 and MNIST datasets. These experiments simulate dynamic
participation scenarios where only a small subset of clients is involved in each training round, evaluating
FLARE-LA’s robustness under extreme constraints.

On the CIFAR10 dataset, as shown in Fig. 11, two participation rates were tested, i.e., 1% and 2%. At
the 1% participation rate as illustrated in Fig. 11(a), FLARE-LA demonstrated exceptional robustness and
stability, significantly outperforming FedRep, Ditto, and SuPerFed in both convergence speed and predictive
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Figure 7: Impact of varying symmetric label noise rates on model performance during federated training with the MNIST
dataset.
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Figure 8: Impact of varying pairwise label noise rates on model performance during federated training with the CIFAR10 dataset.

accuracy. The probabilistic local adaptation mechanism in FLARE-LA ensures effective personalization
while preserving generalization, even with limited client engagement. At the 2% participation rate as shown
in Fig. 11(b), all methods improved due to increased client involvement, but FLARE-LA maintained its
advantage with faster convergence and superior performance metrics.

As shown in Fig. 12, four participation rates were tested, i.e., 0.5%, 1%, 1.5%, and 2.0% on the MNIST
dataset. At the lowest participation rate of 0.5% as illustrated in Fig. 12(a), FLARE-LA achieved a mean loss
of approximately 0.2, significantly outperforming LG-FedAvg with 1.4, pFedMe with 0.6, and FedRep with 0.4.
Its risk metrics, VaR95% and CVaR95%, were consistently lower than those of the baselines, reflecting superior
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Figure 9: Impact of varying degrees of local data heterogeneity on model performance during federated training with the
CIFAR10 dataset.
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Figure 10: Impact of varying degrees of local data heterogeneity on model performance during federated training with the
MNIST dataset.

robustness. As participation rates increased to 1%, 1.5%, and 2.0% shown in Figs. 12(b)(c)(d), FLARE-LA
maintained its performance lead, achieving the lowest mean loss and risk metrics across all settings. At the
highest participation rate of 2.0%, FLARE-LA effectively leveraged increased client engagement to achieve
the most favorable results, further underscoring its scalability and adaptability. The above results highlight
FLARE-LA’s ability to maintain robustness and generalization across dynamic participation scenarios,
consistently outperforming baseline methods. Its efficient local adaptation mechanism ensures stable and
accurate performance, even under extreme constraints or varying client participation rates.

5.3 Performance Comparison with Additional Local Updates

To further highlight the superiority of FLARE-LA in adaptive local updating, beyond the innovative two-stage
framework, we conducted a comparative analysis by equipping existing baseline methods with additional
local updates following the FL training phase. Specifically, we modified LG-FedAvg (Liang et al., 2020),
APFL (Deng et al., 2020), FedRep (Collins et al., 2021), FedPer (Arivazhagan et al., 2019), Ditto (Li et al.,
2021), and SuPerFed (Hahn et al., 2022) to include this adjustment, resulting in the variants LG-FedAvg-LE,
APFL-LE, FedRep-LE, FedPer-LE, Ditto-LE, and SuPerFed-LE.

The purpose of this comparison is to demonstrate that FLARE-LA’s design offers significant advantages over
these locally enhanced baselines, even when they incorporate additional efforts to improve local performance.
Unlike these approaches, FLARE-LA is explicitly designed to address the trade-off between global knowledge
preservation and localized adaptation, ensuring both robustness and generalization across heterogeneous
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Figure 11: Impact of varying client participation rates on model performance during federated training with the CIFAR10
dataset.
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Figure 12: Impact of varying client participation rates on model performance during federated training with the MNIST dataset.

datasets. The experiments, conducted on multiple datasets, show that FLARE-LA achieves superior
performance without sacrificing the benefits of the collaborative FL training.

5.3.1 Performance Comparison on the Volatility Prediction Dataset

We evaluated the performance of FLARE-LA against locally enhanced baselines LG-FedAvg-LE, Ditto-LE,
APFL-LE, and FedPer-LE using the volatility prediction dataset. The experiments involved 20% of 10,000
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Figure 13: Performance comparison of FLARE-LA against FL baselines enhanced with increasing numbers of local updates after
the FL training procedure on the volatility prediction data set.

trading platforms, with 10 rounds of FL training and 10 local epochs per round. We varied the number of
additional local updates applied to the baselines, increasing from 5 in Fig. 13(a) to 40 in Fig. 13(d).

The results demonstrate a clear and consistent advantage of FLARE-LA over the locally enhanced baselines,
which achieves a significantly lower mean loss and risk metrics compared to all baselines. As shown in
Fig. 13(a), FLARE-LA’s mean loss is an order of magnitude lower than the best-performing baseline, FedPer-
LE, and its risk values, i.e., VaR95% and CVaR95%, are reduced by more than 95%. These results highlight
FLARE-LA’s ability to effectively balance global knowledge and localized adaptation, avoiding the overfitting
and drift that additional local updates can introduce.

As the number of local updates increases from 5 to 40, the baselines show an expected improvement
in personalization, reflected in slightly lower mean losses. However, this comes at a significant cost to
generalization and robustness. For instance, while baselines like APFL-LE and FedPer-LE demonstrate
marginal improvements in their mean loss with more local updates, their VaR95% and CVaR95% values
degrade, indicating a higher risk of poor performance on extreme cases. These results confirm the effectiveness
of FLARE-LA’s two-stage framework. While the locally enhanced baselines attempt to improve personalization
through additional updates, they cannot balance between personalization, robustness, and generalization. The
proposed Taylor-based linearization and probabilistic local adaptation mechanisms in FLARE-LA ensure that
local updates enhance model performance without deviating from the collaborative objectives of federated
training efforts. Therefore, FLARE-LA achieves superior performance in both mean loss and risk metrics,
making it a more reliable and efficient solution for volatility prediction tasks.
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Figure 14: Performance comparison of FLARE-LA against FL baselines enhanced with increasing numbers of local updates after
the FL training procedure on the CIFAR10 dataset.

5.3.2 Performance Comparison on the CIFAR10 and MNIST Datasets

Furthermore, we also evaluated the performance of FLARE-LA against the extra local updating enhanced
baselines using the CIFAR10 and MNIST datasets. Both experiments involved 600 federated training rounds,
each with 5 local epochs, followed by additional local updates for the baselines, ranging from 5 to 50. Across
all settings, FLARE-LA consistently outperformed the baselines in terms of both mean test loss and risk
metrics, i.e., VaR95% and CVaR95%, demonstrating its robustness and generalization capabilities.

As shown in Fig. 14, FLARE-LA achieved a mean test loss of 1.2928 and CVaR95% of 2.6734, remaining
stable across all local update settings on the CIFAR10 dataset. In contrast, the baselines showed slight
improvements in mean test loss with additional local updates but exhibited significant inconsistencies in risk
metrics. Even with 50 updates, FedRep-LE achieved a mean loss of 1.9511 but had a CVaR95% of 4.1711,
highlighting its lack of robustness compared to FLARE-LA.

On the MNIST dataset, as shown in Fig. 15, FLARE-LA demonstrated even greater stability, achieving
a mean test loss of 0.0427 and a CVaR95% of 0.4679, irrespective of the number of local updates applied
to the baselines. By contrast, the baselines showed considerable variability, with FedRep-LE achieving its
best mean test loss of 0.1745 at 50 updates, but its CVaR95% remained high at 1.2898. Similar trends were
observed with LG-FedAvg-LE and Ditto-LE, which failed to consistently balance local personalization and
global generalization, leading to unstable risk metrics.

The results as shown in both Fig. 14 and Fig. 15 demonstrate that FLARE-LA effectively integrates global
and local knowledge, maintaining superior performance without requiring additional local updates. The
stability and robustness of FLARE-LA, as evidenced by consistently low risk metrics across both datasets,
highlight the effectiveness of its Taylor-based linearization and probabilistic local adaptation mechanisms. In
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Figure 15: Performance comparison of FLARE-LA against FL baselines enhanced with increasing numbers of local updates after
the FL training procedure on the MNIST dataset.

contrast, the baselines struggled with significant variability and reduced generalization, even when enhanced
with increasing local updates.

6 Conclusions and Discussions

This work proposed FLARE-LA, a novel framework addressing the challenges of FL in diverse and dynamic
environments, particularly financial markets. By integrating Taylor-based linearization for efficient local
adaptation with a probabilistic mechanism leveraging the Jacobian matrix, FLARE-LA achieves precise
optimization, robust performance, and interpretable uncertainty quantification. Extensive experiments
demonstrated its superiority over state-of-the-art baselines, achieving higher accuracy, faster convergence,
and resilience to label noise and dynamic participation. In financial applications, FLARE-LA excelled in
metrics like mean loss, VaR95%, and CVaR95%, underscoring its suitability for high-stakes, heterogeneous
environments. With its ability to adapt global models to local distributions, handle fragmented datasets,
and ensure computational efficiency, FLARE-LA offers a scalable and versatile solution for FL challenges.
Future directions include extending the framework to domains like healthcare and IoT, integrating advanced
optimization techniques, positioning FLARE-LA as a foundation for advancing FL innovations.
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