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Abstract— In the rapidly advancing ubiquitous intelligence
society, the role of data as a valuable resource has become
paramount. As a result, there is a growing need for the
development of autonomous economic agents (AEAs) capable of
intelligently and autonomously trading data. These AEAs are
responsible for acquiring, processing, and selling data to entities
such as software companies. To ensure optimal profitability,
an intelligent AEA must carefully allocate its portfolio, relying on
accurate return estimation and well-designed models. However,
a significant challenge arises due to the sensitive and confidential
nature of data trading. Each AEA possesses only limited local
information, which may not be sufficient for training a robust and
effective portfolio allocation model. To address this limitation,
we propose a novel data trading market where AEAs exclusively
possess local market information. To overcome the information
constraint, AEAs employ federated learning (FL) that allows
multiple AEAs to jointly train a model capable of generat-
ing promising portfolio allocations for multiple data products.
To account for the dynamic and ever-changing revenue returns,
we introduce an integration of the histogram of oriented gradients
(HoGs) with the discrete wavelet transformation (DWT). This
innovative combination serves to redefine the representation
of local market information to effectively handle the inherent
nonstationarity of revenue patterns associated with data prod-
ucts. Furthermore, we leverage the transform domain of local
model drifts in the global model update process, effectively
reducing the communication burden and significantly improving
training efficiency. Through simulations, we provide compelling
evidence that our proposed schemes deliver superior performance
across multiple evaluation metrics, including test loss, cumulative
return, portfolio risk, and Sharpe ratio.

Index Terms— Autonomous economic agents (AEAs), data
trading, discrete wavelet transformation (DWT), federated learn-
ing (FL), histogram of oriented gradient (HoG), transform
domain.

I. INTRODUCTION

WITH the rapid advancement of artificial intelligence
(AI) techniques and the exponential increase in pro-

cessing power, our society is moving toward a future of
ubiquitous intelligence, where data plays a crucial role in
fueling AI applications [1], [2]. To ensure fair and efficient
utilization of data resources, the establishment of data trading
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markets is imperative [3]. However, the ownership and revenue
generation of data resources are highly dynamic, making it
exceedingly difficult, if not impossible, for owners to make
trading decisions [4]. Therefore, the expectation is that intelli-
gent devices will autonomously process information and make
profitable trading decisions [5], [6].

Self-governing trading technologies are at the forefront
of the future data-centric society [7], [8]. The vision is
for intelligent devices to autonomously process information
and make profitable decisions, ultimately contributing to the
development of a new intelligent economy [6]. Within a
local data trading market, these intelligent devices, known
as autonomous economic agents (AEAs), have the ability
to monetize the data products they possess [9], [10]. AEAs
acquire real-time raw data from data owners by paying a fixed
fee and then process this data to create different types of data
products, which they can sell to various companies to support
their applications. The revenue generated by AEAs is based
on the quality and utility of the data products they offer to
these companies.

AEAs play a crucial role as intelligent and autonomous data
suppliers for model companies, enabling the development of
advanced applications. However, the research on data trading
with AEAs is still in its early stages, presenting significant
challenges. These challenges include defining the data trading
market and, more importantly, effectively training AEAs to
make intelligent and autonomous trading decisions. One chal-
lenge is the evaluation of data product revenue, considering
their varying utilities across different applications and over
time. This requires a robust approach to accurately assess the
value of data products. Confidentiality is another concern in
data trading. An individual AEA may have limited historical
information to evaluate data, which is insufficient for training
a reliable portfolio allocation model. Furthermore, real-world
data market information is often nonstationary, with a low
signal-to-noise ratio (SNR), due to dynamic demand for data
products from various companies.

This article aims to address the aforementioned challenges
and makes the following contributions. First, we propose an
intelligent economic framework that integrates many AEAs
to automatically fetch and process local data from individual
owners and gain profit by selling the generated data products
to others. Second, we design a learning objective for each AEA
to train it to make promising trading decisions intelligently and
autonomously in real-time. The raw observation of the market
information by each AEA is its own trading experience in a
specific region with possibly a different time scale. However,
the knowledge of its own trading experiences may not be
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sufficient to train the model that can perform data trading intel-
ligently and autonomously. To achieve this goal, we design an
efficient method to generate a learning objective for intelligent
and autonomous data trading which can readily be adapted
into highly nonstationary revenue data. Third, we introduce
federated learning (FL) to provide a suitable framework for
portfolio allocation model training. With the FL framework,
AEAs can jointly train a promising model without revealing
private trading information. To tackle the challenges that the
market information from different AEAs may have a low SNR,
high redundancy, and possibly strong feature correlation [11],
we integrate the histogram of oriented gradients (HoGs) and
discrete wavelet transformation (DWT) into the federated
stochastic variance reduced gradient (FSVRG) method. The
developed techniques are robust in handling and effective
in extracting critical features of the nonstationary low-SNR
revenue data. Furthermore, we apply the transform domain of
the local model drifts in global model update at each federated
training round which can greatly reduce the communication
burden among AEAs and improve training efficiency.

The rest of this article is organized as follows. Section II
presents the background and related works. Section III
describes the objective design for AEA. Then, we introduce the
federated optimization framework in Section IV. To improve
the efficiency of the federated training procedure among
AEAs, transform domain, and feature extraction-enabled
FSVRG methods are proposed in Section V. Simulation results
are presented in Section VI to illustrate the performance with
different metrics, followed by concluding remarks and further
research issues in Section VII.

II. BACKGROUND AND RELATED WORKS

The recent literature has underscored the importance of
creating a data trading market, which stems from the notion
of granting individuals ownership rights over their personal
data resources [12], [13]. This ownership enables individuals
to monetize their personal data, fostering a more equitable
data ecosystem [14], [15]. For instance, autonomous vehicles
can autonomously trade their sensor data based on the owner’s
interests, eliminating the need for frequent human interactions
in the trading process [16]. The effectiveness of data trad-
ing relies on providing owners with sufficient incentives to
exercise their ownership rights while ensuring a simple and
streamlined trading procedure.

However, the dynamic nature of revenue returns in data
trading poses significant challenges, making trading decisions
complex and intricate [17], [18]. To address this challenge,
we propose the creation of a data trading market facilitated by
AEAs. These AEAs assume the responsibility of handling the
complexities associated with exercising ownership rights over
individual data resources. In this envisioned market, individual
owners no longer need to directly contend with the highly
dynamic revenue returns. Instead, the risks and uncertainties
are assumed by the AEAs, which pay a constant fee to the
individual owners. By shifting the burden of risk onto the
AEAs and providing convenience and certainty to the owners,
our proposed data trading market encourages and empowers
owners to exercise their ownership rights more willingly. This

framework promotes greater data liquidity, and ultimately,
a more equitable and efficient data economy [19].

Our work stands out from the existing research that applied
machine learning to financial applications with two major
differences. First, most literature in this field typically analyzes
the entire time span, combining training and testing data,
where the financial data is nonconfidential [18], [20]. In con-
trast, our work involves local datasets derived from the private
experiences of AEAs, making the data confidential. In addi-
tion, the experiences for each data product are segmented
as AEAs engage in trading activities across different regions
and time periods. This unique characteristic necessitates a
different approach to handling and analyzing the data. Second,
the existing machine-learning applications in the financial
domain primarily focus on forecasting future returns, volumes,
volatilities, and other essential quantities [21], [22]. However,
our work diverges from this trend as we train AEAs based
on separate local datasets to effectively generate portfolio
allocations for multiple data products. Rather than solely
focusing on forecasting specific financial metrics, our objective
is to equip AEAs with the capability to automatically identify
near-optimal portfolio allocations with multistep-ahead predic-
tions. This approach broadens the scope of machine-learning
applications in the financial domain, addressing the specific
challenges and requirements of data trading and portfolio
allocation in a dynamic and confidential environment.

In the FL training framework, individual machines per-
form multiple local model updates before communicating
with the central server [23] to address communication cost
and delay [24]. The popular federated averaging (FedAvg)
algorithm, introduced by [25], achieves good empirical results
by averaging local SGD updates assuming identically dis-
tributed local datasets. This approach relies on the assumption
that the local gradient provides an unbiased estimate of the
global gradient. Data heterogeneity significantly degrades the
performance of FedAvg since the local stochastic gradient can
no longer be considered an unbiased estimator of the global
gradient in the presence of local data heterogeneity [26].

To address the challenges posed by data heterogeneity
in FL, one approach is to utilize the FedProx algorithm [27],
which limits the distance between the local model and the
global model by adding a proximal term to the local objective
functions. However, tuning the hyperparameter controlling the
proximal term is crucial for achieving good performance.
Another promising direction to tackle data heterogeneity in FL
is the application of variance reduction techniques [28]. The
SCAFFOLD algorithm proposed by [29] introduces control
variates for the server and individual machines where the local
updates are corrected by incorporating the difference between
these variates. A more stable approach is FSVRG [30], derived
from the stochastic variance reduced gradient (SVRG) [31],
[32], which can be seen as an improved version of the
distributed optimization algorithm DANE [33].

In our work, we develop a framework for a data trad-
ing market and enable intelligent and autonomous data
trading among AEAs. Our federated training objective con-
siders optimal trading decisions for multiple data products.
To improve the training process, we integrate HoGs and
DWT into the FSVRG method, known as HoG-enabled
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TABLE I
PROS AND CONS OF FL ALGORITHMS

FSVRG (HFSVRG), and transform domain and HoG-wavelet
enabled FSVRG (TDHW-FSVRG), where TDHW-FSVRG
also employ transform-domain analysis of local model drifts
during global model updates, reducing communication bur-
dens and enhancing training efficiency among AEAs. The
advantages and disadvantages of these FL algorithms are
summarized in Table I.

III. OBJECTIVE IN DESIGN LOCAL DATASETS FOR AEAS

In this section, we begin by explaining the local data trading
market with AEAs. We then outline the two main goals
that AEAs aim to achieve: maximizing the return rate and
controlling the risk of revenue returns.

A. Local Data Trading Market With AEAs
The AEA interacts with individual data owners by offering

them a fixed fee in exchange for specific types and quantities
of information. It then processes this data to create a variety of
data products. These data products are traded with companies
to enhance various applications. The pricing of these data
products is determined through collaboration between the
AEA and the companies, considering the value they bring to
the services. To meet the dynamic market demands, the AEA
must make intelligent decisions regarding data acquisition and
processing, aiming to maximize long-term profitability.

In the data trading market, we assume that there are K
AEAs and n different types of data products being traded.
While the data product types are the same for all AEAs,
each AEA has its unique trading experiences. The trading
experience of the kth AEA encompasses the revenue returns
of n data products over tk time slots. We can represent the
private sequential revenue returns of multiple data products
for the kth AEA using the set {βk

i, j }i=1,...,n; j=1,...,tk . Here,
βk

i, j denotes the revenue return of data product i in
the kth AEA at the j th time slot.

B. Rate of Return in Design of Local Datasets
The main target of AEAs is to achieve a higher rate of

returns, which represents the increasing rate of the revenue
return brought by trading the corresponding data products.
We define ai j as the ratio of the revenue return of data
product i at time slot j and that of time slot j − 1 as
ai j = βk

i, j/β
k
i, j−1 for i = 1, 2, . . . , n and j = 1, 2, . . . , tk .

The rate of returns is computed from the recorded trading
experience of the kth AEA. We use bi j to denote the rate of
return of data product i at time slot j , which is evaluated by

bi j =

(
βk

i, j − βk
i, j−1

)
βk

i, j−1
= ai j − 1 (1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , tk .

The kth AEA generates the rate of return data for n different
data products based on the observed price data. The trading
experience of the kth AEA encompasses n types of data
products over tk time slots, resulting in tk rate of returns
for each data product. To generate the samples used in the
local training procedure, the kth AEA follows a moving
window scheme along its observed time slots. Two windows,
denoted as {X k

p}p=1,...,Pk and {Bk
p}p=1,...,Pk , are designed for

this purpose. Each sample X k
p captures the rate of return data

for n data products over l time slots, resulting in a window size
of n × l. Similarly, the window used to generate {Bk

p}p=1,...,Pk

has a size of n × m, incorporating future rate of return data for
m time slots of n data products to guide portfolio prediction.
A gap denoted by ν is introduced between these two moving
windows to account for information from the immediate future
that cannot be used for investment decisions. The number of
local samples for the kth AEA can be calculated as Pk =

tk−l−m − ν + 1.
During the trading period of the kth AEA, which lasts for

tk time slots, the demand for different data products varies
greatly. The kth AEA must adjust its resource fetching and
processing strategy frequently based on recent revenue returns
to meet the changing demand. Each trading decision has a
validity period of m to ensure a stable supply of data products
for a certain time, supporting application development. Within
the validity period of the pth decision, the rates of return
for n data products are represented by the block matrix
Bk

p ∈ Rn×m . The kth AEA’s local dataset, derived from its
trading experience, is denoted by {(X k

p, Bk
p)}p=1,...,Pk . For each

sample pair, the kth AEA makes trading decisions based on
the rate of return features observed in X k

p. The goal of these
decisions is to maximize the revenue return over m time slots
and n data products ahead of the observation, utilizing the rate
of returns provided in Bk

p.
In the pth trading decision-making procedure of the

kth AEA, we denote the portfolio value over n data products
as α0 at the starting time of Bk

p, that is, the initial budget to
invest in the period of m time slots. The kth AEA maintains
a portfolio allocation weight variables θ p,k ∈ Rn for Bk

p to
allocate the initial investment budget α0 into n data products
and αi

0 is the amount of budget invested into the data product i
at the beginning of the first time slot where αi

0 = α0θ
i
p,k ,

i = 1, 2, . . . , n. At the end of time slot j−1, the total value of
this portfolio is α j−1 =

∑n
i=1 αi

j−1. The value of data product i
at the end of time slot j is updated as αi

j = α j−1ai jθ
i
p,k . With

consistency, we set ai j = 0 when there is no budget invested
into data product i .

At the beginning of each time slot, the kth AEA calculates
the current total portfolio value, which represents the revenue
rate of each data product. This total value serves as the
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investment budget for the next time slot, determining the
allocation of resources for fetching and processing. At the end
of time slot ( j − 1), the kth AEA evaluates the total portfolio
value, denoted as α j−1, and reallocates this value across n
data products using the portfolio allocation weight θ p,k. The
investment in each data product at the beginning of time slot j
is derived from the total portfolio value α j−1 obtained at the
end of time slot ( j − 1). The overall portfolio value at the
end of each time slot changes based on the varying rate of
returns. The total value of the portfolio at the end of time
slot j , denoted as α j , accounts for the reinvestment of the
total portfolio value, incorporating any gains or losses from
previous periods, which can be obtained by

α j = α0

j∏
i=1

(
1+ bT

i θ p,k
)
, for j = 1, 2, . . . , m (2)

where bi is the i th column of Bk
p. We define the weighted

mean of the rate of returns over the n data products in time
slot j as r j = bT

j θ p,k for j = 1, 2, . . . , m. When ri ≪ 1,
i = 1, 2, . . . , j , and the number of time slots j is small, the
total value of the portfolio at the end of time slot j , as shown
in (2) can be approximated by

α j ≈ α0

(
1+

j∑
i=1

ri

)
, for j = 1, 2, . . . , m. (3)

Obviously, with the input sample X k
p, the first objective of

the kth AEA is to maximize the cumulative portfolio value
over Bk

p, that is, the cumulative portfolio value at the last
time slot αm . The objective can be transformed to maximize
the average of the weighted mean of the rate of returns for
n data products over m time slots, that is, r̄ , which can be
evaluated by r̄ = µT θ p,k where µ denotes the average rate of
return vector over m time slots defined as

µ =
1
m

m∑
j=1

b j . (4)

The cumulative portfolio value at the mth time slot with
respect to Bk

p can be evaluated by αm ≈ α0(1 + mr̄).
To maximize αm can be transformed to maximize r̄ since the
initial investment budget α0 can be regarded as a constant.

C. Risk of Revenue Return in Design of the Local Dataset

In data trading, risk is a significant factor alongside return.
The fluctuation in revenue returns represents the risk asso-
ciated with investing in specific data products. Consequently,
when AEAs seek to determine the optimal portfolio allocation
weights, they must strike a balance between maximizing the
final portfolio value and minimizing investment risk.

The inherent risk of each data product can be described as
the variance of the rate of returns for each data product over
m time slots, that is, the variation of the rate of return b j for
j = 1, 2, . . . , m from the average rate of return vector µ. The
investment risk refers to the variation of the weighted mean
rate of returns r j for j = 1, 2, . . . , m from their average r̄
over m time slots. We use Euclidean distance to measure the

TABLE II
SUMMARY OF NOTATIONS IN THE SYSTEM

MODEL AND PERFORMANCE METRICS

overall investment risk
m∑

j=1

(r j − r̄)2
= ∥d∥2

2 (5)

where d j = (b j − µ)T θ p,k is the j th element in the
variation vector d. It is obvious that the risk of the rate
of return is directly connected with the matrix defined as
[(b1 − µ), . . . , (bm − µ)]. Then, the investment risk can be
evaluated by a matrix

C =
1
m

m∑
j=1

(b j − µ)(b j − µ)T (6)

where the element ckl is related to the covariance of the rate
of return for data product k and data product l over m time
slots.

IV. FEDERATED OPTIMIZATION FRAMEWORK

Due to the privacy issue of the application development
information in companies, the local trading experience data
from AEAs cannot be gathered together to train one global
model. Therefore, we propose a federated optimization frame-
work to enable individual AEAs to collaboratively train their
models which will be more robust compared with their local
optimized solution. In Section IV-A, we formulate the local
model to predict the portfolio allocation vector and design the
supervised label for each sample in detail in Section IV-B.
Furthermore, we also introduce the local and global training
objectives in Section IV-C. All the notations are summarized
in Table II.

A. Local Model Design for AEAs
To generate more promising portfolio allocations, AEAs

collaborate with each other to train their models. Each AEA
trains its own local model using its private dataset, derived
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Fig. 1. FL architecture in data trading markets.

from its individual trading experience, and it can share knowl-
edge and learn from other AEAs, as depicted in Fig. 1. Given
the current observations of the rate of returns for the n data
products in the market, denoted as X k

p, the decision made by
the kth AEA is represented by the portfolio allocation vector
θ̃ p,k ∈ Rn . In other words, the model of the kth AEA should be
capable of outputting the portfolio allocation vector to achieve
promising revenue returns with respect to Bk

p based on the
observation X k

p.
The model design for each AEA takes into account two

properties of the portfolio allocation vector, that is, 0 ≤
θ̃ i

p,k ≤ 1 for i = 1, 2, . . . , n, and
∑n

i=1 θ̃ i
p,k = 1. The model

parameters are decomposed into n submodels, that is, {wi }
n
i=1.

We vectorize the parameters with respect to the kth AEA
into one-parameter vector ŵk, where ŵk = [w

kT
1 , . . . ,wkT

n ]
T ,

where wk
i represents a submodel used to predict the i th

component in the optimal portfolio allocation vector θ̃ p,k,
for p = 1, 2, . . . , Pk . The portfolio allocation vector θ̃ p,k is
formulated as follows:

θ̃ p,k =

{
ewkT

i xk
p∑n

j=1 ewkT
j xk

p

}
i=1,2,...,n

(7)

where xk
p is the vectorization of X k

p.

B. Optimal Label Design
To perform data trading intelligently and autonomously

based on a good model, we need to build up training targets as
the optimal portfolio allocations with the multitime slots ahead
of data. The optimal portfolio allocation weights for m time
slots in Bk

p with sample X k
p is denoted by θ∗p,k. The decision

made by AEA can be regarded as a prediction of θ∗p,k. The
training procedure tries to minimize the difference between the
decision made by AEA, that is, θ̃ p,k and the optimal portfolio
allocation θ∗p,k with respect to Bk

p. In the supervised learning
perspective, the corresponding label can be mapped into the
optimal portfolio allocation weights θ∗p,k. Therefore, the Pk
samples in the local dataset of the kth AEA can be redesigned
as {(X k

p, θ
∗

p,k)}p=1,...,Pk .

For the given observation of the rate of return block X k
p,

the designed label, that is, the optimal portfolio allocation θ∗p,k
for the upcoming market scenario Bk

p, should take a tradeoff
between the portfolio return and the risk. For each sample
pair in the local dataset, we integrate portfolio optimization
to design the learning objective for portfolio allocations.
We apply the mean-variance minimization based on Bk

p to
design the training label for X k

p. The learning objective of the
kth AEA can be designed by integrating maximizing the total
portfolio value and minimizing the investment risk with all of
the current budget invested into n data products. We define
A = 1T and b = [1], generating the learning label for
observation X k

p is formulated as the following constrained
optimization problem:

min
θ p,k

1
2
θT

p,kCθ p,k − λθT
p,kµ

s.t. Aθ p,k = b (8)

where λ is a positive parameter indicating the tradeoff between
risk and revenue return. For each new market observation pair,
the AEA needs to solve the above question to generate the
corresponding label which is used to guide the local training of
the model. It is critical to provide a more economical approach
to generate the label for the given market observation data X k

p.
As designed in (6), C is symmetric and positive semidef-

inite. Because the constraints are linear equations, it gives
us the idea that we can search for the optimal portfolio
allocation θ∗p,k from all the solutions defined by the constraint
equations. We can transform the portfolio allocation vector
θ p,k to another vector variable ϕ̂ p,k ∈ Rn×1 and then we can
easily reduce several elements in ϕ̂ p,k and only focus on a
variable ϕ p,k ∈ R(n−1)×1 with smaller dimensions. To get the
solutions of Aθ p,k = b, we need to get the Moore–Penrose
pseudo-inverse of A which is denoted by

A+ = AT (AAT )−1. (9)

All the feasible points defined by the linear equality constraint
can be characterized by

θ p,k = A+b+ (I n − A+A)ϕ̂ p,k. (10)

Then, based on the SVD of A = U6V T , we can continue
to transform ϕ̂ p,k to a lower-dimensional variable ϕ p,k, where
6 =

[
S 0

]
and S = diag{σ1}. The pseudo-inverse A+ can be

denoted by

A+ = V6T (66T )−1U T
= V

[
S−1

0

]
U T .

Thus,

In − A+A = In − V
[

1 0
0 0

]
V T
=

n∑
i=2

viv
T
i = Vr V T

r

where Vr = [v2, v3, . . . , vn]. All feasible regions defined by
the linear equality constraints becomes

θ p,k = A+b+ V r V T
r ϕ̂ p,k = θ s + V rϕ p,k (11)

where we define ϕ p,k = V T
r ϕ̂ p,k and θ s = A+b. We put

θ p,k = θ s + V rϕ p,k back to the original objective function,
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the problem becomes

min
1
2
ϕT

p,k Ĥϕ p,k + ϕT
p,k p̂+ k̂

where Ĥ = V T
r CVr , p̂ = V T

r Cθs − λV T
r µ, and k̂ =

(1/2)θT
s Cθs − λµT θs. Because Vr ∈ Rn×(n−1), thus Ĥ ∈

R(n−1)×(n−1), we shrink the corresponding Hessian matrix
after transforming θ p,k to ϕ p,k. The problem becomes an
unconstrained problem with respect to ϕ p,k, to get the optimal
solution, we need to compute the gradient and set it to 0, that
is, Ĥϕ p,k+ p̂ = 0. If C is P.D., then Ĥ is invertible, then the
label for sample X k

p is designed as the unique global solution,
that is,

θ∗p,k = θ s + V rϕ
∗

p,k = A+b+ V rϕ
∗

p,k (12)

where ϕ∗p,k = −Ĥ−1 p̂.

C. Local and Global Learning Objectives

Based on the designed optimal label for sample X k
p in the

kth AEA as θ∗p,k shown in (12), the local model will be directly
trained to generate promising portfolio allocation weights for
the current budget to invest in the data resource collection
and processing for the next time slot supply to companies.
From the local model design, the predicted portfolio allocation
vector is defined by θ̃ p,k as shown in (7). We use least-square
to formulate the local objective function for the kth AEA with
Pk local samples which are defined as

fk(w) =
1
Pk

Pk∑
p=1

∥∥θ̃ p,k − θ∗p,k
∥∥2

2
. (13)

With the participation of K AEAs in the federated opti-
mization framework, the initialized model parameter w0 is
distributed to the kth AEA for k = 1, 2, . . . , K at t = 0 to be
its initialed local model ŵk. Then, each AEA trains its own
local model based on the local dataset within a limited time.
The local training procedure tunes the local model parameters
by minimizing the local objective function in (13) for several
updating steps following the guidance of some optimizers.
After that, AEAs will transmit their local model parameters
and participate in the model parameter aggregation. The aggre-
gated model will be redistributed to all AEAs to perform the
local training in the next round. The final goal of federated
optimization is to obtain a global model that takes advantage
of all the local knowledge and can outperform locally trained
models. The final trained global model targets to minimize the
global objective function over K AEAs formulated as

f (w) =

K∑
k=1

Pk

P
fk(ŵk), for P =

K∑
k=1

Pk . (14)

There are K subobjects in the overall objective function f (w).
The intuitive idea to minimize f (w) is to minimize each
subobjective function fk(ŵk), for k = 1, 2, . . . , K , and then
combine the K separated trained models by averaging to be
the solution for the federated optimization problem.

V. FEATURE EXTRACTION AND TRANSFORM-DOMAIN
ENABLED FL

To address the challenge of a low SNR resulting from the
high randomness of the data market and achieve rapid conver-
gence, we propose two novel approaches. First, we introduce
the HoG to redefine the representations of observed samples
by capturing the changes in the rate of returns across different
data products over adjacent time slots. This leads to the devel-
opment of the HFSVRG algorithm. Second, we enhance the
representation of the rate of returns by integrating HoG with
wavelet transformation and incorporating transform-domain
techniques in the global model update. This results in the
TDHW-FSVRG algorithm, which significantly improves the
training efficiency. These techniques enable us to effectively
handle low SNR data and expedite the convergence process
in the dynamic data trading market. The notations in the
algorithms design are summarized in Table III.

A. HoG-Enabled FSVRG

The gradient information can be regarded as the learned
knowledge directly from the corresponding data samples
which guides how to tune the model parameters to minimize
the objective function. In the local training procedure of the
kth AEA with the observed pth local sample X k

p, the local
model ŵk is trained to minimize the difference between the
portfolio allocation vector θ̃ p and θ p. The portfolio allocation
vector θ̃ p is decided by the kth AEA which can be regarded
as the estimation of the optimal portfolio allocation vector by
the local model ŵk. The optimal portfolio allocation vector
θ p is an optimal solution to the formulated objective in (8)
considering the rate of return block Bk

p ahead of X k
p. As shown

in the local objective function (13), the difference between
the estimation θ̃ p and the optimal solution θ p is formulated
by ||θ̃ p − θ p||

2
2. We apply the gradient information to tune

the model parameters ŵk to achieve a promising portfolio
estimation θ̃ p.

The local gradient is highly depended on the market
data X k

p. To make the training procedure more efficient,
we redesign much more meaningful representations of the
market data by extracting return rate changes along the time
line for each data product and return rate changes among dif-
ferent data products at the same time slot. The changes among
the rate of returns can be quantified by a linear difference
equation with given kernel vectors, κx = [κ

1
x , . . . , κ N1

x ] and
κ y = [κ

1
y , . . . , κ

N2
y ]

T , respectively, where N1 and N2 represent
the size of the kernel vectors. We use xi to denote the rate of
return of data product i over l time slots, and y j to the rate of
return of n data products at the j th time slot in sample X p.
The rate of return changes for data product i over l time slots
is obtained by

d̃ i
x = xi ⊗ κx =

{
N1∑

k=1

κk
x x j−k+1

i

}
j=1,...,l

(15)

where xi is the extended row vector X k
p(i, :), when the index

is smaller than 1 or larger than l, the values are set to 0. The
rate of return changes for n data products at the j th time slot
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is obtained by

d̃ j
y = y j ⊗ κ y =

{
N2∑

k=1

hk
y yi−k+1

j

}T

i=1,...,n

(16)

where y j could be regarded as the extended column vector of
X k

p(:, j), when the index is smaller than 1 or larger than n,
the values are set to 0.

According to the formulation in (15) and (16), the computa-
tion results show that d̃ i

x ∈ R1×(l+N1−1) and d̃ j
y ∈ R(n+N2−1)×1.

However, the rate of return changes among n different data
products over l time slots for the given sample X k

p is our target.
Thus, we define the beginning index sx = ⌊((N1 − 1)/2)⌋

for {d̃ i
x}i=1,...,n and sy = ⌊((N2 − 1)/2)⌋ for {d̃ j

y} j=1,...,l ,
respectively. Then, the oriented gradient with respect to the
rate of returns in X k

p is defined as{
g̃ i, j =

[
d̃ i

x(sx + i)
d̃ j

y(sy + j)

]}
i=1,...,l; j=1,...,n.

(17)

There are n × l oriented gradients recorded for sample X k
p.

Because g̃ i, j consists of first-order changes of the rate of
return along different data products at one time slot and
one data product along different time slots, it captures the
local information of a patch in terms of the intensity of the
changes and changing directions. These properties can be
found by computing the magnitude and angle of g̃ i, j denoted
by || g̃ i, j ||2 and ρi, j , for i = 1, 2, . . . , n, j = 1, 2, . . . , l,
respectively. Since we take the sign of local gradient g̃ i, j into
account, the angle ρi, j is in the range between −π and π .

To summarize the intensive changes in the rate of returns
of n data products over l time slots, we divide the n × l
oriented gradients into a set of blocks. Each block represents
the rate of return changing positions. We define the size of
each block as dx × dy which means each block will focus on
the rate of return changes within the local area covering dy
data products over dx time slots. To divide X k

p into multiple
blocks, integer-valued parameters sx and sy known as strides
are defined to indicate the number of dimensions moving along
the time slots and different data products, respectively. When
moving along the l time slots, the number of blocks generated
can be denoted by ⌈((l − dx )/sx )⌉ + 1. Similarly, there are
⌈((n − dy)/sy)⌉ + 1 blocks when dividing X k

p along the n
data products dimension. Thus, there are (⌈((l − dx )/sx )⌉ +

1) × (⌈((n − dy)/sy)⌉ + 1) blocks in total. It is important
to control the stride to ensure that adjacent blocks have
appropriate overlaps. These overlaps can enable each HoG
sample feature to contain the changing information among
different data products over different time slots in multiple
blocks which can make the HoG features much more robust
to small local changes. Thus, when part of the block covers
the area outside of X k

p, we simply use the nearby area to do
the patch.

To generate HoG features in each block, we summarize the
oriented gradients information located in the area covered by
the block. We first evenly separate the oriented angle range
from −π to π into � bins and the value in each bin is
initialized as 0. Then, we check the angle ρi, j of the oriented
gradients within the covering area of the block and add the
magnitude || g̃ i, j ||2 to the bin value where ρi, j within its

TABLE III
SUMMARY OF NOTATIONS IN ALGORITHM DESIGN

cover range. Thus, the HoG feature generated for each block
can be represented by a �-dimensional feature vector whose
i th component is the value contained in the i th bin.

Algorithm 1 HFSVRG
1: Initialize global model parameters ŵ0

2: for t ← 0 to T do
3: Randomly sample a set of AEAs Ct

4: for k ∈ Ct in parallel do
5: { ḡk, Ŝk, Gk} ← LGC-HFSVRG (k, ŵ t )
6: end for
7: |S| =

∑
k∈Ct
|Sk|

8: ḡ t
=

1
|S|
∑

k∈Ct
ḡk

9: for k ∈ Ct in parallel do
10: △ŵk ← LU-HFSVRG ( ḡ t , ŵ t , Ŝk, Gk)
11: end for
12: ŵ t+1

← ŵ t
− ηglobal

∑
k∈Ct
△ŵk

13: end for

The FL procedure is shown in Algorithm 1 in detail. At the
beginning of the t th training round, the global model param-
eter w t is distributed into the participated AEAs in set Ct .
Then, in the parallel local training procedure, each AEA in Ct
conducts Procedure 1 to collect the local gradient information.
In Procedure 1, we randomly select a local sample set Sk and
conduct HoG feature extraction over sample X k

p ∈ Sk in the
above procedures and stack the � HoG features of each block
from sample X k

p into one vector x̂k
p as shown in Line 4 in

Procedure 1.
The gradient of the i th submodel wk

i over x̂k
p, that is,

▽wk
i

fk(ŵk, x̂k
p), is computed as

▽wk
i

fk(ŵk, x̂k
p) = ▽wk

i
||θ̃ p − θ p||

2
2 = 2(θ̃ p − θ p)▽wk

i
θ̃ p.
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Procedure 1 Local-Gradient-Collection-HFSVRG (k, ŵ t )
1: Randomly select sample set Sk
2: Initialize ḡk = 0, Ŝk ← ∅ and Gk ← ∅
3: for X k

p ∈ Sk do
4: x̂k

p ← HoG(X k
p)

5: Evaluate θ̃ p by ŵ t and x̂k
p in Eq. (7)

6: gk
i, p = 2(θ̃ i

p − θ i
p)(θ̃

i
p − (θ̃ i

p)
2)x̂k

p for i = 1, · · · , n
7: ĝk, p = [gkT

1, p, · · · , gkT
n, p]

T

8: ḡk ← ḡk + ĝk, p, Ŝk ← Ŝk ∪ x̂k
p, Gk ← Gk ∪ ĝk, p

9: end for
10: ḡk ←

ḡk
|Sk|

11: Return { ḡk, Ŝk, Gk}

From the formulation of the resource fetching decision θ̃ p
in (7), we can obtain that

▽wk
i
θ̃ p =

(∑n
j=1 ewkT

j x̂k
p − ewkT

i x̂k
p

)
ewkT

i x̂k
p(∑n

j=1 ewkT
j x̂k

p

)2 x̂k
p. (18)

We define gk
i, p = ▽wk

i
fk(ŵk, x̂k

p) for notation convenience as
shown in Line 6 in Procedure 1. We use ĝk, p to represent
the gradient of the local objective fk(ŵk) over sample x̂k

p
with the vectorized model parameter ŵk, which is constructed
by stacking all gradients with respect to submodels into one
vector, that is, ĝk, p = [gkT

1, p, . . . , gkT
n, p]

T as shown in Line 7
in Procedure 1.

To introduce the information from other AEAs into the
local training of the kth AEA, we need to combine the local
gradients together since they represent the local knowledge
learned in the current round. In the local training procedure
of the kth AEA, we randomly selected a subset Sk to evaluate
the averaged gradient with respect to model parameter vector
ŵk denoted by ḡk as shown in Line 10 in Procedure 1. The
kth AEA, where k ∈ Ct , transmits ḡk, Ŝk, Gk to the central
server, where Ŝk, Gk collect the HoG features of the selected
local samples and the corresponding gradients with respect to
the w t , respectively. The central server can obtain the averaged
global gradient at round t denoted by ḡ t .

Then, ḡ t , ŵ t , Ŝk, Gk are distributed to the kth AEAs, where
k ∈ Ct , for the local updating in Procedure 2. In Procedure 2,
the kth AEA performs |Sk| fast stochastic updates. In each
stochastic update, we apply local step size ηlocal to update ŵk.
To ensure convergence and introduce the information from
other AEAs to design the local update direction, we redesign
the local objective function as

f̃ k
(
ŵk
)
= fk

(
ŵk
)
+
(
ḡ t
− ĝ t

k
)T

ŵk +
µ̂

2
||ŵk − ŵ t

||
2

where ĝ t
k denotes the gradient with respect to the current ŵ t

pass the local samples in the kth AEA. In the local update in
the kth AEA, for the selected sample x̂k

p, guided by the new
local objective, the local gradient is

▽ f̃ k
(
ŵ∗, x̂k

p
)
= ĝ t

k, p − ĝk, p + ḡ t
+ µ̂

(
ŵk − ŵ t)

and the local model update is as shown in Line 6 in
Procedure 2. In each updating, we only need to compute

Procedure 2 Local-Updating-HFSVRG ( ḡ t , ŵ t , Ŝk, Gk)
1: ŵk ← ŵ t

2: for x̂k
p ∈ Ŝk, ĝk, p ∈ Gk do

3: Evaluate θ̃ p by ŵk and x̂k
p in Eq. (7)

4: gk
i, p = 2(θ̃ i

p − θ i
p)(θ̃

i
p − (θ̃ i

p)
2)x̂k

p for i = 1, · · · , n
5: ĝ t

k, p = [gkT
1, p, · · · , gkT

n, p]
T

6: ŵk = ŵk − ηlocal[ ĝ
t
k, p − ĝk, p + ḡ t

+ µ̂(ŵk − ŵ t)]

7: end for
8: Return △ŵk ← ŵ t

− ŵk

one gradient corresponding to the sample selected, that is,
ĝ t

k, p, since ĝ t
k, p and ḡ t already exist. After the stochastic

local updates in the participated AEAs, the difference vectors
{△ŵk}k∈Ct among the updated local model parameters and
ŵ t are transmitted to the central server to obtain the updated
global model as shown in Line 12 in Algorithm 1.

B. Transform Domain and HoG-Wavelet-Enabled FSVRG

In the training procedure of the kth AEA, the rate of return
data {X k

p}p=1,...,Pk directly impact the gradient information.
However, the rate of return data is highly dynamic with
low SNR properties which leads to difficult training of the
local models based on the gradient information. To tackle this
challenge, we redesign the representation of each data sample
by combining wavelet transform and HoG feature extraction
as shown in Algorithm 2.

The wavelet transformation matrix is a combination of
low-pass and high-pass filter matrices to achieve decomposi-
tion at different levels. The low-pass filter conducts averaging
of local features while its mirror counterpart high-pass filter
produces details. The coefficients of the low-pass filter are
denoted by ι = [ι1, . . . , ιu] which is fully and uniquely
specified by the choice of the wavelet basis. The coefficients
of the quadrature mirror high-pass filter are denoted by h =
[h1, . . . , hu] where hi = (−1)τ−i ιu−s−i for arbitrary fixed
integers τ and s.

We define L and H as filter operators that perform low-pass
and high-pass filtering using quadrature mirror filters ι and h,
respectively. This pair of filter operators is the basic block to
construct the wavelet transformation matrix. For the wavelet
transform with J decomposition levels, the transformation
matrix M J is generated by a set of filter operator pairs, that
is, {(L j , H j )} j=1,...,J . The construction rule for the wavelet
transformation matrix M J with J decomposition levels is to
cascade the inner product with the previous low-pass filter
operator L j by the current filter matrix [L j+1 H j+1], that
is, [L j+1 H j+1]

T L j ∈ R2n×n . To construct the submatrices
[L j , H j ]

T for j = 1, 2, . . . , J , we define the dilations of
low-pass and high-pass filters by inserting j−1 zeros between
every two neighboring filter coefficients and we denote the
coefficients of the dilated low-pass and high-pass filters as
ι[ j−1] and h[ j−1], respectively. L j and H j are filter operators
using filters (ι[ j−1]/

√
2) and (h[ j−1]/

√
2), respectively.

Since sample X k
p contains the rate of returns of n different

data products over l time slots, the left and right wavelet
transformation matrices should coincide with the number of
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data products and the time slots, respectively. We define the
size of the filter matrices L and H the same as n × n
according to the number of data products to define the transfor-
mation matrix M J

n ∈ R(J+1)n×n which contains J + 1 stacked
submatrices of size n × n. Similarly, we define the size of the
filter matrices L and H the same as l × l according to the
number of time slots for each data product in X k

p to define
the transformation matrix M J

l ∈ R(J+1)l×l which contains
J +1 stacked submatrices of size l × l. The wavelet transfor-
mation of X k

p with J decomposition levels can be conducted
as D J

p = M J
n X k

p M J T
l . Soft thresholding is applied to the

components of the wavelet coefficients D J
p which contain one

approximation part and several detailed parts. It shrinks the
wavelet coefficients according to a prescribed threshold that is
determined by the noise variance of the features in sample X k

p.
To choose an appropriate value for threshold δp for de-noising
sample X k

p, we evaluate δp by δp = (2 log n · l)1/2σ , where
σ 2 is the estimate noise variance. We denote the denoised
sample for X k

p by X̃ k
p, and the denoising problem with

J wavelet decomposition levels can be formulated as the
L1–L2 minimization problem

min
D̃ J

p

1
2

∥∥ D̃ J
p − D J

p
∥∥2

F
+ δp

∥∥ D̃ J
p
∥∥

1

s.t. D̃ J
p = M J

n X̃ k
p M J T

l . (19)

The closed-form solution D̃ J∗
p is the wavelet coefficients of

the denoised sample X̃ p which is evaluated by

D̃ J∗
p = sign

(
D J

p
)
∗max

{∥∥D J
p
∥∥− δp, 0

}
. (20)

Then, we need to reconstruct the denoised sample X̃ k
p

from its soft-shrinking wavelet coefficients D̃ J∗
p . To ensure

the reconstruction can be done by wavelet transform matrices
with J decomposition level, intermediate matrices need to
be designed to be integrated with the wavelet transformation
matrices M J

n and M J
l , respectively. We design a diagonal

weight matrix T̃ J
n ∈ R(J+1)n×(J+1)n that rescales the square

submatrices comprising the wavelet transformation matrix
M J

n . We separate the diagonal entries of T̃ J
n into J groups,

the first group contains the first 2n diagonal entries, and each
of them is defined as 1/2J . The rest groups contain n entries
in each of them, and each entry in the j th group is defined as
1/2J− j+1. Similarly, for wavelet transformation matrix M J

l ,
we design a diagonal weight matrix T̃ J

l ∈ R(J+1)l×(J+1)l

that rescales the square submatrices comprising the wavelet
transformation matrix M J

l . The diagonal entries of T̃ J
l are

separated into J groups, the first group contains the first 2l
diagonal entries, and each of them is defined as 1/2J . The
rest groups contain l entries in each of them, and each entry
in the j th group is defined as 1/2J− j+1. The denoising sample
features can be obtained by X̃ k

p = M J T
n T̃ J

n D̃ J∗
p T̃ J

l M J
l . Then,

we continue to extract HoG features from X̃ k
p to construct the

new representations of the market data as x̃k
p.

The number of parameters in each local model {ŵk}k=1,...,K
is denoted by N . We define a frequency-related coordinate
system and transform the local model drifts from the current
global model into a frequency space in each federated training
round where the resolution of the spectrum is indicated by N .

Algorithm 2 TDHW-FSVRG
1: Initialize global model parameters ŵ0

2: for t ← 0 to T do
3: Randomly sample a set of AEAs Ct

4: for k ∈ Ct in parallel do
5: { ḡk, Ŝk, Gk} ← GC-TDHW-FSVRG (k, ŵ t )
6: end for
7: |S| =

∑
k∈Ct
|Sk|

8: ḡ t
=

1
|S|
∑

k∈Ct
ḡk

9: for k ∈ Ct in parallel do
10: z̃k ← LU-TDHW-FSVRG ( ḡ t , ŵ t , Ŝk, Gk)
11: for i ← ⌈N ∗ (1− γ)⌉ to N do
12: z̃k ← z̃k ∪ 0
13: end for
14: end for
15: ŵ t+1

← ŵ t
− ηglobalU(

∑
k∈Ct

z̃k)

16: end for

Procedure 3 Gradient-Collection-TDHW-FSVRG (k, ŵ t )
1: Randomly select sample set Sk
2: Initialize ḡk = 0, Ŝk ← ∅ and Gk ← ∅
3: for X k

p ∈ Sk do
4: D J

p = M J
n X k

p M J T
l

5: D̃ J∗
p = sign(D J

p ). ∗max{||D J
p || − δp, 0}

6: X̃ k
p = M J T

n T̃ J
n D̃ J∗

p T̃ J
l M J

l
7: x̃k

p ← HoG(X̃ k
p)

8: Evaluate θ̃ p by ŵ t and x̃k
p in Eq. (7)

9: gk
i, p = 2(θ̃ i

p − θ i
p)(θ̃

i
p − (θ̃ i

p)
2)x̃k

p for i = 1, · · · , n
10: ĝk, p = [gkT

1, p, · · · , gkT
n, p]

T

11: ḡk ← ḡk + ĝk, p, Ŝk ← Ŝk ∪ x̃k
p, Gk ← Gk ∪ ĝk, p

12: end for
13: ḡk ←

ḡk
|Sk|

14: Return { ḡk, Ŝk, Gk}

Procedure 4 Local-Updating-TDHW-FSVRG ( ḡ t , ŵ t , Ŝk,
Gk)

1: ŵk ← ŵ t and zk
γ ← ∅

2: for x̃k
p ∈ Ŝk, ĝk, p ∈ Gk do

3: Evaluate θ̃ p by ŵk and x̃k
p in Eq. (7)

4: gk
i, p = 2(θ̃ i

p − θ i
p)(θ̃

i
p − (θ̃ i

p)
2)x̃k

p for i = 1, · · · , n
5: ĝ t

k, p = [gkT
1, p, · · · , gkT

n, p]
T

6: ŵk = ŵk − ηlocal[ ĝ
t
k, p − ĝk, p + ḡ t

+ µ̂(ŵk − ŵ t)]

7: end for
8: △ŵk ← ŵ t

− ŵk
9: for i ← 1 to ⌈N ∗ (1− γ)⌉ do

10: Evaluate zk
i by Eq. (22)

11: zk
γ ← zk

γ ∪ zk
i

12: end for
13: Return zk

γ

To ensure that the frequency-related basis vectors are orthogo-
nal, we set the number of the basis vectors as N . By designing
the frequency-related basis vectors to be orthonormal vectors,
the transformation of local model parameters from the time
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domain into the frequency domain can be regarded as a pro-
jection of the model parameters on the frequency-related basis
vectors. The frequency-related coordinate system is denoted by
U = [u1, . . . , uN ] ∈ RN×N , where

ui = αi

√
2
N

[
cos
(

1 · iπ
2N

)
· · · cos

(
(2N − 1) · iπ

2N

)]T

(21)

and

αi =


1
√

2
, i = 0

1, i = 1, 2, . . . , N − 1.

The orthonormality of frequency basis vectors is guaranteed.
Basis vector ui can combine the model parameter drifts △ŵk
and obtain the one corresponding spectral feature which can
be regarded as the projection of △ŵk on the frequency domain
as shown in

zk
i = αi

√
2
N

N−1∑
n=0

△ŵk
n

cos2
(

(2n + 1) · iπ
2N

)
(22)

and zk
= {zk

i }i=0,...,N−1 represents the projection of △ŵk
in the frequency domain. Thanks to that after the transfor-
mation, most of the local model drift information compacts
into a small portion of zk. We define reduction rate γ
for federated training where the kth AEA only needs to
deliver zk

γ = {z
k
i }i=0,...,⌈N∗(1−γ)⌉ which will greatly reduce

the communication burden among AEAs. Then, the central
server zero-padding the received compacted local drifts in
the frequency domain denoted by { z̃k}k∈Ct . By transforming
the aggregated frequency-domain drifts back into the time
domain, the global model is updated as shown in Line 15 in
Algorithm 2.

C. Algorithm Convergence Analysis
To the convergence of the algorithm, the stochastic selection

of Sk introduces variance in the local update of the kth AEA.
Instead of the traditional stochastic gradient update which
tries to fast estimate the entire gradient of the local objective
function fk(ŵk) by randomly choosing |Sk| samples from the
local dataset, we also measure the variance from the local
updates. At the t th round, ŵ t is the best estimation of the
global model, and the local updates of the kth AEA make
the local model drift away from ŵ t which introduces the
variance between the models ŵk − ŵ t . When we apply the
randomly selected sample to evaluate the local gradient with
ŵ t , it introduces another variance from ḡ t , that is, ḡ t

− ĝk, p.
When combining these two variances with the local gradient
ĝ t

k, p, it yields an unbiased estimate of the gradient of the
global objective function. In the redesigned local objective
f̃ k(ŵk), the quadratic term has very nice properties that the
curvature information in fk(ŵk) is nearly intact since the
added quadratic term only makes perturbation on the diagonal
of the original Hessian with a constant value defined by µ̂.
Furthermore, it is also guaranteed that after sufficient rounds,
the minimum of each local objective with this perturbation
will converge to the optimal solution ŵ∗ for the federated opti-
mization. When the global model ŵ t approaches the optimal

design ŵ∗, the variance of both ḡ t
− ĝk, p and ŵk − ŵ t will

approach 0. Then, there will be no change in the local updating
step, which means the local training procedure converges to
the global optimal design ŵ∗.

The careful data representation design in HFSVRG and
TDHW-FSVRG plays a crucial role in ensuring data confiden-
tiality by minimizing the risk of reverse engineering. HFSVRG
specifically focuses on capturing the relative changes in the
rate of return within local data blocks. By encoding the local
data into statistical features before the training process, the
reconstruction attack becomes infeasible since the operation
is non-invertible.

In addition, TDHW-FSVRG leverages transform-domain
model aggregation, offering benefits beyond improved com-
munication efficiency, including increased confidentiality.
Unlike the original local model aggregation, TDHW-FSVRG
reduces the dimensionality of local model parameters by
projecting the original model into the frequency domain and
eliminating high-frequency features with small magnitudes.
This approach not only improves efficiency, but also defends
against local model reconstruction attacks, as the model aggre-
gation now occurs in the transform-domain model parameters.

VI. SIMULATIONS

A. Dataset Design

As we aim to demonstrate the benefits of the data trading
market for both resource-demanding companies and individual
data owners, we do not have specific real datasets for this
problem. However, we can leverage real stock pricing data as
a suitable substitute since it shares similarities with the revenue
return concept in our work, displaying similar fluctuations
and randomness. While the data trading market differs from
the traditional stock market, we utilize historic price data
from stocks listed in the S&P 500 index to create multiple
local datasets that reflect market information for data products.
Specifically, we select a subset of stocks that have been part
of the index from January 4, 2007, until June 25, 2021. The
adjusted close prices of these stocks emulate the prices of
various data products. Next, we divide the available data into
two parts: one for constructing local training datasets and the
other for the test dataset. The division follows a chronological
order, ensuring the sequence of rate of return data. Around
80% of the data is allocated to creating 20 local training
datasets, while the remaining 20% is reserved for the test
dataset.

B. Parameter Settings and Performance Metrics

To generate {X k
p}p=1,...,Pk and {Bk

p}p=1,...,Pk , we set the
window sizes as l = 10 and m = 10. Each AEA covers five
different types of data products (n = 5) in the data trading
market. The learning rate in the local training procedure is
set to 0.1 by default. When designing the labels, we set the
tradeoff between risk and revenue returns as λ = 20 [34]. For
wavelet denoising, we estimate the noise standard deviation
as σ = 0.01 to compute the threshold δ. In HoG feature
extraction, the block size is set as 3 × 3, and the number of
bins to record information in each block is � = 5. The stride
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Fig. 2. Convergence of different federated schemes with (a) test loss and
(b) cumulative return.

size for moving the local block is set to half of the block size,
which is ⌈3/2⌉ = 2.

We utilize root mean square error (RMSE), cumulative
return, portfolio risk, and Sharpe ratio as performance metrics
for evaluating the AEAs’ portfolio allocation decisions. The
revenue period is defined by the validity period of the portfolio
allocation decision, and the expected revenue and volatil-
ity are measured accordingly. To compare the performance,
we evaluate our proposed HFSVRG and TDHW-FSVRG algo-
rithms against existing FL algorithms, including FedAvg [25],
FSVRG [30], FedProx [27], and SCAFFOLD [29]. In the
evaluation of TDHW-FSVRG, we consider different settings
with γ = 0.4 and γ = 0.8 for local model drift compres-
sion, denoted as TDHW-FSVRG-04 and TDHW-FSVRG-08,
respectively. These variations achieve a reduction of transmit-
ted data by 40% and 80% among the AEAs and the central
server.

C. Simulation Results and Analysis
We begin our analysis by examining the convergence

behavior of our proposed methods in comparison to var-
ious baseline approaches. As illustrated in Fig. 2(a), the
convergence of HFSVRG, TDHW-FSVRG-04, and TDHW-
FSVRG-08 outperforms that of the existing methods, including
FedAvg, FSVRG, FedProx, and SCAFFOLD. This result
clearly demonstrates the superior convergence speed achieved
by our proposed approaches. In addition, it is worth highlight-
ing that TDHW-FSVRG exhibits remarkable performance,
converging to significantly lower test loss values compared to
the other schemes, even when employing an 80% reduction in
transmitted data. This remarkable outcome is attributed to the
denoising capabilities of TDHW-FSVRG, particularly when
dealing with nonstationary features.

The significantly faster convergence rates observed in
HFSVRG, TDHW-FSVRG-04, and TDHW-FSVRG-08, cou-
pled with TDHW-FSVRG’s ability to achieve lower test loss
through efficient denoising, unequivocally establish the effec-
tiveness and superiority of our approach in addressing the
challenges of significant delays and a substantial communica-
tion burden on the network infrastructure. This is particularly
important when it is difficult to ensure AEA participation
during overextended periods.

Moving on to the convergence performance, as demon-
strated by the averaged cumulative return in Fig. 2(b),
HFSVRG achieves rapid convergence to a relatively high
cumulative return compared to the benchmark methods.
TDHW-FSVRG outperforms HFSVRG, converging to an even
better cumulative return, even with a conservative reduction

Fig. 3. Convergence of different federated schemes with (a) portfolio risk
and (b) Sharpe ratio.

Fig. 4. (a) Test loss and (b) cumulative return for different HoG block sizes.

Fig. 5. (a) Portfolio risk and (b) Sharpe ratio for different HoG block sizes.

of no more than 40% in transmitted data. This superior
convergence performance demonstrates the significant ben-
efits of TDHW-FSVRG in achieving favorable cumulative
returns. The portfolio risk analysis, as depicted in Fig. 3(a),
exhibits a similar trend, wherein the predicted portfolio allo-
cations from our proposed schemes yield less risky investment
strategies, requiring significantly fewer federated rounds. This
outcome highlights the effectiveness of our approaches in
generating portfolio allocations with reduced risk. Further-
more, the evaluation of the Sharpe ratio, as depicted in
Fig. 3(b), highlights the advantages of employing feature
extraction-enabled FL for generating promising portfolio allo-
cations that consider both investment risk and returns. Both
HFSVRG and TDHW-FSVRG achieve substantially higher
Sharpe ratios compared to the benchmark methods. Notably,
TDHW-FSVRG surpasses HFSVRG in both convergence rate
and converged performance on the Sharpe ratio, even with an
80% reduction in transmitted data. TDHW-FSVRG, particu-
larly in the context of investment risk and return, demonstrates
superior performance in generating robust and promising port-
folio allocations.

We conducted an investigation into the impact of dif-
ferent settings for the local block size when constructing
HoG features while maintaining a transmission data reduction
rate of 40% for TDHW-FSVRG. The results, presented in
Figs. 4 and 5, demonstrate that both HFSVRG and TDHW-
FSVRG-04 consistently outperform the benchmark methods
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Fig. 6. (a) Test loss and (b) cumulative return for different learning rates.

Fig. 7. (a) Portfolio risk and (b) Sharpe ratio for different learning rates.

across all four evaluation metrics. TDHW-FSVRG-04 exhibits
substantial improvements over the benchmarks in terms of test
loss and investment metrics. Among the different block sizes
tested, TDHW-FSVRG-04 achieved the best performance with
the smallest block size of 3 in all four metrics. A smaller block
size allows for a more focused analysis of detailed information
contained in the HoG features. In addition, a smaller block size
results in increased overlaps between adjacent blocks, as we
set the stride size to move the block by half of the block
size. This overlap enhances the availability of local gradient
information. The results show that the performance of TDHW-
FSVRG-04 deteriorates with larger block sizes.

On the other hand, the situation is different for HFSVRG,
as it does not apply denoising to the nonstationary raw
features. In Fig. 4, it is evident that the performance of
HFSVRG in both test loss and cumulative return is worse
when using a block size of 3 compared to a block size
of 4, due to the presence of noisy local detailed features.
However, this does not imply that enhancing the local feature
information is inapplicable to noisy features. The result also
reveals that the performance of HFSVRG deteriorates when
increasing the block size from 4 to 5, indicating the importance
of a suitable enhancement for local feature information even
in the presence of noise. Overall, our analysis highlights
the significance of selecting an appropriate local block size
when constructing HoG features. While TDHW-FSVRG-04
benefits from a smaller block size, which focuses on detailed
information, HFSVRG may face challenges when handling
noisy features. These findings emphasize the importance of
carefully considering the characteristics of the features and the
denoising capabilities of the algorithms to achieve promising
performance in AEA trading scenarios.

We conduct an investigation in different learning rate set-
tings while maintaining a transmission data reduction rate
of 40% for TDHW-FSVRG. As depicted in Figs. 6 and 7,
decreasing the learning rate leads to a decline in perfor-
mance for all FL schemes. This can be attributed to the fact

Fig. 8. (a) Test loss and (b) cumulative return for different standard deviations
of estimated noise.

Fig. 9. (a) Portfolio risk and (b) Sharpe ratio for different standard deviation
of estimated noise.

that a smaller learning rate requires more federated training
rounds. However, it is important to note that the proposed
HFSVRG and TDHW-FSVRG-04 consistently outperform the
benchmark methods across all learning rate settings. In prac-
tice, it is often difficult to guarantee a sufficient number
of training rounds due to the dynamic nature of the envi-
ronment. In Figs. 6 and 7, it is evident that when we set
the learning rate to 0.1 with 50 federated training rounds,
TDHW-FSVRG-04 achieves significantly better performance
compared to the other methods. However, TDHW-FSVRG-
04 exhibits higher sensitivity to changes in the learning rate
compared to HFSVRG. Further analysis in Fig. 6(b) reveals
that HFSVRG achieves higher cumulative returns compared to
the other methods when the learning rate is no larger than 0.01.
However, it is worth noting that the Sharpe ratio of HFSVRG
does not surpass that of TDHW-FSVRG-04 until the learning
rate is reduced to 0.001, as shown in Fig. 7(b). This suggests
that the portfolio predictions generated by TDHW-FSVRG-04
exhibit greater robustness against investment risk, even in the
face of significant changes in the learning rate.

We conducted a detailed investigation into different settings
of soft thresholding while maintaining a transmission data
reduction rate of 40% for TDHW-FSVRG. The threshold
in the feature denoising procedure is directly influenced by
the standard deviation of the estimated noise. The results in
Fig. 8(b) highlight that the cumulative return performance of
TDHW-FSVRG-04 progressively deteriorates with increasing
standard deviation of the estimated noise, ranging from 0.0001
to 0.1. Notably, when the standard deviation of the estimated
noise does not exceed 0.01, TDHW-FSVRG-04 achieves the
highest cumulative return among all methods. Additionally,
the risk associated with TDHW-FSVRG-04 is also the lowest,
as demonstrated in Fig. 9(a).

However, when the standard deviation of the estimated noise
reaches 0.1, the performance of TDHW-FSVRG-04 experi-
ences a significant deterioration in terms of both cumulative
return and risk. This is because larger standard deviations
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Fig. 10. (a) Test loss and (b) cumulative return for different scales of the
number of AEAs.

Fig. 11. (a) Portfolio risk and (b) Sharpe ratio for different scales of the
number of AEAs.

result in the elimination of more information in the features
during the thresholding process. When features fall below the
threshold, they are shrunk to zero, leading to a reduction in
cumulative return as shown in Fig. 8(b). Moreover, the thresh-
olding operation smooths all feature values that exceed the
threshold, and when the estimated noise closely approximates
the true noise, better performance is achieved. This explains
why TDHW-FSVRG-04 attains the smallest risk when the
standard deviation of the estimated noise is set to 0.01 as
shown in Fig. 9(a).

The results demonstrate that the standard deviation of the
estimated noise plays a crucial role in the performance of
TDHW-FSVRG-04. Setting a lower standard deviation allows
for better preservation of relevant information, resulting in
higher cumulative return and lower risk. However, exces-
sively high standard deviations lead to information loss and
degradation in performance. Careful selection of the thresh-
olding parameters is vital to strike a balance between noise
reduction and feature preservation, ultimately enhancing the
performance of TDHW-FSVRG-04 in portfolio allocation.

We conducted a scalability analysis by investigating dif-
ferent scales of participated AEAs while maintaining a
40% transmission data reduction rate for TDHW-FSVRG.
Figs. 10 and 11 present the results, showing the performance
across various metrics. Both HFSVRG and TDHW-FSVRG-
04 consistently outperformed the benchmarks, demonstrating
their scalability in handling larger-scale AEAs. HFSVRG
showcased its advantage of fast convergence as the number
of participated AEAs increased. The test loss decreased with
more AEAs, indicating improved accuracy in portfolio allo-
cation as shown in Fig. 10(a). Conversely, the other schemes
experienced an increase in test loss, as they required more
federated rounds to converge.

However, as the number of participated AEAs grew, the
performance of TDHW-FSVRG-04 on cumulative return and
risk deteriorated as shown in Figs. 10(b) and 11(a). This

Fig. 12. Convergence of different federated schemes with (a) test loss and
(b) cumulative return.

can be attributed to the increased demand for federated
training rounds, which posed challenges for maintaining per-
formance due to the dynamic environments. On the other
hand, HFSVRG exhibited fast convergence and maintained
favorable cumulative returns. Despite HFSVRG’s superior
cumulative return performance for higher numbers of AEAs,
TDHW-FSVRG-04 consistently achieved higher Sharpe ratios
as shown in Fig. 11(b). This indicates its robust risk control
capabilities even in the face of scalability challenges. The
scalability analysis demonstrates that HFSVRG excels in fast
convergence and improved accuracy with an increasing num-
ber of participated AEAs, while TDHW-FSVRG-04 showcases
robust risk control. These findings provide valuable insights
into the tradeoffs between convergence speed, cumulative
return, and risk management when scaling the participated
AEAs.

To evaluate the effectiveness and generalizability of our
proposed approaches, we conducted a comparison using a
new dataset consisting of five popular cryptocurrencies: Bit-
coin, Ethereum, Dogecoin, Cardano, and Ripple. The results,
as depicted in Figs. 12 and 13, demonstrate that our pro-
posed methods consistently outperform the baselines across
multiple metrics. Both HFSVRG and TDHW-FSVRG exhibit
faster convergence compared to the other baselines, yield-
ing superior results. While HFSVRG excels in convergence
speed, it falls short of TDHW-FSVRG in terms of the final
performance metrics, including test loss, cumulative return,
and risk. Additionally, TDHW-FSVRG demonstrates greater
stability in its performance compared to HFSVRG. It is worth
noting that the advantage of HFSVRG’s fast convergence
diminishes when compared to TDHW-FSVRG, particularly in
terms of cumulative returns. Overall, our proposed methods
surpass the baselines in both convergence speed and final
performance using this new dataset. These findings validate the
effectiveness and generalizability of our proposed approaches,
highlighting their ability to outperform the baselines across
multiple metrics when applied to a new dataset of popular
cryptocurrencies. The results obtained from the new dataset
reinforce the superiority of our methods in terms of conver-
gence speed and converged performance.

D. Recommendations for System Settings

Based on our analysis, we have the following recommen-
dations for optimizing system settings in FL for portfolio
allocations. When dealing with highly dynamic local data,
it is advisable to use larger block sizes for HFSVRG when
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Fig. 13. Convergence of different federated schemes with (a) portfolio risk
and (b) Sharpe ratio.

generating HoG features. This prevents performance degra-
dation caused by excessive focus on details. On the other
hand, TDHW-FSVRG benefits from smaller block sizes due
to its denoising capability, which enhances local gradient
information. The choice of block size should be based on
the specific characteristics of the data and noise levels. The
learning rate plays a critical role in achieving fast convergence
and maintaining promising performance. While larger learn-
ing rates can expedite convergence, they can also introduce
oscillations near the solution, leading to poorer performance,
especially in the dynamic data trading market. Finding the
right balance between convergence speed and stability is cru-
cial. Careful tuning of the learning rate based on convergence
and accuracy requirements is recommended. To optimize the
performance of TDHW-FSVRG, it is important to accurately
estimate the standard deviation of the noise among the local
return data. TDHW-FSVRG exhibits superior performance
when the estimated noise closely matches the true noise since
the precise estimation of the noise level enables effective
denoising and preservation of valuable information in the
features. HFSVRG demonstrates its strength when operating
with large-scale participated AEAs, showcasing the robust per-
formance of the cumulative return with increasing participated
AEAs. On the other hand, TDHW-FSVRG excels in providing
more promising automotive portfolio allocations, particularly
with relatively smaller-scale participated AEAs. By following
these recommendations and appropriately adjusting the system
settings, practitioners can optimize the performance of the
proposed methods according to their current data training
scenario, which will result in improved convergence, accuracy,
and scalability of the FL process.

E. Wilcoxon Test
We conducted the Wilcoxon signed-rank test [35] to analyze

the experimental results of the test loss, cumulative return,
portfolio risk, and Sharpe ratio between our proposed methods
and the baselines. The purpose of the Wilcoxon test is to
determine whether the results obtained from our proposed
algorithms are significantly better than those of the baselines.
To perform this analysis, we paired the results from our
proposed algorithms with those from the baselines. This paired
sample test was then transformed into a one-sample test by
replacing each pair with their difference. The differences
between the pairs were ranked accordingly.

The p-value serves as a measure of the smallest level of
significance at which a significant difference can be observed
between the performance of our proposed methods and the

TABLE IV
p-VALUES FOR TEST LOSS AND CUMULATIVE RETURN

TABLE V
p-VALUES FOR PORTFOLIO RISK AND SHARPE RATIO

baselines. We obtained p-values for the test loss and cumula-
tive return metrics, which are presented in Table IV. Similarly,
for the portfolio risk and Sharpe ratio metrics, we obtained
p-values, which are shown in Table V. A smaller p-value
indicates stronger evidence in favor of our proposed methods
outperforming the baselines. The Wilcoxon signed-rank test
provides statistical evidence to support the superiority of our
proposed methods over the baselines in terms of test loss,
cumulative return, portfolio risk, and Sharpe ratio metrics.

VII. CONCLUSION

Our work has effectively addressed the obstacles associated
with smooth data access by introducing a data trading market
with AEAs. Through the integration of federated training,
feature extraction, and transform-domain techniques, we have
provided a robust and efficient solution for autonomous trad-
ing among AEAs. The demonstrated improvements in terms
of convergence speed, cumulative return, and risk reduction
validate the effectiveness of our approach. This research opens
up new opportunities for innovation and progress in various
industries that heavily rely on data-driven intelligence and
sets the stage for further developments in this exciting field.
In future research, we will concentrate on designing more
versatile FL algorithms to cater to the diverse requirements
of individual AEAs. Additionally, we aim to address the chal-
lenge of accelerating the FL training procedure, considering
the highly dynamic participation environment of AEAs. These
areas of focus will contribute to further advancements in data
trading and enable more efficient and effective collaboration
among AEAs.

REFERENCES

[1] W. Wang, Y. Zhang, J. Gu, and J. Wang, “A proactive manufacturing
resources assignment method based on production performance predic-
tion for the smart factory,” IEEE Trans. Ind. Informat., vol. 18, no. 1,
pp. 46–55, Jan. 2022.

[2] A. Belhadi, Y. Djenouri, G. Srivastava, and J. C.-W. Lin, “Reinforce-
ment learning multi-agent system for faults diagnosis of mircoservices
in industrial settings,” Comput. Commun., vol. 177, pp. 213–219,
Sep. 2021.

[3] S. Lee and D.-H. Choi, “Federated reinforcement learning for energy
management of multiple smart homes with distributed energy resources,”
IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 488–497, Jan. 2022.

[4] N. Rieke et al., “The future of digital health with federated learning,”
npj Digit. Med., vol. 3, no. 1, p. 119, Sep. 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:46:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: FL FOR DATA TRADING PORTFOLIO ALLOCATION WITH AEAs 15

[5] T. AlSkaif, J. L. Crespo-Vazquez, M. Sekuloski, G. van Leeuwen, and
J. P. S. Catalão, “Blockchain-based fully peer-to-peer energy trading
strategies for residential energy systems,” IEEE Trans. Ind. Informat.,
vol. 18, no. 1, pp. 231–241, Jan. 2022.

[6] D. Minarsch, S. A. Hosseini, M. Favorito, and J. Ward, “Autonomous
economic agents as a second layer technology for blockchains: Frame-
work introduction and use-case demonstration,” in Proc. Crypto Valley
Conf. Blockchain Technol. (CVCBT), Jun. 2020, pp. 27–35.

[7] W. Y. B. Lim et al., “When information freshness meets service
latency in federated learning: A task-aware incentive scheme for smart
industries,” IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 457–466,
Jan. 2022.

[8] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-based public
integrity verification for cloud storage against procrastinating auditors,”
IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 923–937, Jul. 2021.

[9] K. Atkinson and T. Bench-Capon, “States, goals and values: Revisiting
practical reasoning,” Argument Comput., vol. 7, nos. 2–3, pp. 135–154,
Nov. 2016.

[10] D. Minarsch, M. Favorito, S. A. Hosseini, Y. Turchenkov, and J. Ward,
“Autonomous economic agent framework,” in Proc. Int. Workshop Eng.
Multi-Agent Syst. Springer, 2021, pp. 237–253.

[11] M. P. Clements, P. H. Franses, and N. R. Swanson, “Forecasting
economic and financial time-series with non-linear models,” Int. J.
Forecasting, vol. 20, no. 2, pp. 169–183, Apr. 2004.

[12] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized fed-
erated learning,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 28, 2022, doi: 10.1109/TNNLS.2022.3160699.

[13] X. Lin, J. Wu, A. K. Bashir, J. Li, W. Yang, and M. J. Piran,
“Blockchain-based incentive energy-knowledge trading in IoT: Joint
power transfer and AI design,” IEEE Internet Things J., vol. 9, no. 16,
pp. 14685–14698, Aug. 2022.

[14] G. Gao, Y. Wen, and D. Tao, “Distributed energy trading and schedul-
ing among microgrids via multiagent reinforcement learning,” IEEE
Trans. Neural Netw. Learn. Syst., early access, May 12, 2022, doi:
10.1109/TNNLS.2022.3170070.

[15] I. Lederer, R. Mayer, and A. Rauber, “Identifying appropriate intellectual
property protection mechanisms for machine learning models: A system-
atization of watermarking, fingerprinting, model access, and attacks,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Jun. 2, 2023, doi:
10.1109/TNNLS.2023.3270135.

[16] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain,
“Enabling localized peer-to-peer electricity trading among plug-in hybrid
electric vehicles using consortium blockchains,” IEEE Trans. Ind. Infor-
mat., vol. 13, no. 6, pp. 3154–3164, Dec. 2017.

[17] D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, “Tempo-
ral attention-augmented bilinear network for financial time-series data
analysis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5,
pp. 1407–1418, May 2019.

[18] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[19] X.-Y. Liu et al., “FinRL-meta: Market environments and benchmarks
for data-driven financial reinforcement learning,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 35, 2022, pp. 1835–1849.

[20] K. Park, H.-G. Jung, T.-S. Eom, and S.-W. Lee, “Uncertainty-aware
portfolio management with risk-sensitive multiagent network,” IEEE
Trans. Neural Netw. Learn. Syst., early access, May 23, 2022, doi:
10.1109/TNNLS.2022.3174642.

[21] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Deep
adaptive input normalization for time series forecasting,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3760–3765, Sep. 2020.

[22] A. Tsantekidis, N. Passalis, A.-S. Toufa, K. Saitas-Zarkias,
S. Chairistanidis, and A. Tefas, “Price trailing for financial trading
using deep reinforcement learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 7, pp. 2837–2846, Jul. 2021.

[23] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD: Dis-
tributed SGD with quantization, sparsification and local computations,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[24] P. Tiwari, A. Lakhan, R. H. Jhaveri, and T.-M. Gronli, “Consumer-
centric Internet of Medical Things for cyborg applications based on
federated reinforcement learning,” IEEE Trans. Consum. Electron., early
access, Feb. 7, 2023, doi: 10.1109/TCE.2023.3242375.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[26] T. V. Nguyen et al., “A novel decentralized federated learning approach
to train on globally distributed, poor quality, and protected private
medical data,” Sci. Rep., vol. 12, no. 1, p. 8888, 2022.

[27] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429–450.

[28] X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, “Vari-
ance reduced local SGD with lower communication complexity,” 2019,
arXiv:1912.12844.

[29] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5132–5143.
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[31] J. Konečný and P. Richtárik, “Semi-stochastic gradient descent meth-
ods,” 2013, arXiv:1312.1666.

[32] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” Adv. neural Inf. Process. Syst., vol. 26,
2013.

[33] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate Newton-type method,” in
Proc. Int. Conf. Mach. Learn., 2014, pp. 1000–1008.

[34] H. M. Markowitz and G. P. Todd, Mean-Variance Analysis in Portfolio
Choice and Capital Markets, vol. 66. Hoboken, NJ, USA: Wiley, 2000.

[35] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in Statistics: Methodology and Distribution. Springer, 1992,
pp. 196–202.

Lei Zhao (Member, IEEE) received the B.S. and
M.A.Sc. degrees in computer science and technology
from Xidian University, Xi’an, China, in 2015 and
2018, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Victoria, Victoria, BC, Canada, in 2023.

He is currently an Instructor with the Department
of Electrical and Computer Engineering, University
of Victoria.

Lin Cai (Fellow, IEEE) has been with the Depart-
ment of Electrical and Computer Engineering,
University of Victoria, Victoria, BC, Canada, since
2005, where she is currently a Professor. Her
research interests include communications and net-
working, with a focus on network protocol and
architecture design supporting emerging multimedia
traffic and the Internet of Things (IoT).

Ms. Cai is an NSERC E.W.R. Steacie Memorial
Fellow, an Engineering Institute of Canada Fellow,
a Canadian Academy of Engineering Fellow, and a

member of the Royal Society of Canada’s College of New Scholars, Artists,
and Scientists.

Wu-Sheng Lu (Life Fellow, IEEE) received the
B.Sc. degree in mathematics from Fudan Uni-
versity, Shanghai, China, in 1964, and the M.S.
degree in electrical engineering and the Ph.D. degree
in control science from the University of Min-
nesota, Minneapolis, MN, USA, in 1983 and 1984,
respectively.

Since 1987, he has been with the University of
Victoria, Victoria, BC, Canada, where he is cur-
rently a Professor Emeritus. He is the coauthor with
A. Antoniou of Two-Dimensional Digital Filters

(Marcel Dekker, 1992) and Practical Optimization: Algorithms and Engineer-
ing Applications (Second Edition, Springer, 2021), and with E. K. P. Chong
and S. H. Zak of An Introduction to Optimization (Fifth Edition, Wiley, 2023).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:46:52 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2022.3160699
http://dx.doi.org/10.1109/TNNLS.2022.3170070
http://dx.doi.org/10.1109/TNNLS.2023.3270135
http://dx.doi.org/10.1109/TNNLS.2022.3174642
http://dx.doi.org/10.1109/TCE.2023.3242375

