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Abstract—The next-generation wireless network is perceived to
integrate with sensing capability and evolve into the perceptive
mobile network (PMN), enabling massive sensing-intensive appli-
cations. However, the sensing function will affect the communica-
tion performance in cellular networks. To study the sensing and
communication performance of PMNs and their interactions, this
paper investigates a millimeter-wave PMN with dual-functional
base stations (BSs) for simultaneous detection of unauthorized
unmanned aerial vehicles (UAVs) and user communication via
the unified transmit signal and beamforming. We develop a
system-level theoretical framework to investigate the sensing
and communication performance of PMNs based on stochastic
geometry, which captures the mutual interference and resource
contention between the two functions and builds a foundation
for the optimization of network configurations. In addition,
by leveraging the collaboration of multiple BSs in PMNs, we
propose a cooperative sensing strategy combining the monostatic
and bistatic sensing processes to enhance the reliability of UAV
surveillance. Simulation results verify the effectiveness of the
proposed theoretical framework and demonstrate the benefits
of cooperative sensing in UAV detection and communication per-
formance, as compared with the standalone sensing by individual
BSs.

Index Terms—Perceptive mobile network, integrated sensing
and communication, UAV surveillance, cooperative sensing.
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THE wireless network is undergoing a paradigm shift from
the communication-only network to the perceptive mobile

network (PMN) with intrinsic sensing capability [1]. With the
support of the integrated sensing and communication (ISAC)
technology, the PMN is expected to perform dual functions of
sensing and communication on the unified hardware platforms
via sharing the same millimeter-wave (mmWave) frequency
band [2, 3]. PMNs can achieve networked sensing with minor
modifications on current cellular infrastructures, thus enabling
a variety of sensing-intensive applications including the un-
manned aerial vehicle (UAV) surveillance [4, 5]. With high
mobility and low cost, UAVs have been pervasively used in
civil and military fields, such as product delivery, assisted net-
working, and reconnaissance [6, 7]. However, in the absence
of comprehensive surveillance, the unauthorized UAVs may
pose severe security threats, such as illegal data collection,
aerial collision, and even terrorist attack [8]. Leveraging the
PMN for UAV surveillance can avoid the prohibitively high
costs of deploying dedicated cameras and acoustic sensors
over expansive areas, and also overcome their vulnerability
to weather and light conditions [7].

Exploiting PMNs for UAV surveillance brings both chal-
lenges and opportunities. On one hand, the joint communica-
tion and UAV detection conducted by a base station (BS) in-
troduces dual-functional interference and resource contention
[3]. In addition, the simultaneous UAV sensing performed by
the large-scale BSs in PMNs leads to mutual interference and
network clutter. How to configure the large number of BSs in
PMNs to realize both sensing and communication functions
and how to reveal the interplay between the two functions have
not been thoroughly investigated yet [2]. On the other hand, the
distributed yet interconnected BSs in PMNs offer promising
opportunities for cooperative sensing [9, 10]. This enables
the collaborative utilization of the multiple perspectives from
different BSs for sensing a UAV, and thus acquires spatial
diversity gain and wide angular observations and improves
the reliability of UAV detection [11]. Researches on the
cooperative sensing in PMNs as well as the corresponding
dual-functional performance are still in the infancy. To fill the
gap, this paper considers the following problems:

• How to build a general theoretical framework to analyze
the communication and sensing performance of PMNs?

• How to design the cooperative sensing strategy in PMNs
to enhance UAV detection performance compared with
standalone sensing?

• How to fine tune network configurations to optimize the
dual-functional performance of PMNs?
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In this paper, first, we establish an analytical framework
for quantifying both sensing and communication performance
of the mmWave UAV surveillance-oriented PMN, where the
BSs in the PMN are responsible for providing downlink
communication service to ground user equipments (GUEs)
and detecting the unauthorized UAVs around them at the
same time. Two ways for BSs to conduct UAV detection
are considered, namely, the standalone sensing by individual
BSs, and the cooperative sensing by multiple BSs leveraging a
hybrid of monostatic sensing and bistatic sensing, respectively.
Specifically, the theoretical expressions for rate coverage
probability (RCP), successful detection probability (SDP),
and sensing outage probability (SOP) are derived based on
stochastic geometry. By optimizing the network configurations
in terms of the allocation of power and radio frequency
(RF) chain resources, BS density, and sensing coverage of
BSs, we investigate the enhancement and tradeoff of sensing
and communication performance for the PMN. The main
contributions of this paper are summarized as follows:

• From the dual-functional perspective, we explore how
the PMN can achieve reliable UAV surveillance and user
communication simultaneously by investigating the ISAC
signal, beamforming, and sensing coverage, and propose
a cooperative sensing strategy for reliable UAV detection.

• Based on stochastic geometry, we establish a system-
level theoretical framework for analyzing the sensing and
communication performance of PMNs in standalone and
cooperative sensing cases, capturing the mutual interfer-
ence and resource contention between the two functions.

• Based on the proposed theoretical framework, we inves-
tigate the different impacts of key network parameters on
sensing and communication performance, and shed some
light on dual-functional resource allocation and network
configuration of PMNs.

The rest of this paper is organized as follows. In Section
II, we overview the related work. The system model of the
mmWave UAV surveillance-oriented PMN is described in
Section III. In Section IV, we elaborate on the standalone
and cooperative sensing in the PMN. In Section V, we estab-
lish the analytical framework for sensing and communication
performance of PMNs, and the performance optimization is
studied in Section VI. Simulation results are given in Section
VII. Finally, the paper is concluded in Section VIII.

Notations: The lowercase and uppercase bold letters are
used for vectors and matrices, respectively. (·)T and (·)H
stand for the transpose and conjugate transpose, respectively.
IN denotes the identity matrix of dimension N × N . N
denotes the set of natural numbers. Cx×y denotes the space
of x × y complex matrices. |z| denotes the absolute value of
z. ∥x∥ denotes the Euclidean norm of a complex vector x. ∼
stands for “distributed as”. Gamma(a, b) denotes the Gamma
distribution with a and b being the shape and rate parameters,
respectively. Γ(·) is the Gamma function. 1(A) is the indicator
function, equal to 1 when event A occurs and 0 otherwise.

II. RELATED WORK

For the dual-functional PMN, a number of existing studies
have investigated the dual-functional interference, resource

contention, and performance tradeoff between sensing and
communication. Some early studies focus on the mutual
interference mitigation via time-division [1] or opportunistic
spectrum access [12] for sensing and communication, which
leads to low degree of integration of the two functions and
causes low resource utilization and extra control overhead. The
authors of [3, 13] design the ISAC waveform and beamforming
and optimize the dual-functional power allocation to enhance
the accuracy of parameter estimation, taking into account
the mutual interference between sensing and communication
while ignoring the clutter in target sensing. In the presence of
clutter patches in background environments, a beamforming
management method for the mutual interference suppression
between sensing and communication is proposed in [14] for
PMNs, with one BS acting as the signal transmitter and
one target monitoring terminal (TMT) acting as the echo
receiver. Moreover, a unified framework for the performance of
target detection, localization, and tracking is proposed and the
allocation of power and bandwidth resources between sensing
and communication is optimized in [5], where the clutter
suffered by a BS is modeled as a Gaussian random variable
same as the noise.

In view of the potential spatial diversity gain of cooperative
sensing, several studies investigate the feasible cooperative
sensing structures for PMNs, as well as the fusion policy
for the sensing results from multiple BSs. A distributed PMN
architecture for cooperative sensing is proposed in [11], where
several TMTs are added only as sensing receivers and the BS
is dedicated as the sensing transmitter. Another cooperative
architecture proposed in [9] integrates sensing into the cloud
radio access network (C-RAN), where part of the remote
radio units are used as sensing receivers and the others
are transmitters. Flexible cooperative sensing structures are
introduced in [10] by combining the monostatic, bistatic, and
multi-static sensing processes. With cooperation, the signals
sent by multiple transmitters for sensing the target experience
different transmission links to the receivers, and the spatial
diversity gain can be acquired by jointly processing the echoes
at multiple receivers. The fusion rules and cooperative BS
selection policy in PMNs are studied in [15], where the
binary detection decisions from multiple BSs are fused at
the central node. The multi-radar cooperative detection system
is introduced in [16] to obtain better detection capability by
fusing the original echoes received at multiple radars through
broadband networks.

Different from the existing work studying a limited number
of BSs, we focus on the new challenges of integrating sensing
function into conventional cellular networks with the large-
scale and randomly distributed BSs, and provide system-
level analysis on sensing and communication performance. We
aim to shed some light on network configurations for clutter
suppression, mutual interference reduction, and performance
optimization of the dual-functional PMN. Furthermore, we
investigate the cooperative sensing strategy for PMNs with the
collaboration of interconnected BSs, and reveal the benefits
of cooperative sensing on both UAV detection and sensing
coverage performance.
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Fig. 1: Illustration of the PMN supporting UAV surveillance.

III. SYSTEM MODEL

In this section, the system model of the mmWave PMN for
UAV surveillance is presented. Specifically, we introduce the
stochastic geometry model, antenna model, association policy,
ISAC signal and beamforming model, and channel model.

A. Stochastic Geometry Model

As shown in Fig. 1, we consider a mmWave cellular network
where BSs are deployed to simultaneously serve GUEs and de-
tect unauthorized UAVs that neither communicate nor provide
information to BSs. The locations of BSs, UAVs, and GUEs
are modeled by two-dimensional (2D) homogeneous Poisson
point processes (HPPPs) ΦB, ΦU, and ΦG with densities λb,
λu, and λg at constant heights HB, HU, and 0, respectively.1 In
this paper, we focus on downlink transmissions which also in-
corporate the sensing function, and the uplink communication
can work under time or frequency duplex division to avoid the
interference with downlink signals and echoes, given sufficient
time or frequency guard intervals [2, 18]. In addition, we
assume that the locations of GUEs and UAVs are unchanged
within the short time of one signal transmission and reception
process. Our analysis is based on a randomly chosen BS from
ΦB, denoted as the typical BS by x, whose location is set as
the origin of the coordinate system.

B. Antenna Model

Due to the severe penetration loss in mmWave band, we
consider that BSs are equipped with uniform planar arrays
(UPAs) with Nt and Nr antennas for signal transmission and
reception, respectively. Assume that the transmit and receive
UPAs at BSs are well-separated and sufficiently isolated to
avoid the interference between echoes and transmit signals
[9]. In addition, GUEs are equipped with omni-directional
antennas to ensure the signal reception from BSs [19]. Assume

1The theoretical framework in this paper is also applicable for the network
performance of three-dimensional (3D) distributed UAVs with uniformly
distributed heights [17], which is verified in simulations in Section VII.

that the UPAs at the typical BS are placed in the x-z plane.
For analytical tractability, we adopt the array response vector
of UPA based on virtual angles as [20]

aw(ϕ, θ)=
1√
Nw

[
1, . . . , ej(mϕ+nθ), . . . , ej[(Nw,az−1)ϕ+(Nw,el−1)θ]]T.

(1)
Here, ϕ = 2π

λ d cosψ sin γ, ϕ ∈ [−π, π] and θ =
2π
λ d cos γ, θ ∈ [−π, π] are the virtual azimuth angle and virtual

elevation angle, respectively. ψ ∈ [0, 2π] and γ ∈ [0, π] are
the physical azimuth and elevation angles of signals relative
to UPAs, representing the angles between the x-axis and the
projection of signals on the x-y plane, and angles between the
z-axis and signals, respectively. Owing to the nonlinearity in
the angular domain of the array response vector with physical
angles, the representation with virtual angles is adopted.
Nw = Nw,azNw,el, with w ∈ {t, r} denoting “transmit” or
“receive”. Nw,az and Nw,el are the numbers of antennas in the
azimuth and elevation directions, respectively. λ is the signal
wavelength, and d is the spacing between adjacent antenna
elements and set to λ/2 [21].

Due to the limited angular resolution of UPAs with finite
antenna aperture, the signals from pretty close angles are
unresolvable. Thus, the virtual azimuth and elevation angles
within [ 2π(m−1)

Nw,az
, 2πm
Nw,az

) and [ 2π(n−1)
Nw,el

, 2πn
Nw,el

) are quantized to
take values of ϕm = 2πm

Nw,az
, m = 1, 2, . . . , Nw,az and θn =

2πn
Nw,el

, n = 1, 2, . . . , Nw,el, respectively [20]. The antenna

gain of UPAs is given by
∣∣aHw(ϕm1 , θn1)aw(ϕm2 , θn2)

∣∣2 =
G2

w1[(m1 = m2)&(n1 = n2)] + g2w1[(m1 ̸= m2) | (n1 ̸=
n2)], w ∈ {t, r}. Based on (1), the main lobe antenna gain G2

w

equals 1, and the side lobe antenna gain g2w equals 0 owing
to the orthogonality among the array response vectors with
quantized virtual angles. But, to avoid the underestimation of
interference, g2w is set to be nonzero similar to [20].

C. Association Policy

1) GUE Association
The GUEs associate with their nearest BSs for communi-

cation. Considering the constraints on antenna and RF chain
resources, we assume that a BS can communicate with at most
Kmax GUEs simultaneously in the same frequency band. If
the number of GUEs in the coverage area of a BS exceeds
the maximal value, then Kmax GUEs are randomly selected
to associate with the BS. Based on the property of HPPP
distributions, the probability mass function (PMF) of the total
number of GUEs in the coverage area of a BS, KG, is given
as [22]

P(KG = i) =
hhΓ(i+ h)(

λg

λb
)i

i!Γ(h)(h+
λg

λb
)i+h

, i ∈ N, (2)

where h is a dimension-related index and takes the value of
(3ϖ+ 1)/2, with ϖ being the dimension of the HPPP distri-
bution of BSs. Because here we consider the 2D distributed
BSs, ϖ equals 2 and thus h equals 3.5 [23]. As given above,
the PMF of the number of GUEs within the coverage area of a
BS is dependent on the densities of BSs and GUEs. Consider
that there are K0 GUEs in the coverage area of the typical
BS, then the number of associated GUEs of the typical BS,
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K, equals min{K0,Kmax}. The probability density function
(PDF) of the horizontal distance between the typical BS and its
kth, k ∈ {1, 2, . . . ,K} associated GUE (denoted by the typical
GUE), v0, can be given by fG(v0) = 2πλbv0 exp (−πλbv20)
[22].

Given the HPPP distribution of GUEs on the ground, the
joint PDF of the virtual azimuth and elevation angles of an
arbitrary GUE, other than the K associated GUEs, relative to
the typical BS is derived in Appendix A as

f
(ar)
C (ϕ, θ)=

2πH2
B

D2|θ|3
√
π2−ϕ2−θ2

, (3)

where D is the radius of the network, and for HPPP models,
D → ∞. ϕ ∈ [−π, π] and θ ∈ [−π, −πHB√

D2+H2
B

]. As for

the virtual azimuth and elevation angles of the typical GUE
relative to the typical BS, their joint PDF can be derived
similar to (3) as

f
(ty)
C (ϕ, θ) = 2λb exp

(
−πλbH

2
B
π2−θ2

θ2

) π2H2
B

|θ|3
√

π2−ϕ2−θ2
. (4)

2) Target UAV
In addition to communicating with GUEs, BSs are also

responsible for detecting the unauthorized UAVs around them.
In the initial stage of UAV detection, all BSs sense the
environment in an omni-directional manner to acquire rough
information of UAV locations for beam alignment. In the
next detection stage, based on the initial observations, BSs
transmit directional beams to detect the UAVs that are within
a horizontal distance RS (termed as the sensing distance) for
further observation [3]. We consider that a BS can sense at
most Qmax UAVs at the same time via the same transmit
signal. If the total number of UAVs in the sensing area of a
BS QU exceeds Qmax, the BS randomly selects Qmax UAVs
as target UAVs for sensing. The PMF of QU is obtained by

P(QU=j)=
(λuπR

2
S)

j

j!
exp
(
−λuπR2

S

)
, j ∈ N, (5)

which holds owing to the Poisson property of HPPP. Given Q0

UAVs within the sensing area of the typical BS, the number of
the target UAVs of the typical BS, Q, equals min{Q0, Qmax}.
Then, the PDF of the horizontal distance between the typical
BS and its qth (q ∈ {1, 2, . . . , Q}) target UAV (denoted by
the typical UAV), r0, can be given by fU(r0) = 2r0

R2
S

.
Consider that UAVs hover at a higher altitude than BSs,

the joint PDF of the virtual azimuth and elevation angles of a
UAV relative to the typical BS can be derived as

fMS (ϕ, θ)=
2π∆H2

D(M)2|θ|3
√
π2−ϕ2−θ2

, (6)

where ϕ ∈ [−π, π], θ ∈ [ π∆H√
D(M)2+∆H2

, π], M ∈ {ty, ar}
denotes “typical” or “arbitrary”, representing the typical UAV
or an arbitrary UAV other than the Q target UAVs, D(ty) =
RS, D(ar) = D, and ∆H = HU −HB. Equation (6) can be
proved with the similar approach in Appendix A.

Based on the PDFs analyzed above and the quantized virtual
angles given in Section III-B, the PMF of the quantized
virtual azimuth and elevation angles of GUEs and UAVs

relative to the typical BS, ϕm,m = 1, 2, . . . , Nw,az and
θn, n = 1, 2, . . . , Nw,el, can be further obtained by

p
(M)
O,w (ϕm, θn)=

∫ ϕm+ π
Nw,az

ϕm− π
Nw,az

∫ θn+
π

Nw,el

θn− π
Nw,el

f
(M)
O (ϕ, θ)dθdϕ, (7)

where O ∈ {C,S} represents “communication” or “sensing”.

D. ISAC Signal and Beamforming Model

For the PMN, the unified ISAC signal X is transmitted by
the typical BS to its K associated GUEs and Q target UAVs,
which is expressed as [13]

X = WS, X ∈ CNt×T , (8)

where T is the length of transmit data symbols,
W ∈ CNt×(K+Q) is the transmit beamforming
matrix to be designed in further detail below, and
S ∈ C(K+Q)×T is the data symbol matrix given as
S = [sC,1, . . . , sC,k, . . . , sS,q, . . . sS,Q]

T.2 Here, sC,k ∈CT×1

represents the downlink communication symbols for the
typical GUE k, and sS,q ∈ CT×1 represents the dedicated
sensing symbols for the typical UAV q, generally being
predefined symbols of constant modulus and containing no
useful communication data [14]. sS,q is specifically added to
provide extra degrees of freedom for multiple target sensing
and enhance the determinism of the ISAC signal, which
contributes to guaranteeing unbiased estimation and balancing
the deterministic-random tradeoff between sensing and
communication symbols [14, 25]. Communication-centric,
radar-centric, or co-design waveforms can be adopted herein
for sC,k and sS,q [13, 18, 26]. In addition, the transmit data
symbols for different GUEs and UAVs are assumed to be
uncorrelated with each other [27], i.e., E[SSH ] = T IK+Q.

To elaborate on the dual-functional contention for power
resources, the total transmit power Pt is allocated between
communication and sensing functions by each BS with power
allocation coefficient ρ. To study the average performance
of GUEs and UAVs, the transmit power for communication
Pt,C = ρPt and that for sensing Pt,S = (1 − ρ)Pt are
equally allocated by each BS to its associated GUEs and target
UAVs, respectively, according to its own traffic load. Under the
constraint of hardware cost, the hybrid analog-digital (HAD)
transmit beamforming is adopted with a limited number of RF
chains [28]. To achieve simultaneous user communication and
UAV detection, the HAD transmit beamforming matrix W in
(8) is designed as

W=FRFFBB=[wC,x,1,. . .,wC,x,k,. . .,wS,x,q,. . .,wS,x,Q], (9)

where FRF = [at(ϕC,x,1, θC,x,1),. . .,at(ϕC,x,k,θC,x,k),. . .,
at(ϕS,x,q,θS,x,q),. . .,at(ϕS,x,Q,θS,x,Q)] ∈ CNt×NRF and
FBB = diag(

√
Pt,C/K, . . . ,

√
Pt,C/K, . . . ,

√
Pt,S/Q, . . . ,√

Pt,S/Q) ∈ CNRF×(K+Q) are the RF beamforming ma-
trix and baseband beamforming matrix of the typical BS
x, respectively; wC,x,k =

√
Pt,C/Kat(ϕC,x,k, θC,x,k) and

2Note that the phase noise to mmWave ISAC signals, caused by the non-
ideal hardware in practical systems, is assumed to be pre-eliminated via
advanced estimation and compensation methods [24].
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wS,x,q =
√
Pt,S/Qat(ϕS,x,q, θS,x,q) are the transmit beam-

forming vectors for the typical GUE and the typical UAV,
respectively;3 ϕC,x,k, θC,x,k, ϕS,x,q , and θS,x,q are the quan-
tized virtual azimuth and elevation angles of the typical GUE
and the typical UAV relative to x, respectively, and taking
values of ϕm,m = 1, 2, . . . , Nw,az and θn, n = 1, 2, . . . , Nw,el

with probabilities shown in (7); and NRF = K + Q is the
number of RF chains with the maximum value of NRF,max,
which limits the maximum capability of a BS for serving
at most Kmax = ηNRF,max GUEs and for sensing at most
Qmax = (1− η)NRF,max UAVs simultaneously, with η being
the RF chain allocation coefficient.

E. Channel Model

In this paper, the vulnerability of mmWave signals to
obstructions is taken into account. Whether the link between
the typical BS and the typical GUE is line-of-sight (LoS)
or non-line-of-sight (NLoS) transmission can be measured by
a distance-dependent probability model [30]. The probability
that the transmission link has an LoS path is

PL(v0) =
1

1 + a exp
[
− b( 180π tan−1 HB

v0
− a)

] , (10)

where a and b are environment-related constants, and v0 is
the horizontal distance between the typical BS and the typical
GUE. The NLoS probability is given as PN(v0) = 1−PL(v0).

The mmWave channels are expected to be sparse with
the majority of energy being captured by several arrival and
departure angles. Thus, the virtual channel approximation rep-
resentation is adopted to characterize the mmWave channels in
the angular domain based on the predefined quantized virtual
angles [31]. Specifically, the downlink transmission from the
typical BS x to the typical GUE k can be modeled by the
communication channel vector hx,k only containing the paths
within the quantized virtual angle of the typical GUE as

hx,k =
√
NtLC,x,k,eβC,x,k,eat(ϕC,x,k, θC,x,k), (11)

where βC,x,k,e denotes the Nakagami fading of the link
between the typical BS and the typical GUE, with β2

C,x,k,e

following Gamma distribution Gamma(me,me) and me, e ∈
{L,N} being the Nakagami parameter of LoS or NLoS links;
Nt here is for normalization; LC,x,k,e = ζ(v20+H

2
B)

−αe
2 is the

path loss of the link between the typical BS and the typical
GUE, with αe being the path loss exponent, ζ = ( 3×108

4πfc
)2

being the path loss intercept, and fc denoting the carrier
frequency. In this paper, similar to [22, 32], perfect channel
estimation via reference signals is assumed.

Overall, the received signal at the typical GUE from the
typical BS, yC,x,k, can be given as

yC,x,k = hH
x,kX+ zC,x,k, (12)

where zC,x,k ∈ C1×T is the additive white Gaussian noise
(AWGN) vector of communication link, and each entry of
zC,x,k follows the circularly symmetric complex Gaussian
(CSCG) distribution of variance σCB, with σC denoting the

3Here, we assume that precise beam alignment between BSs and
GUEs/UAVs is realized by the initial beam management phase [29].

noise power spectral density of communication links and B
representing the signal bandwidth.

As for sensing processes, the UAVs are regarded as point-
like targets. Considering that UAVs and BSs are deployed at
certain heights, it is very likely to have an LoS path between a
BS and a UAV [33]. Thus, in this paper, the UAVs are regarded
as LoS targets for all BSs.4 Specifically, the sensing link
between the typical BS and the typical UAV can be modeled
by the target response matrix Gx,q,x as

Gx,q,x=
√
NrNtLS,x,q,xβS,x,q,xar(ϕS,x,q, θS,x,q)a

H
t (ϕS,x,q, θS,x,q),

(13)
where βS,x,q,x is the Nakagami fading of the round-trip link
between the typical BS x and the typical UAV with β2

S,x,q,x ∼
Gamma(mL,mL), and LS,x,q,x = σ̄

4π ζ(r
2
0 +∆H2)−αL is the

round-trip path loss between x and the typical UAV, containing
both the attenuation and radar cross section σ̄ of UAVs.

The echo signal received at the typical BS, transmitted by
itself and reflected by the typical UAV, is then modeled by

YS,x,q = Gx,q,xX+ ZS,x,q, (14)

where ZS,x,q ∈ CNr×T is the AWGN matrix of sensing links
with each entry following CSCG distribution of variance σSB
and σS being the noise power spectral density of sensing links.

IV. STANDALONE AND COOPERATIVE SENSING

In this section, we study both the standalone and cooperative
sensing for UAV surveillance of the mmWave PMN, and
propose a cooperative sensing strategy with the hybrid of
monostatic sensing and bistatic sensing processes.

A. Network Clutter under Standalone Sensing

In PMNs, the sensing processes of BSs suffer from both
the background clutter and the network clutter. Due to the low
correlation with target echoes and the near-zero Doppler fre-
quency, the background clutter generated by the static objects
in background environment, such as ground, walls, trees, and
mountains, can be removed by advanced clutter suppression
algorithms such as the space-time adaptive processing [9]. On
the other hand, a BS in PMNs also suffers from the network
clutter that is transmitted by neighboring interfering BSs and
reflected by wide-area UAVs, which has similar signal features
to the desired echo and thus is difficult to eliminate [1]. The
network clutter received by the typical BS from the direction
of the typical UAV exerts major impacts on the desired echo,
owing to the directional gain of antenna arrays. In general,
the network clutter received by the typical BS for sensing the
typical UAV under standalone sensing can be divided into four
cases as illustrated in Fig. 2:

Case 1: If there exists another target UAV j of the typical
BS, j ̸= q, j ∈ {1, 2, . . . , Q}, located in the same quantized
virtual angle as the typical UAV q relative to the typical BS,
then multi-target clutter will be caused between the echoes
from UAV q and UAV j.

4The sensing for NLoS targets can be achieved by advanced technologies
with high computational complexity, such as intelligent reflecting surface [34],
which is beyond the scope of this paper.
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Fig. 2: Illustration of network clutter under standalone sensing.

Case 2: Besides the signal of the typical BS, the typical
UAV also reflects back the transmit signals from the interfering
BSs that have target UAVs located in the same quantized
virtual angle as the typical UAV. Without cooperation, the
signals from interfering BSs are unknown to the typical BS
and cannot be utilized for echo extraction, thus being regarded
as clutter.

Case 3: Except for the target UAV j stated in Case 1, there
may also exist other uninterested UAVs, which are not one of
the Q target UAVs of the typical BS but located in the same
quantized virtual angle as the typical UAV q relative to the
typical BS, thus can reflect back undesired network clutter.

Case 4: In addition, the uninterested UAVs also reflect the
signals transmitted from the interfering BSs that have target
UAVs in the directions of the uninterested UAVs.

B. Cooperative Sensing Strategy

To cope with the network clutter caused by neighboring
interfering BSs, we propose a cooperative sensing strategy for
PMNs based on the hybrid of monostatic sensing and bistatic
sensing. Specifically, considering that the BSs close to the
typical UAV will generate strong interference to the desired
echo, we resort to a V -nearest-BSs cooperative policy. That
is, the V nearest BSs to the typical UAV are selected to assist
the typical BS in jointly sensing the typical UAV. The joint
PDF of the horizontal distances between cooperative BSs and
the typical UAV can be given by

f coV (r1, r2, . . . , rV ) = (2πλb)
V r1r2 · · · rV exp

(
− πλbr

2
V

)
,

(15)
which comes from the Bayes’ theorem and the empty space
probability of HPPP, r1 ≤ r2 ≤ · · · ≤ rV , and rv, v =
1, 2, . . . , V is the horizontal distance between the vth-nearest
cooperative BS xv and the typical UAV.

Given the V selected cooperative BSs, the detailed cooper-
ative sensing procedure is explained as follows: First, the V
cooperative BSs share their own ISAC transmit signals to the
typical BS through fiber links. Then, the typical BS transmits
its ISAC signal to the typical UAV and receives echo signal
via monostatic sensing process. The V cooperative BSs also
send their ISAC signals to the typical UAV, while the V echo

signals are received by the typical BS via bistatic sensing
processes. Thanks to the acquisition of the ISAC transmit
signals of cooperative BSs, the V echo signals from the
typical UAV transmitted by the cooperative BSs are no longer
clutter signals to the typical BS, but turn into useful echo
signals containing target information. Therefore, the proposed
cooperative sensing strategy not only reduces the network
clutter but also enhances the desired echo by virtue of the
spatial diversity from multiple BSs. Similar to (14), the total
received echo at the typical BS with V cooperative BSs can
be given as

Y
(V )
S,x,q = Gx,q,xX+

∑V

v=1
Gxv,q,xXv + ZS,x,q, (16)

where Gxv,q,x is the target response matrix of the bistatic
sensing link from the vth cooperative BS xv to the typical
UAV q and then to the typical BS x, and Xv, v = 1, 2, . . . , V
is the ISAC transmit signal of the vth cooperative BS.

V. PERFORMANCE ANALYSIS

In this section, by leveraging stochastic geometry, we con-
duct system-level analyses for communication and sensing
performance in both standalone and cooperative sensing cases.

A. Rate Coverage Probability

In this subsection, to study how the added sensing func-
tion influences the communication performance in PMNs, we
analyze the RCP for downlink communications.

Definition 1 (RCP): The RCP Prate is defined as the prob-
ability that the downlink rate of the typical GUE is no
less than a certain threshold, and is expressed as Prate =∑∞

K0=1
P(KG=K0)
1−P(KG=0)Prate,K0

. Here, Prate,K0
is the RCP of the

typical GUE conditioned on K0 GUEs in the coverage area
of the typical BS, given by

Prate,K0
= P

[ K
K0

B log2(1 + SINRK,k) ≥ τC

]
, (17)

where SINRK,k is the signal-to-interference-plus-noise ratio
(SINR) received by the typical GUE k, K is the number of
associated GUEs of the typical BS, equal to K0 if K0 ≤
Kmax and Kmax if K0 > Kmax, K

K0
is the average scheduling

probability of the typical GUE associated with the typical BS,5

and τC is the rate threshold.

Due to the co-time co-frequency transmissions from BSs
to GUEs, the intra-cell and inter-cell interference in down-
link communications should be considered. In addition, the
dedicated sensing symbols contain no useful information for
GUEs, which are also seen as interference signals. Thus, the
SINR at the typical GUE, SINRK,k, is given as

SINRK,k =

∥∥hH
x,kwC,x,ksC,x,k

∥∥2
Iintra,C+Iintra,S+Iinter+TσCB

, (18)

5Note that K
K0

also captures the average scheduling probability under
round-robin scheduling policy. Other scheduling policies can also be adopted
for the PMN and modeled herein by modifying the scheduling probability
accordingly [35].
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where Iintra,C =
∑K

i=1,i̸=k

∥∥hH
x,kwC,x,isC,x,i

∥∥2 is the multi-
user interference caused by the communication symbols for
the other (K − 1) associated GUEs; Iintra,S = 1(Q ̸=
0)
∑Q

j=1

∥∥hH
x,kwS,x,jsS,x,j

∥∥2 is the intra-cell interference
caused by the sensing symbols for the Q target UAVs; and
Iinter is the inter-cell interference caused by the ISAC signals
transmitted by interfering BSs, satisfying

Iinter=
∑∞

K′
0=1

∑
x′∈Φ

(K′
0)

B \x

(∑K′

i′=1

∥∥hH
x′,kwC,x′,i′ ·

sC,x′,i′
∥∥2 +∑Q′

j′=1

∥∥hH
x′,kwS,x′,j′sS,x′,j′

∥∥2). (19)

Here, Φ(K′
0)

B is the set of interfering BSs of density P(KG =
K ′

0)λb and with K ′
0 GUEs in the coverage area of each BS;

hx′,k is the channel vector of the link from the interfering
BS x′ to the typical GUE k, depending on the Nakagami
fading and path loss; K ′ = min{K ′

0,Kmax} and Q′ =
min{Q′

0, Qmax} are the numbers of associated GUEs and
target UAVs of the interfering BS x′, respectively, with their
quantized virtual angles relative to x′ being the independent
and identically distributed random variables following the
PMF given in (7); Q′

0 is the number of UAVs within the
sensing area of BS x′; wC,x′,i′ and wS,x′,j′ are the transmit
beamforming vectors of x′ for its i′th associated GUE and
j′

th target UAV, respectively; and sC,x′,i′ and sS,x′,j′ are the
communication and sensing transmit symbols of x′ for its i′th

associated GUE and j′th target UAV, respectively.
Based on stochastic geometry, the RCP for downlink com-

munications in PMNs is given in the following theorem.

Theorem 1: For the mmWave PMN, the RCP of the typical
GUE conditioned on K0 GUEs in the coverage area of the
typical BS, Prate,K0

, is derived as

Prate,K0 =EQEδk,i

{∫ ∞

0

∑
e∈{L,N}

Pe(v0)

me−1∑
c=0

sce
c!

exp(−seσCB)

c∑
l=0(

c
l

)
(−1)2c−l(σCB)(c−l) d

lLIinter(se)

dsle
1(se > 0)fG(v0)dv0

}
(20)

where se = meτC,K0
ζ−1N−1

t

{Pt,C

K G2
t − τC,K0

Pt,C

K

∑K
i=1,i̸=k

[δk,iG
2
t + (1 − δk,i)g

2
t ] − τC,K0

Pt,Sg
2
t1(Q ̸= 0)

}−1
(v20 +

H2
B)

αe
2 , e ∈ {L,N} and τC,K0

= exp[τCK0 ln 2/(BK)] − 1;
δk,i is an indicator variable representing whether the ith,
i = 1, 2, . . . ,K, i ̸= k associated GUE is in the same
quantized virtual azimuth and elevation angles as the typical
GUE k relative to the typical BS x, equal to 1 with probability
Nt,az∑
m=1

Nt,el∑
n=1

p
(ty)
C,t

2
(ϕm, θn) and 0 otherwise; and LIinter(se) is the

Laplace transform of the inter-cell interference given in (21)
shown at the bottom of this page. Particularly, the derivation
term dlLIinter

(se)

dsle
in (20) is recast as LIinter(se) when l = 0.

Proof: Please see Appendix B. □

Remark 1: The RCP is determined by the proportions of
transmit power and RF chain resources allocated for com-
munication, ρ and η, respectively, as well as the densities of

BSs and GUEs, λb and λg, respectively. Note that Theorem
1 is also suitable for analyzing the RCP performance of
communication-only mmWave cellular networks, by setting
ρ = η = 1.

In (21), 2F1() is the Gaussian hypergeometric function, ξ1=
Ntζ

{Pt,C

K′

∑K′

i′=1

[
δk,i′G

2
t+ (1− δk,i′)g

2
t

]
+Pt,Sg

2
t1(Q

′ ̸=0)
}

,
and δk,i′, i

′ = 1, 2,. . . ,K ′ is an indicator variable denot-
ing whether the i′

th associated GUE of the interfering
BS x′ is in the same quantized virtual angle as the
typical GUE relative to x′, equal to 1 with probability∑Nt,az

m=1

∑Nt,el

n=1 p
(ty)
C,t (ϕm, θn)p

(ar)
C,t (ϕm, θn) and 0 otherwise.

Remark 2: Note that the numerical calculations for the
infinite integrals and Gaussian hypergeometric functions in the
above theorem by MATLAB are based on the discretization
for infinite integral intervals and the truncation for infinite
summations, which may lead to minor numerical errors [36].
At the cost of increased computational overhead, the numerical
errors can be reduced by constraining the minimal tolerable
precision. Moreover, the computational complexity for (20)
stemming from the calculation of the infinite integral terms and
special functions can be given as O(WS logS) [37], where S
and W are respectively the number of the discrete segments of
the integral interval in (20) and the number of the summation
terms to approximate the Gaussian hypergeometric function
in (21) and can be considered as the complexity-vs-accuracy
tradeoff parameters [36, 37].

B. Successful Detection Probability under Standalone Sensing
In this subsection, we study the SDP under standalone

sensing for PMNs considering the complex network clutter.
We first give the definition of SDP, which is used in both
standalone and cooperative sensing cases.

Definition 2 (SDP): The SDP for UAVs in standalone and
cooperative sensing cases, Pκ

det, is defined as the probability
that the typical UAV can be successfully detected by the typi-
cal BS, and is expressed as Pκ

det =
∑∞

Q0=1
P(QU=Q0)
1−P(QU=0)P

κ
det,Q0

.
Here, Pκ

det,Q0
is the SDP conditioned on Q0 UAVs in the

sensing area of the typical BS, given by

Pκ
det,Q0

=
Q

Q0
P(SCNRκ

Q,q ≥ τS), (22)

where κ ∈ {st, co} stands for “standalone” or “coopera-
tive” sensing, SCNRκ

Q,q is the signal-to-clutter-plus-noise ratio
(SCNR) received at the typical BS for sensing the typical UAV
q and is analyzed in further detail below, Q is the number
of target UAVs of the typical BS and Q = min{Q0, Qmax},
Q/Q0 is the scheduling probability that a UAV in the sensing
area of the typical BS can be selected as a target UAV, and
τS is the SCNR threshold that a BS requires to successfully
acquire target information from echo signals.

Remark 3: SCNR is widely used to measure the ability of
clutter suppression and echo extraction [14]. Increasing SCNR
has great significance for the reduction of false alarm proba-
bility and the improvement of target detection performance in
radar fields. Thus, similar to [14], the SDP based on SCNR is
adopted for performance evaluation in this paper.
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Next, we present the definition of sensing outage probability
to evaluate the sensing coverage capability of the PMN.

Definition 3 (SOP): The SOP for the UAV surveillance-
oriented PMN in standalone and cooperative sensing cases,
Pκ
out, κ ∈ {st, co}, is defined as the probability that a UAV

cannot be successfully detected by BSs, given by

Pκ
out = Uout + (1− Uout)(1− Pκ

det), (23)

where Uout = exp(−πλbR2
S) is the probability that a UAV is

out of surveillance by any of the BSs and is derived from the
empty space probability of HPPP.

Remark 4: The SOP is affected by not only the SDP
performance but also the sensing distance and deployment
density of BSs. Both the SDP and SOP are highly determined
by the received SCNR. In particular, in an ideal scenario
with all BSs having the sensing area of the whole network
(i.e., Uout = 0), Pκ

out = 1 − Pκ
det holds true, leading to the

sensing coverage capability in this case only dependent on the
successful detection performance.

Different from downlink communication, in UAV detection
processes, the communication symbols can be regarded as
useful symbols for target sensing without causing any extra
interference. This is because the target information depends
on the amplitude and phase changes of signals instead of the
specific data symbols [14]. The simultaneous sensing for Q
target UAVs would cause mutual interference among Q target
echoes. With the analog receive beamforming [3], the SCNR
received at the typical BS for sensing the typical UAV q under
standalone sensing, SCNRst

Q,q , can be expressed as

SCNRst
Q,q=

∥∥aHr (ϕS,x,q, θS,x,q)Gx,q,xX
∥∥2

Cst
x,q + TσSB

, (24)

where ar(ϕS,x,q, θS,x,q) is the directional receive beamforming
vector for the echo from the typical UAV q, Cst

x,q is the network
clutter that interferes with the target echo in the standalone
sensing case, and it can be expressed based on the four cases
elaborated in Subsection IV-A as:

Cst
x,q=

∑Q

j=1,j ̸=q
δq,j

∥∥aH
r (ϕS,x,q,θS,x,q)Gx,j,xX

∥∥2︸ ︷︷ ︸
C

(1)
x,q

+
∑

x′∈Φ
(q)
B \x︸ ︷︷ ︸

C
(2)
x,q∥∥aH

r (ϕS,x,q,θS,x,q)Gx′,q,xX
′∥∥2︸ ︷︷ ︸

C
(2)
x,q

+
∑

u∈Φ
(q)
U \q

∥∥aH
r (ϕS,x,q,θS,x,q)︸ ︷︷ ︸

C
(3)
x,q

·

Gx,u,xX
∥∥2︸ ︷︷ ︸

C
(3)
x,q

+
∑

u∈Φ
(q)
U \q

∥∥aH
r (ϕS,x,q, θS,x,q)Gx′

n,u,x
X′

n

∥∥2

︸ ︷︷ ︸
C

(4)
x,q

.

(25)

Here, δq,j is the indicator variable that represents whether
the jth target UAV is in the same quantized virtual angle as

the typical UAV q, equal to 1 with probability pmain,S,1 =∑Nt,az

m=1

∑Nt,el

n=1 p
(ty)
S,t

2
(ϕm, θn) and 0 otherwise. Φ

(q)
B is the

set of interfering BSs with at least one target UAV j′, j′ ∈
{1, 2, . . . , Q′} located in the same quantized virtual angle as
the typical UAV q, and whether the target UAV j′ of x′ is in the
same quantized virtual angle as the typical UAV relative to x′

is denoted by an indicator variable δq,j′ , equal to 1 with prob-
ability pmain,S,2 =

∑Nt,az

m=1

∑Nt,el

n=1 p
(ty)
S,t (ϕm, θn)p

(ar)
S,t (ϕm, θn)

and 0 otherwise. Φ
(q)
U is the set of uninterested UAVs that

are in the same quantized virtual angle as the typical UAV
relative to x with density pmain,S,2λu. X′ is the transmit signal
matrix of the interfering BS x′ and can be similarly given
as (8). Gx′,q,x and Gx,u,x are the target response matrices
of the sensing links from the interfering BS to the typical
UAV and then to the typical BS, and from the typical BS
to the uninterested UAV u and then back to the typical BS,
respectively. Additionally, for analytical tractability, in term
C

(4)
x,q only the interfering BS x′

n that generates the strongest
clutter link to the uninterested UAV u is considered [38, 39].
Gx′

n,u,x is the target response matrix of the sensing link from
the interfering BS x′

n to u and then to the typical BS, and X′
n

is the transmit signal matrix of this interfering BS.
Based on stochastic geometry, the SDP in the standalone

sensing case is given by the following theorem.

Theorem 2: For the mmWave PMN, the SDP for sensing
the typical UAV by the typical BS conditioned on Q0 UAVs
in its sensing area, P st

det,Q0
, is derived as

P st
det,Q0

=EKEδq,j

{
Q

Q0

∫ RS

0

mL−1∑
c=0

scS
c!

exp(−sSσSB)

c∑
l=0

(−1)2c−l
(
c
l

)
(σSB)c−l

dlLCst
x,q

(sS)

dslS
fU(r0)dr0

}
,

(26)

where sS = mLτS
{
G2

rNrNt
σ̄
4π ζ
{
Pt,Cg

2
t1(K ̸=0)+

Pt,S

Q G2
t +∑Q

j=1,j ̸=q
Pt,S

Q [δq,jG
2
t + (1− δq,j)g

2
t ]
}
(r20 + ∆H2)−αL

}−1
,

and the Laplace transform of network clutter LCst
x,q

(sS)
equals the product of L

C
(1)
x,q

(sS), L
C

(2)
x,q

(sS), L
C

(3)
x,q

(sS), and
L
C

(4)
x,q

(sS) given in (39)-(42), respectively.

Proof: Please see Appendix C. □

Remark 5: The SDP is influenced by the power allocation
coefficient ρ and the number of target UAVs Q. It is note-
worthy that Q is inherently dependent on the proportion of
RF chains allocated for sensing 1 − η, BS density λb, UAV
density λu, and sensing distance of BSs RS.

Remark 6: With all the BSs possessed of dual-functional
capability, Theorem 2 provides the worst-case SDP of PMNs,
given the severe network clutter caused by the large-scale

LIinter(se) =
∞∏

K′
0=1

∏
e′∈{L,N}

exp

{
2π
αe′

P(KG = K ′
0)λb

∫∞
0 PL(v)vdv
∫∞
0 vdv EQ′Eδk,i′

{
me′∑
t=1

(
me′
t

)
(−1)t

steξ
t
1(v

2
0+H2

B)1−
α
e′ t
2

(t− 2
α
e′

)mt
e′

·

2F1

(
t, t− 2

αe′
; t− 2

αe′
+ 1;− ξ1se

me′ (v
2
0+H2

B)
α
e′
2

)}}
.

(21)
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interfering BSs. Theorem 2 is also applicable for the sensing
performance of heterogeneous PMNs where dual-functional
BSs and communication-only BSs coexist, by setting λb in
(26) to pλb, with p being the proportion of the number of
dual-functional BSs to the total number of BSs.

Combining (5), (23), and (26), the SOP for the mmWave
UAV surveillance-oriented PMN in the standalone sensing
case, P st

out, can be expressed as

P st
out=Uout + (1− Uout)

[
1−

∞∑
Q0=1

P(QU = Q0)

1− P(QU = 0)
P st
det,Q0

]
.

(27)

C. SDP under Cooperative Sensing

As elaborated in Section IV-B, with the collaboration of
V cooperative BSs, the proposed cooperative sensing strategy
can enhance the useful echo and reduce clutter compared with
standalone sensing. The SCNR received at the typical BS for
sensing the typical UAV via the hybrid of monostatic sensing
and bistatic sensing is given by

SCNRco
Q,q=

∥∥∥aHr (ϕS,x,q, θS,x,q)(Gx,q,xX+
V∑

v=1
Gxv,q,xXv

)∥∥∥2
Cco

x,q + TσSB
,

(28)
where Cco

x,q is the network clutter in the cooperative sensing
case and can be obtained similar to Cst

x,q given in (25)
but excluding the clutter caused by the V cooperative BSs,
expressed as

Cco
x,q=C

(1)
x,q+

∑
x′∈Φ

(q)
B \

{x,x1,...,xV}

∥∥aHr (ϕS,x,q,θS,x,q)Gx′,q,xX
′∥∥2+C(3)

x,q+C
(4)
x,q.

(29)
The randomness of the multiple target echoes under coop-

erative sensing as shown in (28) increases the difficulty of
further analysis of SDP. Thus, the following lemma is given
to facilitate the analysis by approximating the total power of
multiple echoes as a Gamma random variable.

Lemma 1: (Approximation of the sum of Gamma ran-
dom variables [40]) Let {Gv}Vv=1 be a set of independent
Gamma variables with shape and rate parameters {ϵv}Vv=1 and
{µv}Vv=1, respectively. The sum of V variables G =

∑V
v=1 Gv

can be approximated as a Gamma random variable, i.e.,

G ∼ Γ(ϵ̃, µ̃), with ϵ̃ =
(
∑V

v=1
ϵv
µv

)2∑V
v=1

ϵv
µ2
v

and µ̃ =
∑V

v=1
ϵv
µv∑V

v=1
ϵv
µ2
v

being

shape and rate parameters, respectively, which comes from the
first and second order moments matching of G and

∑V
v=1 Gv .

The approximated Gamma distribution obtained by Lemma
1 is generally with non-integral parameters ϵ̃ and µ̃, and thus
it is still intractable to acquire a closed-form solution to the
SDP performance under cooperative sensing. To this end, we
resort to the Alzer’s inequality to obtain a tight upper bound
of SDP under cooperative sensing, which can be proven of
good accuracy by simulations in Section VII.

Theorem 3: For the mmWave PMN, given V cooperative
BSs and Q0 UAVs in the sensing area of the typical BS, the

upper bound of the SDP for sensing the typical UAV under
cooperative sensing, P co

det,Q0
, can be obtained by

P co
det,Q0

<
Q

Q0

{
1−

∞∑
z=0

(−1)z

z!
EQV,v

{∫ RS

0

∫ ∞

0

∫ ∞

r1

· · ·
∫ ∞

rV−1

z−1∏
t=0

(ϵ̃−t)·

exp
{
−z
[
Γ(1+ϵ̃)

]− 1
ϵ̃ µ̃τSσSB

}
LCco

x,q

(
z
[
Γ(1+ϵ̃)

]− 1
ϵ̃ µ̃τS

)
·

fU(r0)f
co
V (r1, r2, · · · , rV )drV drV−1 · · · dr0

}}
,

(30)
where QV,v is the number of target UAVs of the vth cooper-
ative BS, the Laplace transform LCco

x,q

(
z
[
Γ(1 + ϵ̃)

]− 1
ϵ̃ µ̃τS

)
in (30) equals the product of equations (39)-(42) with the
minimum horizontal distance between the interfering BSs and
the typical UAV, νmin in (40), equal to rV , and ϵ̃ and µ̃ can
be obtained according to Lemma 1 as

ϵ̃ =
mL

(
P0 +

∑V
v=1 Pv

)2
P2
0 +

∑V
v=1 P2

v

, µ̃ =
mL

(
P0 +

∑V
v=1 Pv

)
P2
0 +

∑V
v=1 P2

v

,

(31)
where P0 = ζ σ̄

4πG
2
rNrNt

{
Pt,Cg

2
t1(K ̸= 0) +

Pt,S

Q G2
t +∑Q

j=1,j ̸=q
Pt,S

Q [δq,jG
2
t + (1 − δq,j)g

2
t ]
}
(r20 + ∆H2)−αL and

Pv = ζ σ̄
4πG

2
rNrNt

[
Pt,Cg

2
t +

Pt,S

QV,v
G2

t +
Pt,S(QV,v−1)

QV,v
g2t
]
(r20 +

∆H2)−
αL

2 (r2v +∆H2)−
αL

2 .

Proof: Please see Appendix D. □
With the upper bound of SDP given in Theorem 3, the lower

bound of SOP in the cooperative sensing case, P co
out, can be

given by definition as

P co
out > Uout+(1−Uout)

[
1−

∞∑
Q0=1

P(QU = Q0)

1− P(QU = 0)
P co
det,Q0

]
.

(32)

Remark 7: The premise of leveraging multiple sensing
echoes to obtain the performance gain in SCNR is the ac-
quisition of the original ISAC transmit signals of cooperative
BSs at the typical BS, at the cost of extra backhaul overhead
and larger total consumed power for UAV sensing.

From the above analyses on RCP, SDP, and SOP, the
inherent interference of PMNs in terms of the multi-user and
inter-cell communication interference, dual-functional mutual
interference, and complex network clutter, and the resource
contention between sensing and communication functions in
terms of transmit power and RF chain resources are taken
into account. By fine tuning network configurations based on
the proposed theoretical framework, the inherent interference
and resource contention of the UAV surveillance-oriented
PMN can be appropriately controlled and the dual-functional
performance tradeoff can be balanced, which contributes to the
offline optimization for centralized network planning before
practical deployments.

VI. PERFORMANCE OPTIMIZATION

In this section, to optimize network configurations, we study
an optimization problem to improve the sensing performance
of PMNs with the guarantee of communication demands.
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As aforementioned, in mmWave UAV surveillance-oriented
PMNs, the power allocation coefficient ρ, RF chain allocation
coefficient η, BS density λb, and sensing distance RS are the
key parameters that exert significant impacts on sensing and
communication performance. Specifically, to better configure
ρ, η, λb, and RS, we formulate the following optimization
problem to minimize the SOP under standalone and cooper-
ative sensing whilst satisfying the requirements of RCP and
SDP:

min
ρ,η,λb,RS

Pκ
out, κ ∈ {st, co}

s.t. Pκ
det ≥ ϱS,

Prate ≥ ϱC,

(33)

with ϱS and ϱC being the required SDP and RCP, respectively.6

In view of the computational complexity of (20), (26), and
(30), it is difficult to analytically obtain the global optimum.
Therefore, we resort to the alternating optimization to address
the problem [41]. To reduce algorithm complexity while
maintaining good accuracy, inspired by the pyramid algorithm
in image processing [42], we utilize a hierarchical search
algorithm based on alternating optimization.

Specifically, considering the integral number of RF chains,
η is discrete and takes all its possible values in the hierarchical
search. The continuous parameters ρ, λb, and RS are all
discretized into Ξ values, with Ξ taken the number of feasible
values of η. The discrete granularity for the first search layer
is set as δ1 = χmax−χmin

Ξ−1 and that for the (n + 1)th, n ≥ 1

layer is set as δn+1 = min{χ̂(n)+δn,χmax}−max{χ̂(n)−δn,χmin}
Ξ−1 ,

χ̂(n) being the optimal value of χ ∈ {ρ, η, λb, RS} obtained
in the nth layer, and [χmin, χmax] being the feasible range
of χ. In each search layer, on the premise of satisfying the
required SDP and RCP, the four variables are alternately and
iteratively optimized to minimize the SOP until convergence.
That is, for each iteration, the variables are updated in turn,
with the others fixed to the values obtained in the last iteration
or updated in the current iteration. After convergence, the
next search layer is conducted based on the same alternating
optimization process. As the discrete granularity is adopted for
the continuous variables, only a suboptimal solution to (33)
can be obtained via the hierarchical search-based alternating
optimization method. In addition, to find a good solution with
controlled computational complexity, appropriately setting the
number of initial values is important.

VII. RESULTS AND DISCUSSIONS

In this section, we provide numerical and simulation re-
sults to investigate the dual-functional performance of UAV
surveillance-oriented PMNs, where 1000 Monte Carlo simu-
lations are conducted for each numerical result for validation
with 5000×5000 m2 simulation area. Unless otherwise stated,
values of network parameters are given in Table I [9, 20, 22].

6Note that (33) can be treated as a long-term network performance
optimization problem, of which the solution can be used as a reference for
network configurations or a baseline for online adjustment. It can be solved
at central units with strong computational and processing capabilities.

TABLE I: System Parameters

Parameter Value Parameter Value
λb 2× 10−5/m2 λu 2× 10−5/m2

λg 2× 10−4/m2 HB, HU 10 m, 60 m
Pt 10 W NRF,max 10
ρ, η 0.5, 0.5 RS 100 m

Nw, w∈{t, r} 256 Nw,az, Nw,el 16, 16
fc 28 GHz B 100 MHz

σC, σS
−174 dBm/Hz,
−174 dBm/Hz

T 300

αL, αN 2.5, 3.5 mL,mN 3, 1
Gw, gw 1, 0.27/Nw σ̄ 1 m2

a, b 11.95, 0.136 τC, τS 20 Mbps, 1
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Fig. 3: SDP and RCP vs. total transmit power.

A. Performance of Communication and Standalone Sensing

To validate the theoretical analysis on dual-functional per-
formance, Fig. 3 shows the numerical and simulation results on
RCP and SDP in the standalone sensing case under different
total transmit power Pt and power allocation coefficients ρ.
The Monte Carlo simulation results match well with the
numerical results.7 As shown in Fig. 3, improving Pt can
enhance both sensing and communication performance. How-
ever, the performance improvement slows down and tends to
converge with the increase in Pt. This is because, despite the
enhancement of desired echoes and communication signals,
a larger value of Pt also means stronger network clutter
and communication interference in PMNs, thus restricting the
improvement of the received SINR and SCNR. Moreover, the
increase in Pt or the decrease in power allocation coefficient
ρ brings remarkable performance enhancement in SDP, while
the increase in the allocated transmit power for communication
brings slight improvement in RCP. This is because, the round-
trip transmission of target sensing experiences larger signal
attenuation than the single-trip downlink communication, and
thus is more vulnerable to power reduction. As a result, an
appropriate setting of the total transmit power can effectively
improve both sensing and communication performance. Also,
taking into account the high power demand of sensing func-
tion, the power allocation between communication and sensing
should be carefully tuned.

7Note that the discrepancy between numerical and simulation results on
SDP stems from the numerical errors for calculating the round-trip sensing
clutter with spatio-temporal randomness, which can be mitigated under
scenarios with low BS/UAV density and high beamforming capability.
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Fig. 4: SDP and RCP vs. power allocation coefficient.
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Fig. 5: SDP and RCP vs. RF chain allocation coefficient.

To further understand how the power sharing between
sensing and communication affects their performance tradeoff,
in Fig. 4, given the total transmit power, we present the
relationships among the power allocation coefficient ρ, RCP,
and SDP in the standalone sensing case. The simulation results
show that ρ exerts opposite effects on sensing and communi-
cation performance. A large value of ρ causes low transmit
power for sensing and leads to weak target echo and noticeably
poor SDP, which in turn, brings strong communication power
and improved RCP. In addition, a larger rate threshold τC
leads to lower RCP, owing to the higher requirement on
communication. Furthermore, Fig. 4 also illustrates the sensing
performance for UAVs at different altitudes. As UAVs fly high,
the SDP declines sharply, especially when ρ is large. This
is because the remarkable increase in transmission distances
makes the sensing performance more vulnerable to power
reduction and ambient noise. Moreover, it is noteworthy that
the sensing performance for UAVs with uniformly distributed
heights within [10, 110] m is basically in consistent with
that for the UAVs all at the mean height, 60 m. It implies
that the proposed theoretical framework is also suitable for
characterizing the network performance with 3D distributed
UAVs, as observed in [17]. Overall, a large transmit power is
required for sensing UAVs especially for the ones with high
altitudes, and properly setting ρ can improve SDP under a
satisfactory RCP.

In order to illustrate the dual-functional tradeoff under lim-
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Fig. 6: SDP and SOP vs. sensing distance.

ited RF chain resources, in Fig. 5, considering different UAV
densities λu, we present the impacts of RF chain allocation
coefficient η on RCP and SDP under standalone sensing. A
larger η means that more RF chain resources are allocated
to communication and less are reserved for sensing, thus
resulting in poorer detection performance, especially when η
equals 0.9. A small η can improve sensing capability, but
it also leads to small transmit power allocated for sensing
each UAV, thus restricting the enhancement of SDP. On the
other hand, with the increase in η, the RCP increases first
and then decreases. Similarly, too few RF chain resources for
communication (e.g., η = 0.1) results in limited beamforming
capability for communication and small RCP, while a large η
leads to the reduction of the transmit power for each GUE.
Particularly, as η = 1, there is a slight improvement in RCP
compared with η = 0.9. This is because the mmWave PMN
turns into a communication-only network when η equals 1, and
without sensing function, the interference of sensing symbols
to communication vanishes and the SINR is enhanced. More-
over, it is noteworthy from Fig. 5 that, the increase in UAV
density λu causes performance degradation of SDP, but makes
little difference in RCP. Although denser UAV aggravates the
sensing load, the RF chain allocation coefficient η ensures the
maximum capability of UAV surveillance by each BS, thus
guaranteeing communication performance. In general, Fig. 5
gives important insights on the allocation of limited RF chain
resource to enhance the dual-functional performance.

B. Performance of Communication and Cooperative Sensing

In Fig. 6, we present how the sensing distance RS and
number of cooperative BSs V affect the SDP and SOP in the
cooperative sensing case. The numerical results from Theorem
3 are provided, as an upper bound of the SDP results obtained
from Monte Carlo simulations. It can be observed that the
SDP declines sharply with the increase of RS. This is rational
because, the larger RS means the farther distances between
BSs and their target UAVs, resulting in weaker echo. Also,
the target UAVs can be closer to nearby interfering BSs and
suffer from severer clutter. In addition, with a larger RS,
there exist more UAVs in the sensing areas of BSs, which
reduces the power available for each UAV and the probability
of being selected as target UAVs. On the other hand, the
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Fig. 7: SOP and RCP vs. BS density.

SOP reaches the nadir and then rises with the increase in
BS sensing distance. At first, the increase of RS enlarges the
sensing areas and reduces the proportion of UAVs that are out
of the surveillance by BSs, thus leading to the decrease in
SOP. However, the SOP deteriorates at a large RS, due to the
difficulty in maintaining a satisfactory detection performance
over the large sensing areas. Furthermore, it is noteworthy
from Fig. 6 that the increase in the number of cooperative BSs
V brings remarkable increase of SDP and decrease of SOP,
especially when V is small, owing to the increased intensity
of echo signals and the decreased intensity of network clutter.
However, further increasing V brings marginal performance
improvement, which is restricted by the far distances between
the target UAV and the newly involved cooperative BSs.
Overall, appropriate choices of the BS sensing distance and
number of cooperative BSs can significantly reduce the SOP
whilst guaranteeing the SDP performance.

In Fig. 7, we study the impacts of BS density λb and
the number of cooperative BSs V on SOP and RCP. The
simulation results demonstrate that increasing λb brings a
distinct rise in RCP. The denser the BSs, the lighter the
communication load per BS, thus resulting in a performance
improvement. On the other hand, with the increase of λb, the
SOP in both standalone and cooperative sensing cases drops
first and then rises. The reason is that, with small BS density
and limited sensing distance per BS, a large proportion of
UAVs are out of the sensing area of any of the BSs, implying
the poor sensing coverage capability of the PMN. The increase
in λb alleviates the sensing coverage issue, leading to the
decline of SOP. However, too dense BS deployment takes a
toll on SOP, due to the clutter caused by the large-scale BSs
performing UAV surveillance simultaneously. In addition, the
performance gain brought by the increase of V appears more
significant when λb is large. This is because with dense BS
deployment, BSs are close to each other and their sensing areas
may overlap, which may lead to strong mutual interference.
At this point, leveraging the V nearest BSs for cooperative
sensing can significantly enhance the desired echo signals and
reduce network clutter. Overall, under a dense BS deployment,
increasing the number of cooperative BSs V can achieve a
remarkable decline in SOP. However, for the sake of strong
network clutter and high deployment cost, the BS density

Fig. 8: Minimal SOP vs. required SDPs and RCPs.

should not be too large.

C. Sensing Performance Optimization

To understand how the sensing outage performance of the
mmWave PMN can be improved with the guarantee of both
sensing detection and communication rate performance, Fig. 8
shows the relationships among the required SDP ϱS, required
RCP ϱC, and minimal SOP Pκ∗

out in standalone and cooperative
sensing cases, by addressing the optimization problem in
(33). A two-layer hierarchical search algorithm based on
the alternating optimization is conducted, with the feasible
ranges of parameters taking ρ ∈ [0, 1], η ∈ {0, 0.1, . . . , 1},
λb ∈ [0.5, 10.5] × 10−5/m2, RS ∈ [20, 220] m, and Ξ = 11.
Ten random initializations are implemented to approach global
optimality. The obtained optimums under ϱC = 0.8 and
ϱS = 0.85 are marked with red points in Fig. 8 as examples.
It can be observed from the figure that, the minimal SOP
under cooperative sensing at V = 5 drops by 92% as
compared with that under standalone sensing at V = 0. It
states that the cooperation among multiple BSs for sensing a
UAV can significantly enhance the sensing coverage capability.
Moreover, the optimal ρ, η, λb, and RS indicate that with an
increase in V for cooperative sensing, larger transmit power
and more RF chains for sensing, larger sensing distance, and
denser BS deployment can be configured to achieve a better
sensing coverage performance, owing to the echo enhancement
and clutter suppression by cooperation.

In addition, from the contour plots in Fig. 8, with fixed ϱS,
a large ϱC leads to an increase in SOP. This is because the
high requirement on RCP raises the demand of communication
for power and RF chain resources, thus reducing the available
resources for sensing and degrading the detection performance.
On the other hand, with fixed ϱC, increasing ϱS brings remark-
able rises in SOP. This indicates that, to guarantee the stringent
requirement of each BS for successfully detecting its target
UAVs, small sensing area and low BS density are demanded
and thus the sensing coverage capability of the network is
sacrificed. In addition, as shown in Figs. 8(b) and 8(c), only
large ϱC and ϱS lead to the deterioration of minimal SOP,
implying that cooperative sensing can jointly guarantee the
UAV detection performance, sensing coverage, and communi-
cation performance unless with both stringent requirements on
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RCP and SDP. It is elaborated in Fig. 8 that, by fine tuning
the BS density, sensing distance, allocation of power and RF
chain resources, and number of cooperative BSs, the PMN
can strike a good balance between communication and sensing
performance.

VIII. CONCLUSION

In this paper, we have analyzed the sensing and commu-
nication performance for mmWave UAV surveillance-oriented
PMNs and investigated the interaction between the two func-
tions. Specifically, we have developed a system-level theoret-
ical framework based on stochastic geometry to investigate
the rate coverage probability, successful detection probability,
and sensing outage probability in both standalone and coop-
erative sensing cases. The analytical framework captures the
mutual interference and resource contention between sens-
ing and communication, and lays the foundation for net-
work configuration and optimization. In addition, we have
proposed a cooperative sensing strategy to achieve reliable
UAV surveillance with the hybrid of monostatic sensing and
bistatic sensing. Numerical and simulation results demonstrate
that by appropriately setting key network parameters, the
sensing performance can be optimized whilst guaranteeing
communication requirements. Also, cooperative sensing can
achieve great performance enhancement as compared with
standalone sensing by reaping the spatial diversity gain from
multiple collaborative BSs. For the future work, the theoretical
framework can be extended to investigate the impacts of
the imperfections in hardware, channel estimation, and beam
alignment on both sensing and communication performance.

APPENDIX A. PROOF OF (3)

Given the typical BS located at the origin and the coordinate
of an arbitrary GUE as (x, y,−HB), the virtual azimuth and
elevation angles of the GUE relative to the typical BS are
expressed as ϕ = π cosψ sin γ = πx/

√
x2 + y2 +H2

B ∈
[−π, π] and θ = π cos γ = −πHB/

√
x2 + y2 +H2

B ∈
[−π, −πHB√

D2+H2
B

], respectively, focusing on a circular region

with radius D. The HPPP-distributed GUEs are uniformly
distributed in the region, thus the joint PDF of the x and y
coordinates of an arbitrary GUE is f(x, y) = 1/πD2. Then,
the joint PDF of the virtual azimuth and elevation angles of the
GUE relative to the typical BS can be derived by f (ar)C (ϕ, θ) =

f
(ar)
C

[
x(ϕ, θ), y(ϕ, θ)

]∣∣∣∣∣ ∂x∂ϕ ∂x
∂θ

∂y
∂ϕ

∂y
∂θ

∣∣∣∣∣. To sum up, the joint PDF of

the virtual azimuth and elevation angles of an arbitrary GUE
relative to the typical BS can be obtained as (3).

APPENDIX B. PROOF OF (20)

The RCP conditioned on K0 GUEs in the coverage area of
the typical BS is given by

Prate,K0
= P

[
K
K0
B log2(1 + SINRK,k) ≥ τC

]
= P

(
TNtLC,x,k,eβ

2
C,x,k,e

Pt,C

K G2
t

Iintra,C + Iintra,S + Iinter+TσCB
≥τC,K0

)

= EQEδk,i

{∫ ∞

0

{ ∑
e∈{L,N}

Pe(v0)P
[
β2
C,x,k,e≥se,0·

τC,K0
( IinterT +σCB)

]
1(se,0 > 0)

}
fG(v0)dv0

}
, (34)

where τC,K0
= exp[τCK0 ln 2/(BK)] − 1, s−1

e,0 =

ζNt

{Pt,C

K G2
t − τC,K0

Pt,C

K

∑K
i=1,i̸=k[δk,iG

2
t + (1− δk,i)g

2
t ]−

τC,K0Pt,Sg
2
t1(Q ̸= 0)

}
(v20 + H2

B)
−αe

2 , e ∈ {L,N}, and the
indicator variable 1(se,0 > 0) is added so that the inequality
in (34) holds true. The inequality in (34) is further derived as

P
[
β2
C,x,k,e≥se,0τC,K0

( IinterT +σCB)
]

(a)
= EIinter

[
Γ(me, se(

Iinter
T + σCB))

Γ(me)

]
(b)
= EIinter

{
exp
[
−se( IinterT + σCB)

]me−1∑
c=0

[
se(

Iinter
T + σCB)

]c
c!

}
(c)
=

me−1∑
c=0

sce
c!

exp(−seσCB)

c∑
l=0

(
c
l

)
(−1)2c−l(σCB)(c−l)d

lLIinter(se)

dsle
,

(35)

where se = mese,0τC,K0 ; equation (a) comes from the com-
plementary cumulative distribution function of the Gamma-
distributed variable β2

C,x,k,e; equation (b) follows from the
expression of the upper incomplete Gamma function with
me being an integer; equation (c) is yielded by exp

[
−

se(Iinter/T + σCB)
]
(Iinter/T + σCB)c = (−1)c dc

dsce
exp

[
−

se(Iinter/T + σCB)
]

and the Leibniz integral formula. Fur-
thermore, the Laplace transform in (35) is derived as

LIinter(se) = EIinter

[
exp(−se Iinter

T )
]

=

∞∏
K′

0=1

∏
e′∈{L,N}

E
Φ

(K′
0)

B

{ ∏
x′∈Φ

(K′
0)

B \x

exp
[
− se
T

(∑K′

i′=1

∥∥hH
x′,k·

wC,x′,i′sC,x′,i′
∥∥2+∑Q′

j′=1

∥∥hH
x′,kwS,x′,j′sS,x′,j′

∥∥2)]}
(a)
=

∞∏
K′=1

∏
e′∈{L,N}

exp

{
−2πP(KG=K

′
0)λb

∫∞0 PL(v)vdv

∫∞0 vdv
·

EQ′Eδk,i′

{∞∫
v0

vdv−
∞∫

v0

[
me′

me′+ξ1se(v2+H2
B)

−
α
e′
2

]me′

vdv

}}
, (36)

where equation (a) comes from the probability generating
functional (PGFL) of HPPP and the Gamma distribution of
β2
C,x′,k,e′ . The integral in (36) can be further derived as∫ ∞

v0

[
me′

me′ + seξ1(v2 +H2
B)

−
α
e′
2

]me′

vdv

(a)
=

1

αe′

∫ ∞

(v2
0+H2

B)
α
e′
2

me′∑
t=0

(
me′
t

)
(−1)t

ω
2

α
e′

−1

(1+me′s
−1
e ξ−1

1 ω)t
dω

(b)
=

∫ ∞

v0

vdv+
1

αe′

me′∑
t=1

(
me′
t

)
(−1)t

steξ
t
1(v

2
0 +H2

B)
1−

α
e′ t
2

(t− 2
αe′

)mt
e′

·

2F1

(
t, t− 2

αe′
; t− 2

αe′
+1;− ξ1se

me′(v20+H
2
B)

α
e′
2

)
, (37)
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where (a) comes from the substitution of ω = (v2 +H2
B)

α
e′
2

and binomial expansion, (b) follows from the integral formula
in [43][Eq. 3.194.2], with 2F1() being the Gaussian hyperge-
ometric function. Combining (34)-(37), Theorem 1 is proved.

APPENDIX C. PROOF OF (26)

The SDP for the typical UAV under standalone sensing,
conditioned on the number of UAVs in the sensing area of the
typical BS Q0, is given by

P st
det,Q0

=
Q

Q0
P(SCNRst

Q,q ≥ τS)

(a)
=
Q

Q0
EKEδq,jEr0

{
exp
[
−sS(

Cst
x,q

T +σSB)
]mL−1∑
c=0

[
sS(

Cst
x,q

T +σSB)
]c

c!

}

=
Q

Q0
EKEδq,j

{∫ RS

0

mL−1∑
c=0

scS
c!

exp(−sSσSB)

c∑
l=0

(
c

l

)
(−1)2c−l·

(σSB)c−l
dlL

C
(1)
x,q
(sS)LC

(2)
x,q
(sS)LC

(3)
x,q
(sS)LC

(4)
x,q
(sS)

dslS
fU(r0)dr0

}
, (38)

where equation (a) comes from the Gamma-distributed small-
scale fading gain and the upper incomplete Gamma function.
Specifically, L

C
(1)
x,q

(sS) in (38) can be further derived by

L
C

(1)
x,q

(sS) = E
C

(1)
x,q

[
exp(−sS

C(1)
x,q

T )
]

=

Q∏
j=1,j ̸=q

ELEβ2

{
exp
[
−δq,j

sS
T

∥∥aHr (ϕS,x,q, θS,x,q)Gx,j,xX
∥∥2]}

(a)
=

Q∏
j=1,j ̸=q

∫ RS,max

0

[
mL

mL+sSξ2(ν02+∆H2)−αL

]mL

fU(ν0)dν0

=

Q∏
j=1,j ̸=q

1

αLR2
S

m∑
t=0

(
m
t

)
(−1)t

[
∆H2−2αLtξt2s

t
S

mt
L(t−

1
αL

)
2F1

(
t, t− 1

αL
;

t− 1

αL
+1;− ξ2sS

mL∆H2αL

)
−

(R2
S,max+∆H2)1−αLtξt2s

t
S

mt
L(t−

1
αL

)
·

2F1

(
t, t− 1

αL
; t− 1

αL
+1;− ξ2sS

mL(R2
S,max+∆H2)αL

)]
, (39)

where coefficient ξ2 = σ̄
4π ζδq,jG

2
rNrNt

{
Pt,Cg

2
t1(K ̸= 0) +

Pt,S

Q G2
t +
∑Q

j=1,j ̸=q
Pt,S

Q [δq,jG
2
t +(1− δq,j)g2t ]

}
, and equation

(a) results from the Gamma-distributed variable β2
S,x,j,x. In

addition, L
C

(2)
x,q

(sS) in (38) can be obtained by

L
C

(2)
x,q
(sS)=EΦ

(q)
B

{ ∏
x′∈Φ

(q)
B \x

exp
[
−sS
T
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(a)
=
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Q′
0=1

exp

{
− 2πP(QU = Q′

0)λbEK′Eδq,j′
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0

{
1−

[
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2
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=
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Q′

0=1
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2π

αL
P(QU=Q

′
0)λbEK′Eδq,j′

[
mL∑
t=1

(
mL

t

) (−1)tξt3s
t
S

(t− 2
αL

)mt
L

·

(ν2min+∆H
2)

2−αLt

2
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(
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2
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2

mL(ν2min+∆H
2)
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2

)],
(40)

where coefficient ξ3 = σ̄
4π ζG

2
rNrNt

{
Pt,Cg

2
t1(K

′ ̸= 0) +
Pt,S

Q′ G
2
t +

∑Q′−1
j′=1

Pt,S

Q′ [δq,j′G
2
t + (1 − δq,j′)g

2
t ]
}

; νmin is the
minimum horizontal distance between interfering BSs and the
typical UAV, equal to 0 implying the interfering BSs can be
infinitely close to the typical UAV; and equation (a) is derived
from the property of Gamma distribution and the PGFL of
HPPP. L

C
(3)
x,q

(sS) in (38) can be similarly obtained by

L
C

(3)
x,q

(sS)=exp

[
πλupmain,S,2

αL

mL∑
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(
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t

)
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∆H2−2αLtξt4s
t
S

(t− 1
αL

)mt
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(
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mL∆H2αL
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, (41)

with coefficient ξ4 = σ̄
4π ζG

2
rNrNt

{
Pt,Cg

2
t1(K ̸= 0) +

Pt,S

Q G2
t +
∑Q

j=1,j ̸=q
Pt,s

Q [δq,jG
2
t + (1− δq,j)g

2
t ]
}

. The Laplace

transform of C(4)
x,q in (38) can be obtained by

L
C

(4)
x,q

(sS) = exp

{
2πλupmain,S,2

αL
EK′EQ′Eδu,j′

∫ ∞

0

{ mL∑
t=1(
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t
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S

(t− 2
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2
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)}
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}
, (42)

where coefficient ξ5 = σ̄
4π ζG

2
rNrNt

{
Pt,Cg

2
t1(K

′ ̸= 0) +
Pt,S

Q′ G
2
t +

∑Q′−1
j′=1

Pt,S

Q′ [δu,j′G
2
t + (1− δu,j′)g

2
t ]
}

; δu,j′ equals
1 with probability pmain,S,2 and 0 otherwise; and fQ′

0,u
(ν3) =

2πλb[1−(1−pmain,S,2)
Q′
]P(QU = Q′

0)ν3 exp
{
−λb[1−(1−

pmain,S,2)
Q′
]P(QU = Q′

0)πν
2
3

}
is the PDF of the horizontal

distance between the UAV u and its nearest interfering BS with
main lobe interference and of Q′ target UAVs, which can be
obtained based on the empty space probability of HPPP.

APPENDIX D. PROOF OF (30)

For cooperative sensing with V cooperative BSs, the SDP
of the typical BS for the typical UAV, given the number of
UAVs in the sensing area of the typical BS Q0, is given by

P co
det,Q0

= Q
Q0

P(SCNRco
Q,q ≥ τS)

(a)
≈ Q

Q0
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Er0,r1,...,rV

{
Γ
[
ϵ̃, µ̃τS(
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(c)
=
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{
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LCco
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(
z
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]− 1
ϵ̃ µ̃τS

)
·
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fU(r0)f
co
V (r1, r2, · · · , rV )drV drV−1 · · · dr0

}}
, (43)

where step (a) comes from the Gamma approximation given
in Lemma 1, with shape and rate parameters ϵ̃ and µ̃ given in
(31); (b) comes from the Alzer’s inequality for the incomplete
Gamma function [44]; step (c) holds due to the generalized
binomial theorem; and f coV (r1, r2, · · · , rV ) is given in (15).
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