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Abstract—Thanks to smart manufacturing and artificial intel-
ligence technologies, unmanned aerial vehicles (UAVs) are envi-
sioned to play a critical role in future Internet of things (IoT)
networks to execute data collection tasks. In this article, we lever-
age age of information (AoI) to measure the freshness of data
packets received by the UAV from IoT sensors. Considering the
heterogeneity of IoT devices, we aim to minimize the weighted sum
AoI by jointly optimizing the UAV’s trajectory and IoT devices
association in UAV-assisted IoT networks, where the UAV’s cumu-
lative propulsion energy cost is limited by the battery capacity.
Since the optimization object is confined by a set of short-term
constraints and a long-term constraint, this problem is modeled
as a constrained Markov decision process (CMDP). We leverage
safe actor-critic (Safe-AC) to solve the CMDP. To satisfy the mixed
constraints, the safe policy set of Safe-AC is induced by a Lyapunov
function, thereafter, a policy distillation technology is leveraged to
search the optimal policy. Experimental results indicate that our
proposed scheme can strictly satisfy the propulsion energy cost
budget requirement at the expense of around 2% loss of the reward
compared to baseline methods.
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I. INTRODUCTION

INTERNET of things (IoT) devices have been extensively
used in smart agriculture [1], intelligent fishery [2], forest

monitoring [3], [4] etc. to collect real-time data from surround-
ing environment. To support these real-time applications, the
generated and perceived data by IoT sensors are expected to
be transmitted to the receiver as new as possible. Take marine
fisheries as an example, the data on temperature, salinity, power
of hydrogen, and dissolved oxygen, are time-sensitive and obso-
lete data may cause fish disease, even causing disastrous loss. To
measure the freshness of the data from the receiver’s perspective,
age of information (AoI) as an effective performance metric was
proposed [5], which is defined as the elapsed time since the
latest received update was generated, i.e., the recently received
packet has a smaller value of age. Traditionally, throughput [6],
coverage ratio [7], [8], and latency [9] are the main metrics
to evaluate the performance of IoT networks. Nevertheless,
these performance metrics may not quantify the freshness of
the received data. For example, the delay metric represents the
amount of the time spent from the source to the destination,
which may not be able to character the age of the received data.
Therefore, we can keep the received data fresh by minimizing
the AoI.

Traditionally, the collected data are delivered to the receivers
via terrestrial communication networks; however, ground in-
frastructures can be too costly to deploy in non-populated re-
gions. Designing, developing, and deploying novel communi-
cation facilities is extremely urgent. Unmanned aerial vehicle
(UAV)-assisted IoT network, a new paradigm of wireless com-
munications is emerged as a promising solution for real- time
data collection in agriculture management and other scenarios.
Compared to terrestrial base stations, UAVs are able to overcome
ground obstacles and make a flexible flying path to communicate
with sensors more economically and efficiently. Besides, UAVs
can leverage Line-of-Sight (LoS) links to serve IoT sensors.
However, UAVs’ on-board energy is limited and UAVs have
to reserve sufficient energy to return to their bases or charge
stations, which confines the flying path and data collection
time. In addition, IoT sensors are often deployed dispersedly
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and irregularly, which further increased trajectory designing
difficulty. Therefore, how to guarantee the timeliness of the re-
ceived data by optimizing UAV’s trajectory while considering its
limited energy budget, is a challenging task for UAV-assisted IoT
networks. In the following statement, the terms “IoT sensors”
and “IoT devices” are used interchangeable.

We investigate a UAV-enabled IoT system, where IoT sensors
generate time-sensitive data and a battery-limited UAV cruises
around to gather the information as fresh as possible. Consider-
ing the timeliness requirement and heterogeneity of devices, the
optimization object is formulated to minimize the weighted sum
AoI while taking UAV’s limited on-board energy into account.
Our main contributions can be summarized in the following
points.
� We minimize the long-term weighted sum AoI of the

network by jointly considering the UAV’s path and IoT
devices association, where the UAV cumulative propulsion
energy cost is limited by the energy budget.

� We leverage safe actor-critic (Safe-AC) with policy dis-
tillation approach [10] to deal with the aforementioned
problem. Since the optimization object is confined by a set
of short-term constraints and a long-term energy constraint,
we model the problem as a constrained Markov decision
process (CMDP). Moreover, we leverage Safe-AC to deal
with the CMDP. To ensure the safety of the policy, i.e.,
to satisfy the mixed constraints, the policy of Safe-AC is
calculated in a safe policy set generated by a Lyapunov
function. Furthermore, the optimal policy is obtained by
employing a policy distillation technology to distill multi-
ple trajectories’ policies knowledge into a single one.

� A Python-based simulator is developed to implement the
proposed algorithm. Extensive experimental results illus-
trate that our proposed scheme can take full advantages
of available energy and avoid exceeding energy budget
compared to baseline methods while effectively capturing
IoT devices’ status data.

The remainder of this article is organized as follows. We
present the literature review of existing works in Section II. We
introduce the system model and formulate the optimization prob-
lem in Sections III and IV, respectively. The Safe-AC approach is
introduced to solve the problem in Section V. Simulation results
are discussed in Section VI. At last, we present the conclusion
and future work in Section VII.

II. RELATED WORK

We briefly introduce the recent works in AoI-driven UAV re-
source allocation and deep reinforcement learning (DRL)-based
UAV trajectory designing, respectively.

A. AoI-Driven UAV Resource Allocation

There are some excellent works on AoI-driven resource al-
location in UAV-assisted IoT networks [11], [12], [13], [14],
[15], [16], [17], [18]. For example, reference [11] minimized the
total AoI of the network by optimizing the UAVs’ path, UAVs’
transmission and sensing time. Gu et al. derived the analytical
solution of the average peak AoI based on the research of the

status updating model of IoT devices [12]. Hu et al. proposed
a data collection and wireless power transfer scheme for UAV-
enabled IoT networks to minimize the average AoI by jointly
optimizing the UAV’s trajectory and the time assignment [13].
The above works try to optimize the freshness of the received
data by designing UAVs’ trajectory while satisfying a series of
constraints. As we know, the UAV’s cruise usually requires a
large amount of propulsion energy, which has great influence
on the UAV’s path designing, especially for the energy-limited
UAV systems. However, these works [11], [12], [13] overlook
the propulsion energy cost. Considering the limitation of UAV’s
on-board energy, reference [14] proposed a UAV path design-
ing scheme to reduce the UAV energy cost. A multi-objective
optimization method was presented to minimize both AoI and
the UAV energy cost in [15]. Reference [16] aimed to minimize
the average peak AoI together with energy cost of both UAVs
and sensors. Sun et al. tried to find a balance between AoI
and the flying energy cost by optimizing UAV’s flight path and
spectrum allocation [17]. Fang et al. proposed a novel adaptive
time slot and power control scheme for next generation multiple
access systems to minimize the average peak AoI and energy
consumption [18]. The above works may effectively decrease
energy cost, however, which may not guarantee that the UAV’s
long-term propulsion energy cost never exceed the total energy
budget. Furthermore, the UAV available energy is often under-
utilized in these schemes, which induces sub-optimal solutions
on trajectory designing and results in high AoI consequently.
Therefore, how to take full advantages of the UAV energy to
make more reasonable decisions is a problem deserved to study.
This article tries to investigate the UAV’s trajectory designing
and user association problem with the aim of minimizing the
weighted sum AoI while satisfying the long-term propulsion
energy constraint.

B. DRL Based UAV Trajectory Designing

DRL algorithms are considered as effective methods to deal
with UAV trajectory designing problems [19], [20], [21], [22],
where UAVs are treated as robots to search the optimal trajectory
by interacting with the environment directly. Many excellent
works have been done in academia recently. For instance, Wang
et al. considered a UAV trajectory designing approach based
on deep Q-learning network (DQN) algorithm to maximize
the amount of user equipments (UEs) served in drone-enabled
emergence communication systems [19]. To make the UAV
exploring environment more efficiently, a curiosity-driven DQN
(C-DQN) based trajectory designing method was proposed
in [20]. To reduce energy cost of UEs in a drone-assisted edge
computing system, reference [21] presented a deep deterministic
policy gradient (DDPG) based algorithm for the UAV path
design. Samir et al. [22] introduced a UAV altitude control
and IoT devices association scheme based on proximal policy
optimization (PPO). The optimization problems formulated in
these works [19], [20], [21], [22] are with a set of short-term
constraints, which are generally reformulated as a Markov
decision process (MDP) and solved by the traditional DRL
methods, such as, DQN, actor-critic, PPO, etc. Nevertheless,
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Fig. 1. UAV-assisted IoT networks.

since the optimization problem considered in this study is
confined by a set of short-term constraints and a long-term
constraint, how to transform the long-term constraint into short-
term constraints for these traditional DRL algorithms is a big
challenge.

Lagrangian-based DRL algorithms are useful tools to deal
with this kind of problem [23], [24], [25], the CMDP is refor-
mulated as an MDP by transforming the long-term constraint
into a penalty reward, thereafter, traditional DRL methods are
leveraged to solve the MDP. Reference [25] proposed a dueling
double deep Q-learning network (DDQN) based UAV trajectory
designing scheme to minimize the outage duration, where the
long-term energy constraint is transformed as a short-term con-
straint by adding a penalty item to the reward function. However,
these Lagrangian-based DRL methods [23], [24], [25] may result
in either energy is underutilized or dead battery. Therefore, how
to construct a safe and feasible policy set that satisfies the mixed
constraints for CMDP is a challenging task.

In this study, we employ a novel DRL method, namely, safe
actor-critic with policy distillation, to deal with the long-term
weighted sum AoI minimization problem, which satisfies a set
of short-term constraints and a long-term energy constraint.

III. SYSTEM MODEL AND ASSUMPTIONS

Fig. 1 depicts the overview of the considered UAV-enabled
IoT networks. In an outdoor area, K IoT devices are randomly
deployed and a UAV is cruising at a fixed altitude H to col-
lect IoT devices’ status information from the start spot p[0] =
(ustart, vstart, H) to the destination p[N ] = (udest, vdest, H) as
fresh as possible. The UAV’s whole cruising duration is split
into N time slots equally and each slot has τ seconds. Let
N = [1, . . . , N ] denote the collection of slots. The set of IoT
devices is represented byK = {1, . . . ,K}. Let u[n] and v[n] be
the horizontal coordinate and vertical coordinate, respectively,
therefore, the UAV’s position in the n-th time interval can be
denoted by p[n] = (u[n], v[n], H) (∀n ∈ N ). The location of
device k is denoted by pk = (uk, vk, 0), ∀k ∈ K.

Each IoT device updates its status data at the start of each
time slot, which is transmitted to the UAV directly when the

device is scheduled. It is assumed that time division multiple
access (TDMA) technology is used, i.e., at most one device can
be associated with the UAV in a time slot. Let the binary variable
snk denote whether device k is scheduled by the UAV or not and
snk = 1 means device k is associated with the UAV and snk = 0
otherwise. Therefore, we have

snk ∈ {0, 1} , ∀k ∈ K, n ∈ N , (1)

K∑
k=1

snk ≤ 1, ∀k ∈ K, n ∈ N . (2)

Let s[n] = {sn1 , . . . , snk , . . . , snK} denote the UAV’s scheduling
strategy within time slot n.

A. The Propulsion Energy Model

According to references [26], [27], [28], [29], the UAV’s
propulsion power is calculated by

Pfly[n] = P0

(
1 +

3V 2[n]

U2
tip

)

+ P1

(√
1 +

V 4[n]

4V 4
0

− V 2[n]

2V 2
0

)1/2

+
1

2
z0ρμξV

3[n], (3)

whereP0 is the blade profile power,P1 andV0 are induced power
and the average rotor induced velocity in hover, respectively.
Utip denotes the tip speed of the rotor blade and V [n] is com-
puted by V [n] = ‖p[n]− p[n− 1]‖/τ [14]. z0 is the fuselage
drag rate, μ is the rotor solidity, ρ is the air density, and ξ is the
rotor disc area.

To reserve enough energy for the UAV to execute other func-
tionalities, such as flying back to its bases or charging stations
safely, the cumulative propulsion energy cost Efly[N ] should
satisfy

Efly[N ] =

N∑
n=1

Pfly[n]τ ≤ Emax, (4)

where Emax is the UAV’s maximal available propulsion en-
ergy [30].

B. The Channel Model

Gk2U denotes the channel gain between device k and the
UAV with position p[n], which is the average value over two
transmission channels, i.e., LoS and non-LoS (NLoS) links and
calculated by

Gk2U (p[n]) = 20 log(4πfcdk2U (p[n])ι
−1)

+ ηLoSΛLoS(p[n]) + ηNLoS(1− ΛLoS(p[n])), (5)

where ι is the speed of light, fc is the carrier frequency, and
dk2U (p[n]) represents the distance between device k and the
UAV calculated by

dk2U (p[n]) =

√
(u[n]− uk)

2 + (v[n]− vk)
2 +H2. (6)

In (5), ηLoS and ηNLoS denote the additional mean losses
of LoS and NLoS channels, respectively [31]. The prob-
ability of LoS ΛLoS can be expressed as ΛLoS(ϕ) =

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:39:34 UTC from IEEE Xplore.  Restrictions apply. 



1268 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

[1 + δ exp(−β(ϕ− δ))]−1, where δ and β are S-curve parame-
ters [32], and ϕ is given by

ϕ(p[n])=
180

π
arctan

(
H−1

√
(u[n]− uk)

2+(v[n]− vk)
2

)
.

(7)

C. The AoI Model

Instead of leveraging throughput or latency, we adopt AoI to
quantify the freshness of data from the receiver’s view. Let An

k

denote the AoI value of device k’s status information saved on
the UAV within time slot n.

According to Shannon theory, the achievable uplink data rate
from device k to the UAV is written as

Rn
k2U (p[n]) = Blog2(1 + Pk2UGk2U (p[n])/σ

2), (8)

where Pk2U denotes the transmission power of device k, B
denotes the bandwidth, σ2 is the additive white Gaussian noise
power, and Gk2U (p[n]) is the channel gain discussed in Sec-
tion III-B. We assume both B and Pk2U are constant, Rn

k2U can
be regarded as a function of p[n] consequently. Considering (2)
and (8), the amount of data received by the UAV from device k
in time slot n can be calculated as

Dn
k (p[n], s[n]) = snk ·Rn

k2U (p[n]) · τ. (9)

Let Dmin denote the minimum data size required to re-
cover or decode the received data successfully [33], [34]. If
Dn

k (p[n], s[n]) ≥ Dmin, we haveAn
k = 1 that means the current

status data of device k is transmitted to the UAV successfully;
otherwise, we haveAn

k = An−1
k + 1 that means device k’s status

data saved on the UAV is not updated within time slot n and AoI
An

k becomes older. Obviously, An
k is a mapping from the UAV’s

path plan p[n] and UAV-IoT device association strategy s[n] to
AoI, i.e.,

An
k (p[n], s[n]) =

{
1;Dn

k (p[n], s[n]) ≥ Dmin,
An−1

k + 1; otherwise.
(10)

IV. PROBLEM FORMULATION

Since the heterogeneity of IoT devices, the initial AoI values
of devices are not equal. Considering the different priority of
devices, we use the weightωk to indicate the relative importance
of device k’s information. Therefore, we aim to minimize the
long-term weighted sum AoI by optimizing the UAV’s path p[n]
and the association strategy s[n]. The optimization problem is
described as:

min
p[n],s[n]

N∑
n=1

K∑
k=1

ωkA
n
k (p[n], s[n]) (11a)

s.t. Efly[N ] =

N∑
n=1

Pfly[n]τ ≤ Emax, (11b)

p[0] = (ustart, vstart, H), (11c)

p[N ] = (udest, vdest, H), (11d)

‖p[n]− p[n− 1]‖ ≤ vmaxτ , (11e)

snk ∈ {0, 1} , ∀k ∈ K, n ∈ N , (11f)

K∑
k=1

snk ≤ 1, ∀k ∈ K, n ∈ N , (11g)

where (11b) is the propulsion energy cost constraint. (11c)
and (11d) represent the UAV’s start location and destination,
respectively. (11e) is the UAV’s mobility constraint. (11f) and
(11g) ensure that at most one device can be associated with the
UAV in each time slot.

We find that the constraint conditions of problem (11) are
short-term constraints (11c)–(11g) mixed with a long-term con-
straint condition (11b). The challenge is how to transform the
long-term constraint as a short-term constraint. To solve the
above problem, (11) is reformulated as a CMDP, which is
subsequently solved by Safe-AC [10].

A. Problem Reformulation Based on CMDP

The problem (11) is reformulated as a CMDP that is described
by a tuple 〈X ,A,P, x0, r, c, c0〉. The details are given as fol-
lows.
� X = X ′ ∪ Xdest represents the environment state fea-

ture space, where X ′ is the transient state space and
Xdest is the final state space. X ′ contains three parts: (a)
The UAV’s position at the beginning of n-th time slot,
i.e., p[n− 1] = (u[n− 1], v[n− 1], H), ∀n ∈ N , where
(u[n− 1], v[n− 1]) �= (udest, vdest). (b) The IoT devices’
position pk = (uk, vk, 0), ∀k ∈ K. (c) The IoT devices’
AoI values {An

k |∀k ∈ K, n ∈ N}.Xfinal includes {p[n] =
(udest, vdest, H)|∀n ∈ N}.

� A denotes the action space that consists of the UAV’s
coordinates p[n] = (u[n], v[n], H) that satisfies (11e) and
the scheduling strategy s[n] that satisfies (11f) and (11g).

� P is the state feature transition function. Considering that
the state features include the UAV’s position, the IoT
devices’ position, and AoI values, the corresponding tran-
sition functions are set as follows. First, since the UAV’s
position at the beginning of n-th time slot is determined
by the action p[n− 1], therefore, the UAV’s position state
transits according to p̂[n] = p[n− 1], where p̂[n] is the
UAV’s coordinates at the start of time slot n. Second, the
IoT devices’ position is pk = (uk, vk, 0). Third, AoI value
An

k transits according to (10).
� x0 ∈ X ′ denotes the start state feature, which includes
p[0] = (ustart, vstart, H) and A0

k (∀k ∈ K).
� r represents the immediate reward function. According to

(11a) and optimality theory, r is given by

r =

{−∑K
k=1 ωkA

n
k , if p[n] �= (udest, vdest, H),

−∑K
k=1 ωkA

n
k +Ω, otherwise,

(12)
where Ω is a positive constant that is used to induce the
UAV to the final spot.

� c is the constraint cost, which can be described as: c(x, a) =
Pfly[n]τ based on (11b).

� c0 denotes the upper bound of the long-term constraint cost,
according to (11b), we have c0 = Emax.

Let Π(x) = {π(·|x)|∑a∈A π(a|x) = 1} denote the policy
set. Given x0 and π (∀π ∈ Π(x)), the long-term reward of the
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UAV is calculated by

Rπ(x0) = E

{
N ∗−1∑
n=0

r(xn, an)|x0, π

}
, (13)

where N ∗ is the first arriving time from the start state x0 to the
destination. The long-term energy cost is written as

Cπ(x0) = E

{
N ∗−1∑
n=0

c(xn)|x0, π

}
, (14)

which satisfies Cπ(x0) ≤ c0. Above all, the optimization prob-
lem of the CMDP is formulated as

π∗(·|x) = argmax
π∈Π
{Rπ(x0)|Cπ(x0) ≤ c0}. (15)

How to transfer the long-term constraint Cπ(x0) as a feasible
single-step policy set is a critical issue to solve the CMDP. In the
next section, we will take advantages of the Lyapunov function
theory to construct a feasible policy set for the UAV to guarantee
the obtained policy is safe, i.e., satisfying all constraints (11b)–
(11g).

V. SAFE ACTOR-CRITIC WITH POLICY

DISTILLATION APPROACH

In this section, we leverage Safe-AC method to deal with
the CMDP. We first introduce the construction of safe policy
set induced by a Lyapunov function, based on which the critic
and actor parts are presented, respectively. To fully utilize the
past experiences when searching the optimal policy, policy
distillation technology is leveraged. At last, the pseudo-code
of Safe-AC based algorithm is presented.

A. The Safe Policy Set

In this part, the Lyapunov function theory is leveraged to build
the safe policy set. To start with, it is assumed that we can obtain
a baseline feasible policy1 of Problem (15) denoted by πb(·|x) ∈
Π.

Definition 1: Given constraint threshold c0 and the initial state
x0, the set of Lyapunov functions can be represented as

Γπb
(x0, c0) = {(x) : Bπb,c[](x) ≤ (x), ∀x ∈ X ′;

(x) = 0, ∀x ∈ X\X ′; (x0) ≤ c0}, (16)

where Bπb,c[](x) is calculated by Bellman function
operator, i.e., Bπb,c[](x) =

∑
a∈A πb(a|x)[c(x, a) +

γ
∑

x′∈X ′ P(x′|x, a)(x′)], ∀x ∈ X , πb ∈ Π. For ∀(x) ∈
Γπb

(x0, c0), the Lyapunov function -induced safe policy set is
written as

F�(x) = {π(·|x) ∈ Π(x) : Bπ,c[](x) ≤ (x)}. (17)

Considering the contraction features of Bπ,c[](x) and (x0) ≤
c0, ∀π(·|x) ∈ F�(x) is a feasible policy of (15). From (17), it is
observed that the larger  means that the larger set F�(x) can be
obtained and we have more opportunities to acquire π∗ in F�(x)
correspondingly. Hence, the critical job in the following is to
construct a suitable Lyapunov function .

1For example, πb(·|x) ∈ argminπ∈Π(x) Cπ(x) is a baseline feasible policy
of Problem (15).

We can transform the long-term constraint Cπ∗(x) w.r.t. π∗

into a Lyapunov function induced by πb, which is written as

Δ(x) = Cπ∗(x) = E

{
N ∗−1∑
n=0

[c(xn) + Δ(xn)] |πb, x

}
,

∀x ∈ X ′, and Δ(x) = 0, ∀x ∈ X\X ′, (18)

where Δ(xn) is an additional constraint cost available at each
step, which is utilized to expand the feasible action space and
improve the policy consequently. Nevertheless, it is challenging
to build Δ(xn) without the priori knowledge of π∗. To reduce
the computational complexity, Δ(xn) is approximated by

Δ = Δ(xn) = (c0 − Cπb(x0))/E[N ∗|x0, πb], (19)

where c0 − Cπb(x0) is the total auxiliary constraint cost avail-
able from x0 to the final state and E[N ∗|x0, πb] is the UAV’s
expected first-arriving time from the start position to the des-
tination. In such a manner, we can take full advantages of the
UAV’s propulsion energy budget while planning the trajectory.

According to (18), Δ(x) can be calculated by

Δ(x) =
∑
a∈A
{π(a|x)Q�Δ(x, a)}, (20)

where Q�Δ(x, a) = QC(x, a) + Δ(x)QN (x, a) is the state-
action value of Δ, QC(x, a) is the constraint value, QN (x, a)
is the residual steps from x to the final state, and Δ(x)QN (x, a)
presents the rest of constraint cost, respectively. To guarantee
the policy π(a|x) is safe, the following inequation should be
satisfied

[π(a|x)− πb(a|x)]Q�Δ(x, a) ≤ Δ(x), (21)

which means the extra costs [π(a|x)− πb(a|x)]Q�Δ(x, a)
caused by π(a|x) cannot exceed Δ(x). Then, the safe policy
set (17) induced by Δ(x) can be rewritten as

F�Δ(x) = {π(·|x) ∈ Π(x) :

[π(a|x)− πb(a|x)]Q�Δ(x, a) ≤ Δ(x)}. (22)

B. The Critic Part

We adopt actor-critic framework to solve Problem (15) in
following sections. In the critic part, we employ deep neural
network (DNN) to evaluate Q(x, a), QC(x, a), and QN (x, a),
respectively. Q(x, a) is evaluated by Q(x, a)

.
= Q(x, a;ϑ),

where ϑ = {ϑ1, ϑ2, · · ·ϑW }. At each step, the newly gener-
ated data is saved in an experience replay memory, i.e., D ←
(x, a, r, c, x′) ∪ D. The DNN is trained by randomly sampling
a batch of samples (x, a, r, c, x′) from the replay memory and
the parameter ϑ is renewed by [35]

Loss(ϑ) = E[(y −Q(x, a;ϑ))]2, (23)

where the target value is y = r(x, a) + maxa∈AQ̂(x′, a; ϑ̂) and
Q(x, a;ϑ) is the current Q value with parameter ϑ. The param-
eter ϑ is renewed by

ϑ = ϑ− αc,n(y −Q(x, a;ϑ)) · ∇ϑQ(x, a;ϑ), (24)

where αc,n is the critic’s learning rate. The parameter ϑ̂ of the
target Q value Q̂(x′, a; ϑ̂) is updated by ϑ̂ = ϑ after several
steps.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:39:34 UTC from IEEE Xplore.  Restrictions apply. 



1270 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

Algorithm 1: The Safe Actor-Critic Based Algorithm.

Similarly,QC(x, a) andQN (x, a) are also evaluated by DNN
approximators QC(x, a;ϑC) and QN (x, a;ϑN ), respectively.
The parameters ϑC and ϑN are updated by

ϑC = ϑC − αc,n(yC −QC(x, a;ϑC)) · ∇ϑQC(x, a;ϑC),
(25)

ϑN = ϑN − αc,n(yN −QN (x, a;ϑN )) · ∇ϑQN (x, a;ϑN ),
(26)

where yC = c(x) + π(a|x′)Q̂C(x
′, a; ϑ̂C) and yN = 1 +

π(a|x′)Q̂N (x′, a; ϑ̂N ), respectively. Consequently, (19) is
transformed as

Δ(x) =
(c0 − πb(·|x0)

QC(x0, ·;ϑC))

πb(·|x0)
QN (x0, ·;ϑN )

. (27)

C. The Actor Part

Based on the values QC(x, a) and QN (x, a) obtained in
Section V-B, the safe policy set (22) is constructed. Then, the

optimal action probabilities π′(a|x) of (15) is calculated by

π′(a|x) = argmax
π∈Δ
{Rπ(x) :

[π(a|x)− πb(a|x)]Q�Δ(x, a) ≤ Δ(x)}, (28)

whereRπ(x) = π(a|x)Q(x, a) and Q(x, a) is the Q-value of
the reward. However, since the safe policy set F�Δ(x) is not
stable at the beginning of the training, it is easy to found that
π′(a|x) cannot be used directly.

Policy distillation is a famous method for model compres-
sion [38], which has following advantages. a) Multiple teacher
policies can be combined into a single student policy which
has better performance than teachers. b) Policy distillation can
be applied as an online learning process, which is able to
continually distill the best policy for the actor. In this study,
to make the best benefits of the past experiences when searching
the optimal policy, policy distillation is leveraged to distill
multi-trajectory policies knowledge into a single one [39]. First,
we sample a batch of state trajectories {x′0,j , . . . , x′N−1,j}|J |j=1

from experience replay memoryD. Second, action probabilities
{π(·|x′0,j), . . . , π(·|x′N−1,j)}|J |j=1 of these trajectories that are
calculated by (28) are sent to the policy distillation part of
Fig. 2. Third, by minimizing the average Jensen-Shannon (JS)
divergence between the parameterized policy DNN πφ(·|x) and

action probabilities {π(·|x′0,j), . . . , π(·|x′N−1,j)}|J |j=1, the opti-
mal policy parameter φ∗ is renewed by

φ∗ ∈ argmin
φ

1

J

J∑
j=1

N−1∑
n=0

DJS(πφ(·|xn,j)||π′(·|xn,j)), (29)

where DJS(Y ||Z) = 1
2DKL(Y || 12 (Y + Z)) + 1

2DKL(Z||
1
2 (Y + Z)) and DKL(Y ||Z) is Kullback-Leibler (KL)
divergence that is used to measure the difference of distributions
Y and Z.

D. Safe Actor-Critic Based Algorithm

Fig. 2 shows the framework of Safe-AC based algorithm
and the pseudo-code is given in Algorithm 1, the convergence
performance analysis of which can be found in [10]. Considering
the whole flying time of the UAV is slotted as N , we have
E[N ∗|x0, πb] = N in (19) and QN (xj , aj) = N −N ′, respec-
tively, where N ′ is the experienced steps from x0 to xj . The
learning rates αc,n and αa,n satisfy [40]

∞∑
n=0

αc,n =∞,

∞∑
n=0

α2
c,n <∞,

∞∑
n=0

αa,n =∞,

∞∑
n=0

α2
a,n <∞, lim

n→∞
αa,n

αc,n
= 0. (30)

VI. SIMULATION RESULTS AND ANALYSIS

In this section, the proposed scheme and other baseline
methods are implemented on a Python-based simulator. The
simulation environment and parameters are described as follows.
IoT devices are deployed on a 500× 120 m2 area as shown
in Fig. 3, where some devices are located far away from the
start and final spots [41]. The number of IoT devices K ranges

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:39:34 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: AGE OF INFORMATION MINIMIZATION FOR UAV-ASSISTED INTERNET OF THINGS NETWORKS 1271

Fig. 2. Framework of safe actor-critic with policy distillation.

TABLE I
DEFINITIONS OF ABBREVIATIONS

from 3 to 10. A UAV is cruising above the area to receive the
data generated by IoT devices, the hovering altitude of which
is fixed as H = 100 m [42]. The parameters of (12) are set
as: Ω = 30, K = 6, ω1 = 4× 10−3, ωk = 2× 10−3 (∀k ∈ K,
k �= 1). To make the UAV’s path more regular and sleek, the
initial AoI values are set as A0

1 = 10 and A0
k ≥ A0

k+1 (∀k ∈ K).
The detailed simulation parameters are listed in Table III.

In Figs. 4 and 5, the darker lines represent the average values
and the shaded area represents the average values± the standard
error that reflects the variance of the curves. Fig. 4 demon-
strates the convergence performance comparison of the proposed
Safe-AC based algorithm w.r.t. different actor’s learning rates,
which satisfies (30) and are set bytrial-and-error. The reward per
episode is calculated according to (11a). In this part, the critic’s

Fig. 3. Diagram of IoT devices’ locations.

Fig. 4. Reward performance comparison w.r.t. different actor’s learning rates.
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TABLE II
DEFINITIONS OF NOTATION

TABLE III
SIMULATION PARAMETERS

learning rate is set as αc,t = 5× 10−4. The algorithm runs 500
episodes totally and each episode includes 100 steps. We find that
the curve reaches convergence after around 150 episodes while
suffering a high variance and low reward whenαa,t = 5× 10−4.
That is because the high learning rate always result in over-
shooting. Nevertheless, the learning speed becomes slower when
the learning rate is dropped to αa,t = 1× 10−5. Compared to

Fig. 5. Reward performance comparison w.r.t. different critic’s learning rates.

Fig. 6. Reward performance per episode w.r.t. different total energy budget.

αa,t = 1× 10−5 and αa,t = 5× 10−4 cases, αa,t = 5× 10−5

is the best learning rate, which has excellent performances in
terms of average return and variance. Fig. 5 shows the con-
vergence properties of the proposed algorithm w.r.t. the critic’s
learning rate αc,t, where αa,t is set as 5× 10−5. We also
find that the convergence performance is sensitive to learning
rates, to be specific, the learning rate αc,t = 5× 10−3 results in
significant variances while αc,t = 3× 10−4 causes the longer
learning time. We observe that the best learning rate of the critic
is αc,t = 5× 10−4. Hence, in the following part, αa,t and αc,t

are set as αa,t = 5× 10−5 and αc,t = 5× 10−4, respectively.
To show the high efficiency of the proposed Safe-AC based

algorithm, a nature actor-critic based algorithm (NAC) [43], a
Lagrangian-based actor-critic algorithm (LAC) [23], [24], [25],
and safe deep policy improvement based algorithm (SDPI) [10]
are also simulated. The key performance comparisons among
these algorithms are summarized in Table IV. Fig. 6 is the reward
performance per episode w.r.t. different total energy budget of
Safe-AC, LAC, and NAC. From the figure, we find that NAC gets
the highest reward among the algorithms. Since NAC does not
consider the propulsion energy limitation, therefore, the policy
of NAC is not limited byEmax and NAC can make the flying path
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TABLE IV
COMPARISONS AMONG THE SAFE-AC BASED ALGORITHM AND OTHER BASELINE METHODS

Fig. 7. UAV’s cumulative propulsion energy cost per episode w.r.t. different
total energy budget.

decision more flexible and obtain a higher reward. Therefore,
NAC is considered as a baseline of the reward in the following
analysis. From Fig. 6, we notice that the reward of Safe-AC
is obviously increased when Emax rises from 1.1× 104 J (the
purple curve) to 2.6× 104 J (the yellow curve). Because the
larger Emax results in a bigger feasible action space, which
means the UAV have more opportunities to obtain the optimal
strategy and a higher reward. We also find that LAC (the red
curve) has a slight high reward compared to Safe-AC (the purple
line) when Emax = 1.1× 104 J. That is because the trajectory
designing of LAC is more flexible than Safe-AC case, due to
the fact that the policy of LAC is not seriously confined by the
energy cost limit that can be seen in Fig. 7. At last, Safe-AC
(the yellow curve) has similar reward with NAC (the deep blue
curve) when the energy budget is sufficient.

Fig. 7 is the UAV’s cumulative propulsion energy cost per
episode of Safe-AC, NAC, and LAC w.r.t. different total en-
ergy budget. From Fig. 7, we observe that the total propulsion
energy cost of Safe-AC (the purple curve) is decreasing from
around 1.6× 104 J to less than 1.1× 104 J after convergence
when Emax = 1.1× 104 J. On the contrary, we observe that the
energy cost of LAC (the red curve) is around 1.5× 104 J when
Emax = 1.1× 104 J. The reason is that Safe-AC constructs a
safe policy set for the UAV based on the energy budget Emax,
therefore, the total propulsion energy cost do not exceed the
budget Emax consequently; while the policy of LAC cannot be
seriously limited by the long-term energy constraint, i.e., the

Fig. 8. Weighted sum AoI of all devices per episode w.r.t. different total energy
budget.

UAV’s total propulsion energy cost per episode may exceed the
total energy budget. By comparison, the energy cost of Safe-AC
(the yellow curve) increases significantly from around 2.1× 104

J to around 2.5× 104 J when Emax = 2.6× 104 J. That is
because Safe-AC tries to fully utilize available energy while not
exceeding the energy budget. Besides, it is observed from Fig. 7
that SDPI can satisfy the energy budget whenEmax = 1.7× 104

J, however, which suffers lower learning speed than the proposed
algorithm. The main reason is that SDPI is lack of a value
estimation network and updates its policy parameters at the
end of each episode, while the proposed algorithm updates the
policy parameters immediately after the action has been taken
according to the evaluated state-action values. Hence, based on
Figs. 6 and 7, we draw a conclusion that our proposed Safe-AC
strictly satisfy the propulsion energy cost budget requirement at
the expense of slight loss (around 2%) of the reward compared
to NAC and LAC.

Fig. 8 shows the AoI values of IoT devices versus the num-
ber of devices when ω1 = 4× 10−3, ωk = 2× 10−3 (∀k ∈ K,
k �= 1), and A0

k = 10 (∀k ∈ K). The values in the figure are
averaged over the last 50 episodes after convergence. Similar
with Fig. 3, some devices are deployed far away from the
start and final positions in this part. From the figure, we find
that when the number of devices is rising, the weighted sum
AoI keeps increasing observably. That is because at most one
device is connected by the UAV at each time slot, more de-
vices deployed means each device enjoys less services and the
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Fig. 9. Reward performance versus height.

sum of AoI increases consequently. Besides, when the energy
budget is rising, the AoI is decreasing for the fixed number of
devices. The reason is that more propulsion energy budget is
available, the UAV can make more flexible trajectory planning
to receive the data of devices with higher AoI values. At last,
LAC has lower AoI than Safe-AC when Emax = 1.1× 104 J,
which can also be observed in Fig. 9. Since LAC may exceed
the energy budget and reaches the farther device than Safe-AC
does.

Fig. 9 shows the weighted sum AoI per episode versus the
flying height of the UAV. The values in the figure are averaged
over the last 50 episodes after convergence. We notice that the
AoI value rises when the UAV’s flight altitude is increasing.
Since the channel gains between the IoT device and the UAV
are mainly determined by the distance between them, therefore,
the higher flying altitude causes the weaker channel conditions
and the lower transmit rate consequently when the bandwidth
and transmit power are given. Furthermore, from (10), we find
that the lower transmit rate will cause the higher AoI value.
Therefore, the AoI value increases when the UAV’s flight altitude
is rising.

Fig. 10 shows the weighted sum AoI per step in an episode,
which is calculated by

∑K
k=1 ωkA

n
k (p[n], s[n]) (∀n ∈ N ),

whereK = 6,N = 100,ω1 = 4× 10−3,ωk = 2× 10−3 (∀k ∈
K, k �= 1), andA0

k = 10 (∀k ∈ K). We find that the curves are in
saw-toothed. That is because the AoI of a device is set as 1 if the
current generated data by the device is transmitted to the UAV
successfully, otherwise the AoI value adds 1 that can be found
from (10). On the other hand, we find from the figure that the
AoI value of the curve changes 6 times whenEmax = 2.6× 104

J, which means K = 6 devices are traversed by the UAV, while
the curve when Emax = 1.1× 104 J only changes 3 times. The
reason is that more energy available can make more flexible
flying path decision to capture all devices’ data.

Fig. 11 shows the UAV’s trajectories w.r.t. different energy
budget. The weight ω1 is set higher than that of other devices,
which is used to stimulate the UAV to capture the status data of
device 1 firstly. To demonstrate the efficiency of Safe-AC, some

Fig. 10. Weighted sum AoI per step.

Fig. 11. UAV’s trajectories w.r.t. different total energy budget.

IoT devices, e.g. devices 3, 4, and 5 in Fig. 11, are deployed far
away from the start and final spots. According to (10), since the
AoI value is set to 1 when the status information is collected
successfully, the UAV is likely to move towards the next device
with high AoI value. In such a manner, the UAV is encouraged to
traverse each device in turn. From Fig. 11, we find that the UAV’s
path can pass through all IoT devices whenEmax = 2.6× 104 J,
while only a part of devices are served when Emax = 1.1× 104

J and Emax = 1.7× 104 J. For instance, device 3 and 4 are
not served by the UAV when Emax = 1.7× 104 J. This is due
to the fact that these devices are dispatched far away from the
destination, which may consume a large amount of the UAV’s
energy to cover them. To guarantee the UAV’s accumulated
energy cost is no more than the total energy budget, these devices
are ignored. At last, from Fig. 11, we find that the trajectories
of Safe-AC without (w/o.) policy distillation cover less devices
than the case of Safe-AC no matter when Emax = 1.7× 104 J
or when Emax = 1.1× 104 J. That is because policy distillation
employed by Safe-AC can combine multiple expert polices into a
single policy, which outperforms the original polices. Therefore,
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the proposed Safe-AC can give a reasonable trajectory to served
IoT devices while satisfying the long-term energy constraint.

VII. CONCLUSION

This article focused on minimizing the long-term weighted
sum AoI for UAV-aided IoT networks by optimizing the UAV’s
trajectory designing and IoT devices association strategy. Con-
sidering the limitation of UAV on-board energy, we take the
UAV’s long-term flight energy cost into account. Since the opti-
mization object was confined by a set of short-term constraints
and a long-term constraint, the problem was formulated as a
CMDP, which was subsequently solved by Safe-AC approach
with policy distillation. Finally, experimental results showed
that our proposed Safe-AC based scheme could fully utilize
available energy and avoid exceeding energy budget compared
to baseline methods while effectively capturing IoT devices’
status data. In the future work, we will discuss AoI minimization
problem in multiple UAVs scenarios by leveraging multi-agent
DRL methods.
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