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Abstract— We consider a setting engaging in collaborative
learning with other machines where each individual machine
has its own interests. How to effectively collaborate among
machines with diverse requirements to maximize the profits of
each participant poses a challenge in federated learning (FL).
Our studies are motivated by the observation that in FL the
global model attempts to acquire knowledge from each individual
machine, while aggregating all local models into one optimal
solution may not be desirable for some machines. To effectively
leverage the knowledge of others while obtaining the customized
solution for individual machine, we propose the accelerated
federated training procedures with diversified global models.
Based on the federated stochastic variance reduced gradient
(FSVRG) framework, we propose the model-based grouping
mechanism with adaptive central acceleration (MA-FSVRG) and
gradients-based grouping mechanism with adaptive central accel-
eration (GA-FSVRG) to tackle the challenges of heterogeneous
demands. The simulation results demonstrate the advantages of
the proposed MA-FSVRG and GA-FSVRG over the state-of-
the-art FL baselines. MA-FSVRG exhibits greater stability in
performance and significant cost savings in local computation
expenses compared to GA-FSVRG. On the other hand, GA-
FSVRG attains higher test accuracy and faster convergence
speed, particularly in scenarios with limited individual machine
participation.

Index Terms— Adaptive central acceleration, diversified global
models, gradient-based grouping, model-based grouping.

NOMENCLATURE
E Set of all individual machines.
Pi Local dataset for the i th individual machine.
ni Number of local samples in individual

machine i .
n Total number of samples in set E .
f (w) Global objective function.
fi (w) Local objective function of machine i .
▽ f (wg) Global gradient with respect to wg .
▽ fi (w) Local gradient of machine i .
gi (w) Local gradient estimation of machine i .
1wg Updating in global model.
w∗ Optimal global model.
d Number of model parameters.
L i Largest eigenvalue of ▽2 fi (w).
µi Smallest eigenvalue of ▽2 fi (w).
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T Threshold of rounds to begin grouping
mechanism.

Sr Participated subset in the r th round.
nr Total number of samples in subset Sr .
C Number of diversified global models.
αi

l Learning rate of machine i in lth local updating.
m̂r

c Estimation of the anchor gradients’ first
moments.

v̂
r
c Estimation of the anchor gradients’ second

moments.
ŵ

r
i,K Trained local model from machine i in

round r .
ŵc,r−1 Global model representation of group c in

round r .
Sr

c Subset of machines of group c in round r .
gr−1

c Anchor gradient of group c in round r .
3i Local gradient adjustment matrix for

machine i .
dr

i,k−1 kth updating direction for machine i in round r .
w̄

r−1
i Mean-centered trained local model of

machine i .
W r−1 Subset of the mean-centered local models

in Sr .
▽ f̄ i(ŵ

r
i,K ) Mean-centered local gradient of machine i .

Gr−1 Subset of the mean-centered local gradients
in Sr .

cl
i Group that machine i prefers in the lth round

of grouping updating.
ŵ

r−1
i,0 Initialized local model for machine i in round r .

w̃
r−1
i Transformed trained local model of machine i .

w̃
l
c,r−1 cth global model in lth grouping updating.

ŵ
∗

c,r−1 cth global model after grouping in round r .
g̃l

c,r−1 cth anchor gradient in lth grouping updating.
g̃∗

c,r−1 cth anchor gradient after grouping in round r .
Sr

c,l Subset in group c in lth grouping updating.
ŵ

r
c cth central accelerated global model.

Ar Scaling factors for model aggregation in
round r .

I. INTRODUCTION

IN FEDERATED learning (FL), a number of individual
machines or organizations work together to train a model

under the coordination of a central server. A key aspect of FL
is that the training data are kept decentralized, ensuring privacy
and security [1], [2]. By leveraging the collective power of
individual machines and their local data, FL enables model
training while mitigating privacy risks and reducing costs
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compared to centralized machine learning methods. Existing
research in FL primarily focuses on harnessing the strengths of
individual machines to train a single global model [3], where
each individual machine contributes its computing resources
to conduct model training on its local dataset.

However, current FL often neglects the heterogeneous needs
of individual machines. In some cases, a single global model
may not adequately satisfy the different requirements of dif-
ferent machines [4]. A critical issue is to obtain personalized
FL models tailored for diversified individual demands [5],
[6]. The existing personalized FL research is still based
on the unique shared global model and the personality is
obtained by the tradeoff between the global model and the
diversified local needs [7], [8] [9]. This article proposes to
enhance FL by accommodating diverse requisites of individual
machines. We address highly varied local demands within FL
and empower individual machines to make decisions aligned
with their own interests.

On the other hand, due to the dynamic collaboration envi-
ronments, it is hard to guarantee the successful participation of
all machines. Therefore, the intrinsic requirement for FL is to
converge faster. The training speed of FL is also impacted by
the communication between the central server and individual
machines during the training procedure.

While performing multiple local updates on individual
machines before communicating with the server can signifi-
cantly reduce communication costs [1], heterogeneous local
datasets can result in higher variance as the number of local
updates increases. One alternative approach to effectively
mitigate communication costs is the utilization of stochastic
individual machine selection, which involves the selection of
a subset of individual machines for local updates.

Nonetheless, the random selection of participating machines
causes increased variance of the stochastic gradient, which
in turn leads to slow convergence and hence requests more
iterations [10]. To mitigate this challenge, combining with
variance reduction techniques have been introduced [11], [12],
we compensate this negative aspect of stochastic individual
machine selection by a momentum-based model update accel-
eration mechanism at the central server, which can achieve
lower computational complexity and communication cost for
individual machines, and achieve higher test accuracy.

Central acceleration expedites convergence, with communi-
cation being scaled down in each round proportional to the
ratio of selected individual machines to the total count, thanks
to the efficacy of stochastic individual machine selection.
In addition, the computational load for a given FL task is
significantly lower compared to traditional FL. This reduction
is an outcome of the central acceleration combined with
stochastic individual machine selection.

The main contributions of this article are as follows. First,
we propose a comprehensive approach combining federated
stochastic variance reduced gradient (FSVRG) with adap-
tive central acceleration on diversified global models, aiming
to mitigate the high variance in global model updates and
accelerate the convergence speed. Second, for the training
process, we devise two strategies, i.e., the model-based group-
ing mechanism (MA-FSVRG) which applies the local model
information to generate diversified global models, and the
gradients-based grouping mechanism (GA-FSVRG) applies
the local gradient information to generate diversified global
models. Compared with MA-FSVRG, GA-FSVRG can con-
verge faster to higher test accuracy but with higher variance

in the performance and higher local computation cost, where
MA-FSVRG achieves more stable performance with less cost.
The experiment results show that the proposed algorithms can
converge faster and achieve higher accuracy compared with
the state-of-the-art baseline algorithms.

The rest of this article is organized as follows. The related
works are summarized in Section II. Section III formulates the
FL architecture with stochastic variance reduced gradient. The
accelerated FSVRG with diversified global models method is
proposed in Section IV. Simulation results are presented in
Section V followed by the concluding remarks in Section VI.

II. RELATED WORK

In standard FL, a central server aggregates model updates
from all participating individual machines, and the model is
updated based on a weighted average of these updates [6].
However, this approach can be biased toward individual
machines with diversified objectives. Solely optimizing the
accuracy of the global model tends to have a negative impact
on its capacity to personalize [3], [13]. Personalized FL is an
area of research that aims to tailor the FL process to each
individual machine, allowing the model to be personalized
based on their specific data and preferences [7], [8] [9]. The
recent research efforts in personalized FL mainly focus on the
tradeoff between the collaborative optimization and and model
generalization [14].

Several works apply knowledge transfer into FL [15], [16].
The basic idea of federated transfer learning is to transfer
the globally-shared model to distributed devices for further
personalization in order to mitigate the statistical heterogeneity
inherent in FL [17]. Based on the idea that lower layers
of deep networks focus on learning common and low-level
features and model parameters in higher layers learn more
specific features, model parameters in lower layers of the
global model can be shared with all individual machines, while
the model parameters in higher layers should be fine-tuned
with local data [16]. The shared layers are trained in a
collaborative manner using the existing FL method, while the
personalization layers are trained locally thereby enabling to
capture of personal information of individual machines [18].
In another way, neural architecture search is utilized to find
personalized neural network architectures for each individual
machine, enhancing the model’s performance on individual
data distributions [19], [20]. Furthermore, personalized regu-
larization terms are introduced in the local training to enhance
personalized FL [21].

A model-agnostic meta-learning approach [22] is proposed
to adapt the global model to each individual machine’s data
distribution, achieving better personalized performance [14],
[23]. These works are based on the assumption that local
domains are related which makes knowledge transfer pos-
sible [24]. However, how to measure the relations among
highly heterogeneous individual machines is still an open
challenge. To alleviate the highly unbalanced distribution
of individual machine data, a data-sharing strategy is also
proposed by Zhao et al. [25] where a small amount of global
data containing a uniform distribution over classes from the
center is distributed to individual machines. However, directly
distributing the global data to individual machines will impose
great privacy leakage risk, this approach is required to make
a tradeoff between data privacy protection and performance
improvement.
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No matter the federated transfer learning or federated meta-
learning, their aim is to learn a shared model of the same
or similar tasks across individual machines. However, they
are still based on the unique shared global model and the
personality is obtained by the tradeoff between the global
model and the diversified local needs. Therefore, it will be
a challenge to enhance the training efficiency, i.e., speed
up the convergence speed with superb performance. The
fast convergence speed is critical for FL since individual
machines, e.g., IoT devices, are frequently offline or on slow
and expensive connections. However, the existing works need
to improve the performance of the shared global model to
enhance the overall FL performance, which means there will
be few individual machines available for personalization. How
to manage communication overhead and ensure convergence
to a high-quality global model with a diverse set of individual
machine updates is still one open issue.

SCAFFOLD [26] addresses individual machine drift caused
by heterogeneous data distributions in FL. It employs control
variates to correct individual machine updates, ensuring align-
ment with the global model direction. This method reduces
variance in updates and enhances stability and convergence
speed. By using control variates, SCAFFOLD significantly
lowers variance in individual machine updates, leading to more
stable and efficient convergence. It offers strong convergence
guarantees, demonstrating lower error rates compared to tradi-
tional FL methods. However, the extent of variance reduction
achieved by SCAFFOLD may vary depending on factors such
as the sparsity of the data and the heterogeneity of edge
devices.

MimeSVRG builds on MIME by introducing a variance
reduction mechanism to ensure more accurate and stable
gradient updates in FL [27]. It addresses the common issue of
gradient estimation variance due to data heterogeneity across
individual machines, which can lead to slow convergence
and poor model performance. The server selects a subset of
individual machines, sends them the current global model and
optimizer state, and each individual machine performs local
updates. Unlike standard FL methods, MimeSVRG includes an
additional step where individual machines compute a control
variate, a reference gradient based on a subset of the indi-
vidual machine’s data, to adjust local gradient estimates and
reduce variance. This incorporation of SVRG [12] into the FL
framework achieves more stable and faster convergence, espe-
cially beneficial in environments with high data heterogeneity.
However, MimeSVRG introduces additional computational
overhead and higher communication costs, which can be a
significant drawback for individual machines with limited
resources, such as mobile or IoT devices. The performance
benefits are also dependent on the data distribution, and in
less heterogeneous environments, the extra costs may not be
justified.

LoSAC [28] introduces a novel approach to federated
optimization by using delayed gradients to estimate the
global full gradient on individual machines. These gradients
are updated with the latest information at each local itera-
tion and aggregated from participating individual machines,
improving estimation accuracy while maintaining low compu-
tational complexity. LoSAC performs multiple local iterations
to enhance communication efficiency and incorporates local
second-order information during model updates to reduce the
variance of stochastic gradients. This leads to faster conver-
gence and improved robustness, especially in scenarios with

nonconvex and ill-conditioned objective functions. However,
LoSAC requires significant local memory to store various local
dataset partitions, improving performance by allowing better
local estimation of the global full gradient and reducing the
impact of non-IID data. This memory requirement can be
a significant drawback for individual machines with limited
resources, making it less feasible for all FL applications.

Our proposed methods, MA-FSVRG and GA-FSVRG,
aim to tackle the challenges of heterogeneity and diversi-
fied requirements in FL by focusing on adaptive central
acceleration with model-based and gradient-based grouping
mechanisms. This approach reduces variance in local updates
and enhances computational efficiency and convergence speed
through diversified global models. Unlike SCAFFOLD, which
uses control variates to mitigate individual machine drift,
our methods introduce adaptive strategies that dynamically
adjust to the diversity of local data distributions, making them
particularly robust in scenarios with significant non-IID data.
Similarly, while MimeSVRG relies on global optimizer states
and SVRG-style corrections, our methods leverage adaptive
central acceleration to provide a more comprehensive solution
to the challenges in FL including enhanced computational
efficiency, improving stability and applicability in real-world
environments. Compared to LoSAC, which focuses on using
delayed gradients and multiple local iterations for efficient
communication and accurate gradient estimation, our methods
emphasize adaptive strategies that not only reduce variance
but also dynamically adjust to diverse local data distributions,
further enhancing performance and convergence speed. Over-
all, MA-FSVRG and GA-FSVRG offer a robust and efficient
solution for FL by addressing the unique challenges presented
by heterogeneous data distributions.

III. FL ARCHITECTURE WITH STOCHASTIC VARIANCE
REDUCED GRADIENT

A. Problem Setup

Considering a distributed learning system, there are n
training samples in total. We use E to denote the set of all
individual machines, and use Pi to denote the local dataset for
the i th individual machine with ni local training samples for
i = 1, 2, . . . , |E |. There is no overlap among different local
datasets, i.e., Pi ∩ Pj = ∅ whenever i ̸= j . The optimization
problem in an FL objective is formulated as

minimize
w∈Rd

f (w) =

|E |∑
i=1

ni

n
fi (w) (1)

where fi (w) represents the i th local objective function, which
is the average of the empirical loss over all local samples
{Fk(w)}k∈Pi

fi (w) =
1
ni

∑
k∈Pi

Fk(w) i = 1, . . . , |E |. (2)

The global objective function f (w) is the weighted average
of the local objective functions. The traditional FL goal is to
find the optimal global model w∗ to minimize overall losses of
all machines. All notations in the FL architecture formulation
are summarized in Nomenclature.
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B. FL Architecture With Reduced Variance
With both stochastic individual machine selection in each

federated round and stochastic local model updating, we need
to reduce the variance to improve the learning efficiency.
In the stochastic local updating, we use gi (w) to represent
the local gradient from individual training samples or a batch
of the training samples which is an unbiased estimation of
▽ fi (w). The variance of local stochastic gradient gi (w) can
be analyzed as follows. According to Jensen’s inequality,
we obtain the upper bound of the variance of the sampled
local gradient as

E
[∣∣∣∣gi (w)

∣∣∣∣2
]

≤ ||▽ fi (w)||2 (3)

which can be written as

E
[∣∣∣∣g i (w)

∣∣∣∣2
]

≤
∣∣∣∣▽ fi (w) − ▽ fi

(
w∗

)∣∣∣∣2 (4)

where w∗ denotes the optimal model. According to Appendix
in the Supplementary Material and (4), we can obtain

E
[∣∣∣∣g i (w)

∣∣∣∣2
]

≤ L2
i

∣∣∣∣w − w∗
∣∣∣∣2 (5)

where L i refers to the largest eigenvalue of ▽2 fi (w). Due to
the heterogeneous local datasets and diversified objectives, the
local gradients in FL optimization are biased, and it will be
very hard to make efficient progress in the training procedure.

We use wg to refer to the global model, 1wg to denote the
updating in the global model. And similar to the analysis in
Appendix in the Supplementary Material, the global objective
function can be upper bounded by

f
(
wg + 1wg

)
≤ f

(
wg

)
+ ▽ f

(
wg

)T (
1wg

)
+

|E |∑
i=1

ni

2n
L i

∣∣∣∣1wg
∣∣∣∣2 (6)

and lower bounded by

f
(
wg + 1wg

)
≥ f

(
wg

)
+ ▽ f

(
wg

)T (
1wg

)
+

|E |∑
i=1

ni

2n
µi

∣∣∣∣1wg
∣∣∣∣2 (7)

where the global gradient is defined as

▽ f
(
wg

)
=

|E |∑
i=1

ni

n
▽ fi

(
wg

)
.

We define g(wg) = ▽ f (wg; ξ) as an unbiased stochastic
gradient of the global objective function f (wg) with the
variance bounded by σ 2. With the smoothness assumption,
we can obtain∣∣∣∣g

(
wg

)∣∣∣∣ ≤

|E |∑
i=1

ni

n
L i

∣∣∣∣wg − w∗
∣∣∣∣. (8)

There are discrepancies between the global model and the
local models. To reduce the updating variance, we modify
the local updating of individual machine i should follow the
guidance from:

gi (w) − gi
(
wg

)
+ g

(
wg

)
(9)

to force the local gradient to be unbiased for the local
training procedure. The stochastic update in machine i yields

an unbiased estimate of the global gradient ▽ f (wg) since
E[gi (w) − gi (wg)] = 0, which leads to

▽ f
(
wg

)
≈ E

[
gi (w) − gi (wg) + E

[
g(wg)

]]
. (10)

And the variance of the global gradient estimation from (10)
can be rewritten as

Var
(
gi (w) − gi

(
wg

)
+ E

[
g
(
wg

)])
= Var

(
gi (w) − gi

(
wg

))
where E[g(wg)] is a constant during the local updating. Since
we can rewrite

Var
(
gi (w) − gi

(
wg

))
= E

[∣∣∣∣gi (w) − gi
(
wg

)∣∣∣∣2
]

−
∣∣∣∣E[

gi (w) − gi
(
wg

)]∣∣∣∣2 (11)

the variance of the estimated global gradient can be upper
bounded by

Var
(
gi (w) − gi

(
wg

))
≤ E

[∣∣∣∣gi (w) − gi
(
wg

)∣∣∣∣2
]
. (12)

Furthermore, according to Jensen’s inequality, we can obtain

E
[∣∣∣∣gi (w) − gi

(
wg

)∣∣∣∣2
]

≤
∣∣∣∣E[

gi (w)
]
− E

[
gi

(
wg

)]∣∣∣∣2
.

(13)

Since the stochastic local gradients are unbiased to the full
local gradients, and according to the Appendix in the Supple-
mentary Material, we obtain∣∣∣∣E[

gi (w)
]
− E

[
gi

(
wg

)]∣∣∣∣2
≤ L2

i

∣∣∣∣w − wg
∣∣∣∣2

. (14)

Combining (11)–(14), we can obtain the upper bound of the
variance

Var
(
gi (w) − gi

(
wg

)
+ E

[
g
(
wg

)])
≤ L2

i

∣∣∣∣w − wg
∣∣∣∣2

. (15)

But as long as w ̸= wg , the variance will still exist.
Given the inherent variability of local optimization proce-

dures within practical FL scenarios involving heterogeneous
local datasets, it is common for these procedures to converge
to diverse solutions. Consequently, the local gradients in FL
optimization tend to exhibit bias, presenting a significant chal-
lenge when attempting to achieve efficient training progress.
Thus, we are motivated to investigate and propose central
acceleration on diversified global models to fill the gap.

IV. ADAPTIVE CENTRAL ACCELERATION ON
DIVERSIFIED GLOBAL MODELS

In this section, we present two innovative algorithms:
model-based and gradients-based grouping mechanisms with
adaptive central acceleration (MA-FSVRG and GA-FSVRG),
designed to enhance FL with diversified local requirements.
MA-FSVRG generates diversified global models based on
the similarity of local model parameters, leveraging the
inherent similarity among models to improve the overall
learning process. This method offers stability and consistency,
with parameters changing gradually over federated iterations,
providing a steady and predictable measure of progress. GA-
FSVRG, on the other hand, generates diversified global models
based on the similarity of local gradient information, focusing
on the direction and magnitude of updates made by individ-
ual machines during training. Utilizing gradient information
provides a dynamic and immediate measure of the learning
process, allowing for quicker adaptation to changes in data
distribution.
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In both MA-FSVRG and GA-FSVRG, the process begins
with the central server initializing multiple diversified global
models. During each training round, a subset of individual
machines is selected to participate in federated training. The
central server broadcasts the current diversified global models
to these selected machines. Upon receiving the models, each
machine computes the full local gradients of all diversified
models and its preferred global model based on its own
data. It then sends the full local gradients and its preference
information back to the central server, which uses this data
to generate the anchor gradients for each global model. The
central server transmits the corresponding anchor gradient to
each machine based on its preference, allowing the machines
to perform variance-reduced local updates to their copies of
the preferred global models. The machines then send their
updated models or local gradient update information back to
the central server. The central server uses this information
from all participating machines to refine the diversified global
models. After refining the group representations, the central
server applies adaptive acceleration to all diversified global
models. The updated models are then redistributed to the
individual machines in the next round.

A. Local Training With Reduced Gradient Variance

At the beginning of the federated training, without the
knowledge of others, an individual’s preference is not obvious.
Therefore, we define a threshold T , and when the federated
training number r ≤ T , we randomly pick a subset of
individual machines to construct a subset Sr

⊆ [E] with size
|Sr

| = S at the beginning of the r th round. The global mode
wr−1 is distributed to the selected individual machines in Sr .
The selected individual machines in Sr evaluate their full local
gradients and transmit {▽ fi (w

r−1)}i∈Sr to central server to
aggregate the current anchor gradient as

g
(
wr−1)

=

∑
i∈Sr

ni

nr
▽ fi

(
wr−1) (16)

where nr denotes the number of samples from all individual
machines in subset Sr and ni for individual machine i . With
random individual machine selection, the anchor gradient
g(wr−1) obtained by an entire data pass of all the selected
local datasets is an unbiased estimation of the full global gra-
dient ▽ f (wr−1). After the threshold T , i.e., r > T , to continue
improving the training efficiency, individual machines need to
collaborate based on their preference. All notations defined in
the algorithm design are listed in Nomenclature.

The central server randomly selects a subset Sr of machines
at the beginning of the r th round. The central server manages
C diversified global models, denoted by {ŵc,r−1}

C
c=1 which are

distributed to each participated machine to initialize the local
training. First, the local gradients collected from the individual
machines in subset Sr for all global models in {ŵc,r−1}

C
c=1

are collected by the central server to obtain multiple anchor
gradients {gr−1

c }
C
c=1 with respect to the groups {Sr

c }
C
c=1 as{

gr−1
c =

∑
i∈Sr−1

ni

nr−1 ▽ fi
(
ŵc,r−1

)}C

c=1

. (17)

Furthermore, the individual machines in Sr first initialize
their starting point by evaluating the received multiple global
models from the central server by their own local datasets and

select the global model based on their own preference asŵ
r−1
i,0 = argmin

{ŵc,r−1}
C
c=1

fi
(
ŵc,r−1

)
i∈Sr

. (18)

This individual preference information is also collected by the
central server, based on which the central server transmits the
corresponding anchor gradients from {gr−1

c }
C
c=1 to the selected

individual machines in Sr to reduce the variance in local
training. Then, the individual machines in Sr

c conduct K local
stochastic updates based on their own local datasets.

To enforce the auxiliary local gradient to be of the correct
magnitude, it is scaled carefully by the number of nonzero
features of the samples. The number of samples in the local
dataset of individual machine i with nonzero j th feature
is denoted by n j

i . After going through their local datasets,
individual machines send the number of local nonzero j th
feature {n j

i }i∈E to the central server, and the central server
generates the number of samples with nonzero j th feature
over all local datasets as

n̂ j
=

∑
i∈E

n j
i . (19)

The variance between the gradient with respect to the current
local model ŵ

r
i,k−1 and its preferred global model ŵc,r−1 is

scaled by diagonal matrix 3i as

△gr
i,k−1 = 3i

[
gi

(
ŵ

r
i,k−1

)
− gi

(
ŵ

r−1
i,0

)]
(20)

where

3i = diag

{
n̂ j

· ni

n · n j
i

}
j=1,...,q

. (21)

The local updating direction is designed as

dr
i,k−1 = −

(
△gr

i,k−1 + gr−1
c

)
. (22)

The data available locally may be quite different in size.
The auxiliary local gradient and the aggregation step need to
be carefully tuned considering the large variance of the size
of local datasets. The local iteration number, K , should be
revisited when the local data sizes are different. The iteration
number should be related to the number of steps to pass
through all local samples. Each individual machine needs to
make roughly the same progress in the same round. By setting
the same local iteration number, the local learning rate is
designed as αi

l = (αl/ni ) to neutralize the data size difference.
The local model update of the i th individual machine is now
formulated as

ŵ
r−1
i,k = ŵ

r−1
i,k−1 + αi

l dr
i,k−1. (23)

Carrying (23) K times iterations leads to a formula below for
the local model update at individual machine i as{

ŵ
r
i,K = ŵ

r−1
i,0 +

K∑
k=1

αi
l dr

i,k−1

}
i∈Sr

. (24)

The steps for local training with reduced gradient variance
after the threshold T , i.e., r > T , are summarized in
Procedure 1.
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Procedure 1 Local Training With Variance Reduction
Require: Sr , {ŵc,r−1}

C
c=1, K , αl

1: Central server distributes {ŵc,r−1}
C
c=1 to machines in Sr

2: for each machine i ∈ Sr do
3: Compute full local gradients {▽ fi (ŵc,r−1)}

C
c=1

4: Initialize local model with preference via (18)
5: Transmit {▽ fi (ŵc,r−1)}

C
c=1 and local preference to cen-

tral server
6: end for
7: Central server computes {gr−1

c }
C
c=1 via (17)

8: for each machine i ∈ Sr do
9: Compute scaling matrix 3i via (21)

10: for each local iteration k = 1 to K do
11: Compute local update direction dr

i,k−1 via (22)
12: Update to local model ŵ

r−1
i,k via (23)

13: end for
14: end for

B. Model-Based Grouping Mechanism

The model-based grouping mechanism generates diversified
global models by leveraging the inherent similarity among
local model parameters, thereby enhancing the overall learning
process. One notable advantage of this mechanism is its
stability and consistency, as parameters change gradually over
federated iterations, offering a steady and predictable measure
of the model’s progress. Furthermore, the direct relevance of
model parameters to the state of the model simplifies perfor-
mance assessment and necessary adjustments. To relieve the
communication burden, the grouping procedure is conducted
in the central server.

At the r th round, the central server collects the trained
local models from the selected machines, i.e., {ŵ

r−1
i,K }i∈Sr . The

objective in the central server is formulated as increasing the
local models’ similarity within the same group, which can be
formulated as

minimize
{Sr

c}
C
c=1

1
2

C∑
c=1

1
|Sr

c |

∑
i, j∈Sr

c

∥∥∥ŵ
r−1
i,K − ŵ

r−1
j,K

∥∥∥2
. (25)

The mean-centered local model parameters of machine i in
the current round are denoted byw̄

r−1
i = ŵ

r−1
i,K −

1
|Sr |

∑
j∈Sr

ŵ
r−1
j,K


i∈Sr

. (26)

According to the fact that∥∥∥ŵ
r−1
i,K − ŵ

r−1
j,K

∥∥∥2
=

∥∥∥w̄
r−1
i − w̄

r−1
j

∥∥∥2
(27)

the objective (25) can be rewritten as

maximize
{Sr

c}
C
c=1

C∑
c=1

1
|Sr

c |

∑
i, j∈Sr

c

w̄
r−1T
i w̄

r−1
j . (28)

The solution of (28) is the assignment of trained local models
into different groups, with the arrangement that all local
models within the same group are adjacent to each other.

We use matrix W r−1 to denote the subset of the mean-centered
local models {w̄

r−1
i }i∈Sr where we can obtain

W T
r−1W r−1 =

{
w̄

r−1T
i w̄

r−1
j

}
i, j∈Sr

. (29)

We define Hr−1 = {hc}
C
c=1 to refer to the assignment of trained

local models into different groups, where the cth column hc is
the indicator vector of the local models in W r−1 which belong
to the cth group scaled by (1/(|Sr

c |)
1/2). By this definition, the

column vectors in Hr−1 are orthonormal since hT
i hi = 1 and

hT
i h j = 0 when i ̸= j , which leads to HT

r−1 Hr−1 = IC .
Then, the objective (28) is equal to

maximize
Hr−1

Tr
(
HT

r−1W T
r−1W r−1 Hr−1

)
. (30)

To solve (30), we define a linear transformation on the group
selection matrix Hr−1 denoted by Qr−1 = Hr−1T r−1, where
T r−1 is orthogonal matrix and the last column of T r−1 is
defined as tC = {((|Sr

c |/|S
r
|))1/2

}
C
c=1, then we have

Hr−1 tC =

√
1

|Sr |
e (31)

where e is the all-one vector. The rest columns in T r−1 should
satisfy

eT Hr−1 tc = 0 (32)

for c = 1, . . . , C − 1 according to connectivity analysis [29].
We define Q̂r−1 as the matrix involving the first C−1 columns
in Qr−1, and according to the property of trace, we can obtain

Tr
(
HT

r−1W T
r−1W r−1 Hr−1

)
= Tr

(
Q̂T

r−1W T
r−1W r−1 Q̂r−1

)
+

1
|Sr |

eT W T
r−1W r−1e. (33)

Since

W r−1e =

∑
i∈Sr

ŵ
r−1
i,K −

1
|Sr |

∑
j∈Sr

ŵ
r−1
j,K = 0. (34)

Equation (30) can be rewritten as

maximize
Q̂r−1

Tr
(

Q̂T
r−1W T

r−1W r−1 Q̂r−1

)
(35)

with the condition that Q̂T
r−1 Q̂r−1 = IC−1, and (32), we can

obtain the optimal solution to (35) as

Q̂∗

r−1 = V̂ r−1 R (36)

where R is an arbitrary (C − 1) × (C − 1) orthogonal matrix,
and V̂ r−1 is the collection of the C − 1 eigenvectors of
W T

r−1W r−1 corresponding to the C − 1 largest eigenvalues
according to [30]. Then, the objective of (35) is equivalent to∑C−1

c=1 λc where {λc}
C−1
c=1 are the C − 1 largest eigenvalue of

W T
r−1W r−1.
However, there is a challenge to apply the solution in (36)

for models grouping, since Q̂∗

r−1 is a transformation version
of H∗

r−1 which is the indicator matrix for the grouping
results and the transformation between Q̂∗

r−1 and H∗

r−1 is
hard to obtain [29]. But the analysis given above justifies the
advantages of using the principle components and eigenvalues
of W T

r−1W r−1 to conduce the grouping.
Our objective is not solely to group the local models but also

to utilize the grouping information for updating the diversified
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global models. Consequently, the grouping information in the
lower dimensional subspace needs to be transformed back to
update the diversified global model. We use Ûr−1 ∈ Rd×(C−1)

to denote the matrix consists of C − 1 eigenvectors of
W T

r−1W r−1, and 3̂r−1 = diag{λc}
C−1
c=1 . The decomposition of

W T
r−1W r−1 related to the first C −1 principle components can

be written as

V̂ r−13̂r−1V̂ T
r−1 = V̂ r−13̂

1
2
r−1Û T

r−1Ûr−13̂
1
2
r−1V̂ T

r−1. (37)

According to (37), the local models in lower dimensional
subspace used for grouping defined as 3̂

(1/2)

r−1 V̂ T
r−1 can be

reformulated as

W̃ r−1 = Û T
r−1W r−1 = 3̂

1
2
r−1V̂ T

r−1 =

C−1∑
i=1

λ
1
2
i uiv

T
i (38)

which are the projections of the participated mean-centered
local models on the directions represented by each column in
Ûr−1. Then, we based on W̃ r−1 = {w̃

r−1
i }i∈Sr to group the

local models from participated machines.
The initial group representatives come from the previous

accelerated global models {ŵc,r−1}
C
c=1, which are projected to

the lower dimensional space as{
w̃

0
c,r−1 = Û T

r−1ŵc,r−1

}C

c=1
. (39)

After the initial grouping for all selected machines, it is needed
to recalculate C new group representations resulting from the
current trained local model set W̃ r−1.

In the grouping procedure, each local model in W̃ r−1
measures its Euclidean distance to the current group repre-
sentatives, and the group selection is obtained by{

cl
i = argmin

c=1,...,C

∣∣∣∣∣∣w̃r−1
i − w̃

l
c,r−1

∣∣∣∣∣∣}
i∈Sr

(40)

where cl
i denotes the group of local model from machine i in

the lth round of grouping updating. All local models with the
same group selection {cl

i = c}i∈Sr form group Sr
c,l . To achieve

the most influential representation within different groups, the
diversified multiple global models are updated as follows:

w̃
l
c,r−1 =

1
|Sr

c,l |

∑
i∈Sr

c,l

w̃
r−1
i (41)

in the lth round of grouping updating in the central server.
When the grouping update in the central server converged,
i.e.,

C∑
c=1

∑
i∈Sr

c,l

∣∣∣∣∣∣w̃r−1
i − w̃

l
c,r−1

∣∣∣∣∣∣ ≤ ϵ̃ (42)

where ϵ̃ = 10−4, we define {w̃
∗

c,r−1 = w̃
l
c,r−1}

C
c=1 and {Sr

c =

Sr
c,l}

C
c=1. To perform the updating of the diversified global

model in the original space utilized for local training, the
following procedure needs to be executed in the central server
as follows:ŵ

∗

c,r−1 = Ûr−1w̃
∗

c,r−1 +
1

|Sr |

∑
j∈Sr

ŵ
r−1
j,K


C

c=1

. (43)

The steps for model-based grouping mechanism after the
threshold T , i.e., r > T , are summarized in Procedure 2.

Procedure 2 Model-Based Grouping Mechanism
Require: C , Sr , {ŵc,r−1}

C
c=1

1: Conduct local training via Procedure (1)
2: Transmit {ŵ

r−1
i,K }i∈Sr to the central server

3: Compute mean-centered trained local models via (26)
4: Construct the mean-centered similarity matrix W T

r−1W r−1
via (29) and its decomposition via (37)

5: Compute local model projections W̃ r−1 via (38)
6: Initialize group representations via (39)
7: repeat
8: for each machine i ∈ Sr do
9: Assign to group via (40)

10: end for
11: for each group c do
12: Update group representation via (41)
13: end for
14: until Convergence
15: Update diversified global models via (43)
16: Output: diversified global models {ŵ

∗

c,r−1}
C
c=1

Following this process, the final grouping results, represented
by ŵc, r − 1∗c = 1C , can be viewed as the current optimal
representations of the trained local models from the partic-
ipating machines. These models are organized into multiple
groups denoted by Sr

c c = 1C . The adaptive acceleration based
on ŵc, r − 1∗C

c=1 is further detailed in Section IV-D.

C. Gradient-Based Grouping Mechanism
We introduce another novel approach, i.e., local gradients-

based grouping, carefully crafted to leverage training dynamics
to generate diversified global models. In this method, the
central server initiates C groups, with the grouping determined
by the similarity of local gradients. Each machine selected in
this process performs K local iterations, as illustrated in (23)
and (24), and then evaluate and transmit the full local gradients
w.r.t the trained local models {▽ fi (ŵ

r
i,K )}i∈Sr to the central

server.
The central objective is framed as enhancing the coherence

of gradient information within a given group, which can be
expressed as

minimize
{Sr

c}
C
c=1

1
2

C∑
c=1

1
|Sr

c |

∑
i, j∈Sr

c

∥∥∥▽ fi

(
ŵ

r
i,K

)
− ▽ f j

(
ŵ

r
j,K

)∥∥∥2

(44)

to ensure a focused and efficient collaboration based on the
distinctive features of local gradients. Following the gathering
of local gradient information denoted by {▽ fi (ŵ

r
i,K )}i∈Sr , the

central server computes mean-centered local gradients as▽ f̄ i

(
ŵ

r
i,K

)
= ▽ fi

(
ŵ

r
i,K

)
−

1
|Sr |

∑
j∈Sr

▽ f j

(
ŵ

r
i,K

)
i∈Sr

.

(45)

The objective (44) can be reformulated as

maximize
{Sr

c}
C
c=1

C∑
c=1

1
|Sr

c |

∑
i, j∈Sr

c

▽ f̄ i

(
ŵ

r
i,K

)T
▽ f̄ j

(
ŵ

r
j,K

)
(46)
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according to∥∥∥▽ fi

(
ŵ

r
i,K

)
− ▽ f j

(
ŵ

r
j,K

)∥∥∥2

=

∥∥∥▽ f̄ i

(
ŵ

r
i,K

)
− ▽ f̄ j

(
ŵ

r
j,K

)∥∥∥2
.

(47)

Following the conclusion in (36), the solution of (46) is related
to the C − 1 largest eigenvalues of GT

r−1Gr−1, where

GT
r−1Gr−1 =

{
▽ f̄ i

(
ŵ

r
i,K

)T
▽ f̄ j

(
ŵ

r
j,K

)}
i, j∈Sr

(48)

and its eigen-decomposition is acquired through

GT
r−1Gr−1 = Ṽ T

r−13̃r−1Ṽ r−1. (49)

The grouping based on gradients is executed using lower
dimensional local gradients, represented as 3̃

(1/2)

r−1 Ṽ T
r−1. This

can be translated into the projection of all mean-centered local
gradients in Gr−1 onto the subspace spanned by Ũr−1 as
follows:

G̃r−1 = Ũ T
r−1Gr−1 = 3̃

1
2
r−1Ṽ T

r−1 =

{
▽ f̃ i

(
ŵ

r
i,K

)}
i∈Sr

(50)

where

▽ f̃ i

(
ŵ

r
i,K

)
= Ũ T

r−1▽ f̄ i

(
ŵ

r
i,K

)
. (51)

The initial grouping centers are derived from anchor gradi-
ents with respect to the prior diversified global models, i.e.,
{ŵ

r−1
c }

C
c=1, which encompass the current local datasets from

machines in Sr . This formulation is expressed as{
ĝc,r−1 =

∑
i∈Sr

ni

nr
▽ fi

(
ŵ

r−1
c

)}C

c=1

(52)

where the lower dimensional representation is indicated by{
g̃0

c,r−1 = Ũ T
r−1 ĝc,r−1

}C

c=1
. (53)

After establishing the initial grouping centers, it becomes
essential to recalculate the diversified anchor gradients with the
goal of generating more robust representations within G̃r−1.
These representations encapsulate the updating directions for
the diversified global model.

During the grouping procedure, each local gradient in G̃r−1
evaluates its affinity with the current anchor gradients by
quantifying the Euclidean distance to these multiple anchors.
The selection of its group can be expressed as{

cl
i = argmin

c=1,...,C

∣∣∣∣∣∣▽ f̃ i

(
ŵ

r
i,K

)
− g̃l

c,r−1

∣∣∣∣∣∣}
i∈Sr

(54)

where cl
i denotes the group for the local gradient from machine

i in the lth round of grouping updating. All local gradients in
G̃r−1 with identical assignments {cl

i = c}i∈Sr to the anchor
gradients constitute group Sr

c,l . In the same group, the local
gradients share similar perspectives on the directions for global
model updates.

To emerge as the most influential representatives within dis-
tinct groups, the diversified anchor gradients undergo updating
as follows:  g̃l

c,r−1 =
1

|Sr
c,l |

∑
i∈Sr

c,l

▽ f̃ i

(
ŵ

r
i,K

)
C

c=1

(55)

Procedure 3 Gradient-Based Grouping Mechanism
Require: C , Sr , { ĝc,r−1}

C
c=1

1: Conduct local training via Procedure (1)
2: Transmit {▽ fi (ŵ

r
i,K )}i∈Sr to the central server

3: Compute mean-centered local gradients via (45)
4: Compute GT

r−1Gr−1 and its decomposition via (48)-(49)
5: Compute gradient projections {▽ f̃ i (ŵ

r
i,K )}i∈Sr via (50)

6: Initialize group representations via (53)
7: repeat
8: for each machine i ∈ Sr do
9: Assign to group via (54)

10: end for
11: for each group c do
12: Update group representation via (55)
13: end for
14: until Convergence
15: Compute diversified global updates via (57)
16: Update diversified global models via (58)
17: Output: diversified global models {ŵ

∗

c,r−1}
C
c=1

in the lth round of grouping updating in the central server.
The iterative updating sequence progressively steers the anchor
gradients toward their optimal states, which continues until no
further adjustments are observed, i.e., until

C∑
c=1

∑
i∈Sr

c,l

∣∣∣∣∣∣▽ f̃ i

(
ŵ

r
i,K

)
− g̃l

c,r−1

∣∣∣∣∣∣ ≤ ϵ̃ (56)

where ϵ̃ = 10−4. We define { g̃∗

c,r−1 = g̃l
c,r−1}

C
c=1 and

{Sr
c = Sr

c,l}
C
c=1. The optimal reflections of the diversified global

updating are obtained by1wc
g = Ar

Ũr−1 g̃∗

c,r−1 +
1

|Sr |

∑
j∈Sr

▽ f j

(
ŵ

r
i,K

)
C

c=1

(57)

which are the representations of C different visions to update
the global models, and the diversified global models are
generated as {

ŵ
∗

c,r−1 = ŵc,r−1 + 1wc
g

}C

c=1
. (58)

The steps for gradient-based grouping mechanism after the
threshold T , i.e., r > T , are summarized in Procedure 3.
Subsequently, it follows the same adaptive central acceleration
procedure outlined in Section IV-D to acquire the accelerated
diversified global models. These models are then distributed
to the participating machines for local updating in the next
round.

D. Adaptive Central Acceleration on
Diversified Global Models

Adaptive central acceleration is employed following both
the model-based and gradient-based grouping mechanisms.
This approach aims to further refine the learning process by
dynamically adjusting the diversified central models’ influ-
ence. By adaptively accelerating the diversified central models,
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this method ensures that the global model converges more effi-
ciently, and ultimately enhancing the robustness and accuracy.

First, we scale the diversified global models {ŵ
∗

c,r−1}
C
c=1

according to the presence of specific features in individual
local datasets. This scaling is employed to enhance the updat-
ing of gradients related to features that are less frequently
collected by individual machines, and the scaling diagonal
matrix for model aggregation is defined as

Ar = diag

{
|Sr

|∑
i∈E 1n j

i ̸=0

}
j=1,...,q

. (59)

The diversified global models are first updated by{
wr

c = ŵc,r−1 + Ar

(
ŵ

∗

c,r−1 − ŵc,r−1

)}C

c=1
(60)

and then distributed to the current participated individual
machines in Sr to collect the local gradients and calculate
the anchor gradients as{

g
(
wr

c

)
=

∑
i∈Sr

ni

nr
▽ fi

(
wr

c

)}C

c=1

. (61)

Then, the acceleration procedure for diversified global models
{wr

c}
C
c=1 are conducted to obtain the updated global models

{ŵ
r
c}

C
c=1 based on both the current and past anchor gradient

information with appropriate weights to ensure significant
and lasting models. We define the exponential decay rate for
the estimation of the first moment of the global gradient as
a heavy-ball style momentum parameter β1, and the decay
rate of the per-coordinate exponential moving average of the
squared gradients as β2.

We define m̂r
c as an estimate of the first moment of the

anchor gradients in the group c and initialize m̂0
c = 0. The

estimation of the first moment of the anchor gradients in C
groups can be evaluated recursively using{

m̂r
c = β1m̂r

c + (1 − β1)g
(
ŵ

r
c

)}C

c=1
. (62)

We define v̂
r
c as an estimate of the second moment of the

anchor gradients in the group c, and g(wr
c)

2 is a vector
obtained by componentwise squaring vector g(wr

c). In prac-
tice, we initialize v̂

0
c = 0 and the estimated second moment is

evaluated recursively using{
v̂

r
c = β2v̂

r−1
c + (1 − β2)g

(
wr

c

)2
}C

c=1
. (63)

The central acceleration of the diversified global models in the
r th round is designed asŵ

r
c = wr

c − α0
g(1 − β1) ·

√
1 − βr

2

1 − β2

m̂r
c√

v̂
r
c + ϵ


C

c=1

(64)

where ϵ is a small positive scalar to avoid ill-conditioning.
We typically set α0

g = 0.02, and the decay rates β1 and
β2 weigh the importance of the past moments relative to the
present anchor gradient. Thus, they are always set in the range
(0, 1), whose actual values are influential on how quickly
the model is updated and hence must be chosen with care.
Larger values of β1 and β2 tend to yield consistently good
and more stable results when the number of selected individual
machines is very small in each group, since larger values of

Procedure 4 Adaptive Central Acceleration on Diversified
Global Models
Require: C , Sr , ni , nr , β1, β2, α0

g , ϵ, {ŵ
∗

c,r−1}
C
c=1, {ŵc,r−1}

C
c=1

1: Initialize m̂0
c = 0 and v̂

0
c = 0 for all c

2: for each round r do
3: Calculate the scaling diagonal matrix Ar via (59)
4: Update the diversified global models via (60)
5: Distribute {wr

c}
C
c=1 to the machines in Sr

6: Collect the local gradients and calculate the anchor
gradients via (61)

7: Compute {m̂r
c}

C
c=1 via (62) and {v̂

r
c}

C
c=1 via (63)

8: Conduct diversified global models acceleration via (64)

9: Set {ŵ
r
c}

C
c=1 as the initialized diversified models for the

next round training in Procedure (2) or Procedure (3)
10: end for

β1 help to pick up a consistent velocity in the direction leading
to a promising global model updating. The steps for the
adaptive central acceleration of diversified global models after
the threshold T , i.e., r > T , are summarized in Procedure 4.
After the central acceleration of the diversified global models,
{ŵ

r
c}

C
c=1 are the initialized diversified global models for the

next round.

E. Algorithm Analysis
The direct manipulation of the current state of the model

makes it computationally efficient and straightforward to
implement. However, using model parameters to generate
diversified global models has its downsides, such as slow adap-
tation to changes in data distribution and potential overfitting
to specific local data distributions. This approach can also be
storage-intensive, particularly for large models. MA-FSVRG
is preferred in scenarios where stability and consistency are
crucial, such as in applications with relatively stable data
distributions over time and limited computational resources.

Grouping based on gradients can enhance the coherence
of updates, improving the collaboration among participating
individual machines and reducing communication overhead,
as gradients typically require less bandwidth to transmit than
full model parameters. However, gradients can be volatile
and noisy, requiring careful management to ensure stable and
effective training. Implementing algorithms based on gradient
information can also be more complex and pose a risk of
gradient leakage, potentially revealing sensitive details about
the training data. GA-FSVRG is preferred in scenarios where
quick adaptation to changing data distributions and communi-
cation efficiency are essential, such as in real-time applications
or environments with highly dynamic data.

V. EXPERIMENTS

A. Local Training and Test Datasets Design
To simulate diversified local demands and reflect realistic

FL scenarios with non-IID data distributions, we designed
highly heterogeneous local datasets. Each individual machine
possesses samples belonging to only one or two categories,
ensuring significant variation in local data. We applied the
histogram of gradients (HoGs) method to each sample for
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feature extraction [31]. Using a block size of 7 and a stride
of 3, the HoG method resulted in 64 blocks per sample. All
possible gradient angles from 0 to 2π were evenly divided
into nine bins. The magnitudes of gradients within each block
were assigned to the corresponding bins based on their angles,
reducing the original 784 features to 576 HoG features for
each sample. This transformation provided a more compact
and informative representation.

For our experiments, we employed a softmax regression
model to handle multiclass classification tasks. At the start
of the r th round, the central server maintains C = {2, 4, 6, 8}

diversified global models. The server also collects local gra-
dients from individual machines in subset Sr for all global
models, where Sr is sampled from {20%, 15%, 10%, 5%}

with 400 individual machines using the MNIST dataset and
from {40%, 30%, 20%, 10%} with 1000 individual machines
using the CIFAR-10 dataset. The local iteration number K
is adjusted considering the large variance in the size of local
datasets. The local learning rate for each machine i is designed
as αi

l = (αl/ni ) to neutralize the data size difference where
ni is the number of samples on machine i , with αl = 12 for
the MNIST dataset and αl = 0.08 for the CIFAR-10 dataset.
L2 regularization with a coefficient of 0.01 is applied to pre-
vent overfitting. To evaluate the performance of the diversified
global models after each training round, we compare the test
accuracy of the trained global models with the entire test
dataset from MNIST and CIFAR-10.

In our performance evaluation, aside from test accuracy,
we distinguish between macro-averaged and micro-averaged
metrics, each providing unique insights into algorithm effec-
tiveness. Macro-averaging computes the metric for each class
individually and then averages these values, treating all classes
equally regardless of their dataset frequency. This method is
valuable for assessing performance across diverse class distri-
butions, emphasizing the algorithm’s ability to handle minority
classes effectively. In contrast, micro-averaging aggregates
contributions from all classes to compute a single metric,
prioritizing performance on more frequent classes. Our study
shows that MA-FSVRG and GA-FSVRG consistently achieve
high scores in both metrics, demonstrating their robustness
and reliability in maintaining accuracy and efficiency across
varied conditions and outperforming other methods. We have
provided detailed comparison to the state-of-the-art FL algo-
rithms FedProx [6], Personalized FedAvg (PFedAvg) [23],
SCAFFOLD [26], MimeSVRG [27], and LoSAC [28].

B. Experimental Results on MNIST Dataset

Fig. 1(a)–(d) shows the test accuracy of algorithms on the
MNIST dataset across different participation rates. With 20%
participation as shown in Fig. 1(a), MA-FSVRG achieves
approximately 98.2% accuracy, while GA-FSVRG reaches
98.5%, outperforming FedProx and PFedAvg. With 15%
participation, MA-FSVRG and GA-FSVRG maintain high
accuracies around 98.0% and 98.3%, respectively, demon-
strating robust performance compared to SCAFFOLD and
MimeSVRG as shown in Fig. 1(b). With 10% participation
as shown in Fig. 1(c), MA-FSVRG and GA-FSVRG achieve
accuracies of approximately 97.8% and 98.1%, respectively,
surpassing FedProx and LoSAC. As shown in Fig. 1(d), MA-
FSVRG and GA-FSVRG achieve accuracies of around 97.5%
and 97.8%, respectively, showing resilience compared to Fed-
Prox and PFedAvg with 5% participation. MA-FSVRG and

Fig. 1. Performance comparison with test accuracy by decreasing participated
individual machines where β1 = 0.0, β2 = 0.999, and maintain four
diversified global models, a threshold is four rounds; (a) 20% individual
machine selection; (b) 15% individual machine selection; (c) 10% individual
machine selection; (d) 5% individual machine selection.

Fig. 2. Performance comparison with macro-averaged precision by decreas-
ing participated individual machines where β1 = 0.0, β2 = 0.999, and
maintain four diversified global models, a threshold is four rounds; (a) 20%
individual machine selection; (b) 15% individual machine selection; (c) 10%
individual machine selection; (d) 5% individual machine selection.

GA-FSVRG consistently outperform other algorithms across
varying participation rates in test accuracy, highlighting their
effectiveness and adaptability in FL environments.

Fig. 2(a)–(d) displays the macro-averaged precision for the
algorithms under varying machine participation rates of 20%,
15%, 10%, and 5%, respectively. In Fig. 2(a), with 20% par-
ticipation, MA-FSVRG achieves a precision of approximately
0.96, while GA-FSVRG reaches 0.965. FedProx and PFe-
dAvg exhibit lower precision values of about 0.94 and 0.945,
respectively. Fig. 2(b) shows that with 15% participation, MA-
FSVRG and GA-FSVRG maintain high precisions of around
0.958 and 0.963, respectively, compared to approximately
0.945 for SCAFFOLD and MimeSVRG. At a participation rate
of 10% as shown in Fig. 2(c), MA-FSVRG and GA-FSVRG
achieve precisions of about 0.955 and 0.96, respectively, while
FedProx and LoSAC achieve about 0.94 and 0.943. As shown
in Fig. 2(d), with a 5% participation rate, MA-FSVRG and
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Fig. 3. Performance comparison with micro-averaged recall by decreasing
participated individual machines where β1 = 0.0, β2 = 0.999, and maintain
four diversified global models, a threshold is four rounds; (a) 20% individual
machine selection; (b) 15% individual machine selection; (c) 10% individual
machine selection; (d) 5% individual machine selection.

GA-FSVRG attain precisions of approximately 0.95 and 0.955,
respectively, higher than FedProx and PFedAvg, which reach
about 0.935 and 0.94. MA-FSVRG and GA-FSVRG con-
sistently achieve superior precision even under conditions
of limited machine participation, making them well-suited
for practical deployment in FL environments with resource
constraints. Their reliable high precision across different par-
ticipation rates underscores their effectiveness and resilience.
Not only do MA-FSVRG and GA-FSVRG outperform other
methods in terms of precision, but they also demonstrate
notable adaptability to fluctuating participation rates. This
adaptability is crucial for maintaining high-quality perfor-
mance in FL settings where machine involvement can vary
significantly.

Fig. 3(a)–(d) shows the micro-averaged recall for all algo-
rithms across machine participation rates of 20%, 15%, 10%,
and 5%, respectively. Micro-averaged recall evaluates the
proportion of correctly identified true positives out of all
actual positive instances across all participating machines.
These higher recall values indicate the ability of MA-FSVRG
and GA-FSVRG to accurately identify positive instances.
In Fig. 3(a), with 20% participation, MA-FSVRG achieves
a recall of approximately 0.97, with GA-FSVRG reaching
about 0.975, both highlighting their superior recall perfor-
mance compared to FedProx and PFedAvg at 0.95 and 0.955,
respectively. With 15% participation as shown in Fig. 3(b),
MA-FSVRG and GA-FSVRG maintain high recalls of around
0.968 and 0.973, while SCAFFOLD and MimeSVRG achieve
lower recalls of approximately 0.955 and 0.958, which
demonstrates a significant performance gap, underscoring the
robustness and efficiency of MA-FSVRG and GA-FSVRG
with fewer participating machines. Similarly, in Fig. 3(c) with
10% participation, MA-FSVRG and GA-FSVRG lead with
recalls of about 0.965 and 0.97, compared to FedProx and
LoSAC at about 0.95 and 0.955. Even at a minimal 5%
participation rate as shown in Fig. 3(d), MA-FSVRG and
GA-FSVRG achieve recalls of approximately 0.96 and 0.965,
surpassing FedProx and PFedAvg at 0.945 and 0.95. This
consistent improvement in recall at lower participation rates
underscores the robustness and reliability of MA-FSVRG and

Fig. 4. Performance comparison with micro-averaged F1 score by decreasing
participated individual machines where β1 = 0.0, β2 = 0.999, and maintain
four diversified global models, a threshold is four rounds; (a) 20% individual
machine selection; (b) 15% individual machine selection; (c) 10% individual
machine selection; (d) 5% individual machine selection.

GA-FSVRG, showcasing their ability to maintain high recall
performance across varying participation rates.

Fig. 4(a)–(d) displays the micro-averaged F1 scores for
all algorithms under different machine participation rates of
20%, 15%, 10%, and 5%, respectively. The micro-averaged
F1 score metric integrates both precision and recall, providing
a comprehensive evaluation of the algorithms’ effectiveness
in achieving balanced performance across distributed data
settings. In Fig. 4(a), with 20% participation, MA-FSVRG
achieves an F1 score of about 0.965, while GA-FSVRG
reaches approximately 0.97. These values indicate the superior
performance of MA-FSVRG and GA-FSVRG compared to
other baselines such as FedProx and PFedAvg, which attain
lower F1 scores of about 0.945 and 0.95, respectively. The
higher F1 scores of MA-FSVRG and GA-FSVRG reflect
their balanced precision and recall, demonstrating their effec-
tiveness in maintaining overall model performance. With
15% participation as shown in Fig. 4(b), MA-FSVRG and
GA-FSVRG maintain high F1 scores of around 0.963 and
0.968, respectively, while SCAFFOLD and MimeSVRG
achieve lower scores of approximately 0.955 and 0.957. This
performance gap underscores the robustness and efficiency of
MA-FSVRG and GA-FSVRG even with fewer participating
machines. Similarly, with a reduced participation rate of
10%, MA-FSVRG and GA-FSVRG continue to lead with
F1 scores of around 0.96 and 0.965, respectively, compared
to FedProx and LoSAC at about 0.945 and 0.95 as shown in
Fig. 4(c). Even at a minimal 5% participation rate as shown
in Fig. 4(d), MA-FSVRG and GA-FSVRG achieve F1 scores
of about 0.955 and 0.96, surpassing FedProx and PFedAvg at
0.94 and 0.945, which highlights the robustness and reliability
of MA-FSVRG and GA-FSVRG.

C. Experimental Results on CIFAR-10 Dataset
Fig. 5(a)–(d) depicts the macro-averaged recalls for all

algorithms across different machine participation rates of 40%,
30%, 20%, and 10%, respectively, using the CIFAR-10 dataset.
Macro-averaged recall evaluates the average recall across all
classes, providing insight into the model’s overall ability to
correctly identify relevant instances. In Fig. 5(a), with 40%
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Fig. 5. Performance comparison with macro-averaged recall by decreasing
participated individual machines where β1 = 0.9, β2 = 0.999, and maintain
three diversified global models, a threshold is four rounds; (a) 40% individual
machine selection; (b) 30% individual machine selection; (c) 20% individual
machine selection; (d) 10% individual machine selection.

participation, MA-FSVRG and GA-FSVRG achieve recalls
of approximately 0.87 and 0.88, surpassing other algorithms
like FedProx and PFedAvg with recalls around 0.84 and
0.85, and SCAFFOLD and MimeSVRG with approximately
0.82 and 0.83. Moving to 30% participation in Fig. 5(b), MA-
FSVRG and GA-FSVRG maintain recalls of around 0.85 and
0.86, outperforming FedProx and PFedAvg which achieve
about 0.82 and 0.83, respectively. With 20% participation
in Fig. 5(c), MA-FSVRG and GA-FSVRG achieve recalls
of approximately 0.83 and 0.84, compared to FedProx and
PFedAvg with about 0.80 and 0.81. This consistency highlights
the robustness of MA-FSVRG and GA-FSVRG in maintain-
ing high recall rates despite fewer participating machines.
As shown in Fig. 5(d) even with 10% participation, MA-
FSVRG and GA-FSVRG achieve recalls of about 0.80 and
0.81, respectively, compared to FedProx and PFedAvg with
approximately 0.77 and 0.78. The significant difference in
recall at this low participation rate emphasizes the reliability of
MA-FSVRG and GA-FSVRG in capturing relevant data points
despite limited machine involvement, where maintaining high
macro-averaged recall in FL across varying participation rates
is essential for robust deployment in real-world scenarios.

The macro-averaged F1 score combines precision and recall
across all classes, providing a comprehensive measure of
the model’s ability to balance true positives and negatives.
As shown in Fig. 6(a), with 40% participation, MA-FSVRG
and GA-FSVRG achieve macro-averaged F1 scores of approx-
imately 0.86 and 0.87, respectively, outperforming FedProx
and PFedAvg with F1 scores around 0.83 and 0.84, and
SCAFFOLD and MimeSVRG with about 0.81 and 0.82, using
the CIFAR-10 dataset. With 30% participation, as shown in
Fig. 6(b), MA-FSVRG and GA-FSVRG achieve F1 scores
of around 0.84 and 0.85, surpassing FedProx and PFedAvg
at approximately 0.81 and 0.82, demonstrating their resilience
and consistent high performance as participation decreases.
In Fig. 6(c), MA-FSVRG and GA-FSVRG maintain their lead
with F1 scores around 0.82 and 0.83, compared to FedProx
and PFedAvg with about 0.79 and 0.80 with 20% partici-
pation, showcasing their adaptability in varied FL scenarios.
As shown in Fig. 6(d) where even with 10% participation,

Fig. 6. Performance comparison with macro-averaged F1 score by decreasing
participated individual machines where β1 = 0.9, β2 = 0.999, and maintain
three diversified global models, a threshold is four rounds; (a) 40% individual
machine selection; (b) 30% individual machine selection; (c) 20% individual
machine selection; (d) 10% individual machine selection.

Fig. 7. Performance comparison with micro-averaged precision by decreasing
participated individual machines where β1 = 0.9, β2 = 0.999, and maintain
three diversified global models, a threshold is four rounds; (a) 40% individual
machine selection; (b) 30% individual machine selection; (c) 20% individual
machine selection; (d) 10% individual machine selection.

MA-FSVRG and GA-FSVRG achieves F1 scores of approxi-
mately 0.79 and 0.80, surpassing FedProx and PFedAvg with
scores around 0.76 and 0.77, highlighting their reliability and
effectiveness even with limited machine participation, making
them suitable for practical deployment in FL environments
with resource constraints.

As shown in Fig. 7(a), MA-FSVRG and GA-FSVRG
achieve micro-averaged precisions of approximately 0.86 and
0.87, respectively, outperforming FedProx and PFedAvg with
precisions around 0.83 and 0.84, and SCAFFOLD and
MimeSVRG with about 0.81 and 0.82, using the CIFAR-
10 dataset with 40% participation. These results highlight
the superior micro-averaged precision of MA-FSVRG and
GA-FSVRG in correctly identifying relevant instances while
minimizing false positives. With 30% participation, as shown
in Fig. 7(b), MA-FSVRG and GA-FSVRG achieve micro-
averaged precisions of around 0.84 and 0.85, surpassing
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Fig. 8. Performance comparison with test accuracy by different thresholds of
the initial rounds where β1 = 0.0, β2 = 0.999, and maintain four diversified
global models. (a) Two rounds. (b) Four rounds. (c) Six rounds. (d) Eight
rounds.

FedProx and PFedAvg at approximately 0.81 and 0.82,
demonstrating their robustness and consistent high precision
despite reduced participation. In Fig. 7(c), MA-FSVRG and
GA-FSVRG maintain their lead with precisions of around
0.82 and 0.83, compared to FedProx and PFedAvg with
about 0.79 and 0.80 with 20% participation. With only 10%
participation, Fig. 7(d) shows MA-FSVRG and GA-FSVRG
achieving precisions of approximately 0.79 and 0.80, outper-
forming FedProx and PFedAvg with scores around 0.76 and
0.77, underscoring their reliability and effectiveness in FL
environments with limited resources. The high micro-averaged
precisions of MA-FSVRG and GA-FSVRG across varying
participation rates highlight their superior precision in cor-
rectly identifying relevant instances while minimizing false
positives in dynamic FL settings.

D. Impact of Different Thresholds of Grouping

Since each machine is still exploring its model updating
directions at the beginning of the federated training procedure,
and due to the limited machine participation, it is hard to
collect effective information of the global model updating at
the beginnings. Thus, we conduct the following experiment to
explore the impact of different thresholds of federated rounds
before the development of the diversified global updating.

We focus on the performance comparison of the proposed
MA-FSVRG and GA-FSVRG. As shown in Fig. 8 with 10%
machines selected, both MA-FSVRG and GA-FSVRG are
initialized with 2–8 federated rounds before the grouping
mechanism to generate diversified global models and anchor
gradients, respectively. The larger the threshold to start the
diversified global updating, the smaller the overall variance
in the achieved test accuracy, especially with MA-FSVRG
whose performance is greatly impacted by the quality of the
local models. With different thresholds to start the group-
ing mechanism, GA-FSVRG can outperform MA-FSVRG in
the achieved test accuracy, but MA-FSVRG is better with
stabler performance. By increasing the threshold to conduct
the diversified global updating, the convergence speed of
MA-FSVRG is increased, however, the convergence speed
of GA-FSVRG is slightly deteriorated at the early training

Fig. 9. Performance comparison with test accuracy by diversified anchor
gradients where β1 = 0.0, β2 = 0.999 with 10% individual machine selection
and threshold is four rounds. (a) Two groups. (b) Four groups. (c) Six groups.
(d) Eight groups.

stage. However, with a larger threshold as 8 rounds shown in
Fig. 8(d), the performance of GA-FSVRG can be stabilized
to a higher level of test accuracy by the increased threshold.
The threshold can be adjusted by different applications which
have different tolerance of the variance in performance. The
larger threshold can guarantee a more stable initial training
procedure, especially with limited machine participation.

E. Impact of Number of Diversified Global Models
One of the important parameters in diversified global updat-

ing is the number of groups the central server managed which
leads to diversified global model acceleration. We evaluate
the performance of the proposed methods with increasing
number of global models from 2 to 8 as shown in Fig. 9.
With the increasing number of diversified global models,
the performance of GA-FSVRG is extensively improved,
however, the variance of the performance is also increased.
The performance of MA-FSVRG is much smoother com-
pared with that of GA-FSVRG, but it cannot achieve the
same test accuracy level as GA-FSVRG. Furthermore, the
performance gap between MA-FSVRG and GA-FSVRG on
the test accuracy enlarged with the increasing number of
groups. The convergence speed for both MA-FSVRG and
GA-FSVRG are accelerated with increasing group numbers
thanks to the multiple global models acceleration in the central
server. Although it can achieve higher test accuracy at the early
stage with more groups in the central server, the high-quality
performance is not stable. After 30 rounds, the influence of
increased group number is limited on MA-FSVRG, but is large
on the performance of GA-FSVRG. Therefore, GA-FSVRG
has the advantage to converge faster and achieve higher test
accuracy compared with MA-FSVRG, and the performance of
MA-FSVRG is stabler.

F. Impact of Central Adaptive Parameters
Finally, we explore the impact of different parameters β1 for

the first-order moments of the anchor gradients on differ-
ent diversified global model updating in the central server.
As shown in Fig. 10, we check the first-order moment param-
eter β1 from the set {0.0, 0.5, 0.8, 0.9}. With increasing β1,
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TABLE I
CENTRAL COMPUTATION COST (S)

Fig. 10. Performance comparison with test accuracy by different β1 where
β2 = 0.999 with 10% individual machine selection and threshold is four
rounds with four groups. (a) β1 = 0.0. (b) β1 = 0.5. (c) β1 = 0.8.
(d) β1 = 4 0.9.

the performance of MA-FSVRG is improved a lot. Although
smaller β1 helps to improve the convergence at the early
stage of FL training for both MA-FSVRG and GA-FSVRG,
the variance of the performance is also larger compared with
that with larger β1. However, the increasing β1 also causes
more variance into the performance after 30 rounds, where
the drawback impact on MA-FSVRG is greater than that of
GA-FSVRG.

GA-FSVRG achieves the best performance compared with
MA-FSVRG with β1 = 0, where the test accuracy can be
stabled to around 98% during the first 10 federated rounds.
However, when the first-order moment parameter β1 increases
to 0.9, the performance of GA-FSVRG can converge to the
same level after 20 rounds, as shown in Fig. 10(d), which is
bouncing around below 98% during the first 20 rounds. How-
ever, the influence of the first-order moments on MA-FSVRG
has more advantages compared that of GA-FSVRG. It is
obvious that smaller β1 can achieve stabler performance with
MA-FSVRG, but the test accuracy performance is improved
with the increasing value of β1.

However, the advantage of the first-order moments becomes
to disadvantage in the diversified global model for the group-
ing mechanism based on anchor gradients except the stabler
performance. The first-order moments are useful with unified
global model federated training thanks to its ability to enhance
the global updating trends to avoid the jitters during the train-
ing procedure. However, this ability is harmful to diversified
global model updating for GA-FSVRG, due to that first-order
moments enhanced the updating trends by eliminating the
variance of anchor gradients which also reduces the diversity
of the anchor gradients.

G. Central Server Computation Time Analysis
The central computation cost for the proposed MA-FSVRG

and GA-FSVRG algorithms is measured using an experimental
platform equipped with an 8-core CPU, a 14-core GPU,
and 16 GB of RAM. This analysis provides insights into the
scalability of these algorithms under varying conditions of
model diversity and individual machine participation rates. The
results are summarized in Table I, which reports the central
server computation times in seconds for different scenarios.

When analyzing MA-FSVRG, we observe its behavior
concerning model diversity and individual machine participa-
tion rates. Initially, with two global models, the computation
time scales linearly from 10.14 s at 10% individual machine
participation to 39.30 s at 40% participation. This trend
becomes more pronounced as the number of global mod-
els increases, i.e., with four models, computation time rises
notably from 20.27 to 74.94 s. The pattern continues with six
and eight global models, where computation times escalate
from 29.19 to 110.64 s and from 38.75 to 147.30 s, respec-
tively. Regarding individual machine participation, increasing
from 10% to 40% results in approximately a fourfold increase
in computation time across all levels of model diversity. This
underscores the direct impact of individual machine engage-
ment on the computational workload of the central server.

Similar to MA-FSVRG, GA-FSVRG demonstrates consis-
tent behaviors in terms of model diversity and individual
machine participation rates. With two global models, compu-
tation times range from 10.66 s at 10% participation to 41.32 s
at 40% participation. Increasing the number of global models
to four leads to computation times escalating from 20.69 to
79.01 s. For six and eight global models, the computation
times span from 29.63 to 113.04 s and from 38.62 to 147.73 s,
respectively. The impact of individual machine participation is
similarly pronounced in GA-FSVRG, showing a proportional
increase in computation time from 10% to 40% participation
rates.

VI. CONCLUSION AND DISCUSSIONS

In this article, we proposed the adaptive central accelerated
FL with diversified global updating to tackle the challenges
in heterogeneous demands of various individual machines.
It can not only show a faster convergence rate in the training
procedure but also can achieve higher test accuracy compared
with the state-of-the-art FL baseline algorithms. Two different
diversified global updating methods are proposed, i.e., MA-
FSVRG and GA-FSVRG, where MA-FSVRG can achieve
stabler performance with cheaper local computing cost and
GA-FSVRG can converge faster to a higher test accuracy.

Regardless of the promising performance of the current
work, there are several future research issues beckoning further
investigation. Our future research should focus on reducing
communication overhead through efficient protocols like gradi-
ent compression and quantization, and addressing synchronous
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communication inefficiencies by exploring asynchronous train-
ing strategies. While we have streamlined our current study to
focus on our main contributions, we acknowledge the impor-
tance of investigating the defensive capabilities of diverse
global models. To address the feasibility of this defense
mechanism, future research could focus on the investigation of
the integration of adaptive defense mechanisms that leverage
model diversity to detect and isolate compromised models.
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