
3

SRAM Physically Unclonable
Functions for Smart Home IoT

Telehealth Environments

Fayez GEBALI1 and Mohammad MAMUN2

1Department of Electrical and Computer Engineering,
University of Victoria, Canada

2National Research Council of Canada, Government of Canada, Canada

One main application of smart home IoT networks is telehealth, which is timely
given the current pandemic situation and increasing healthcare costs. To ensure
security of IoT smart homes, it has been suggested that silicon-based physically
unclonable functions (PUF) be incorporated in the IoT devices themselves. PUFs
are used as the main technique for establishing device authentication and secure
key exchange as well as any higher level security protocols. This chapter provides
an analysis of the characteristics and performance of SRAM physically unclonable
functions. The analysis takes into account several factors such as the static or
slowly-varying random process variations as well as the dynamic CMOS noise
sources. The main parameters affecting the performance are identified and techniques
used to measure them at the fabricator and in the field are explained. Three algorithms
are proposed for choosing the set of challenges and the corresponding responses.
The three algorithms are: Algorithm #1: single challenge; Algorithm #2: repeated
challenge; and Algorithm #3: repeated challenge with bit selection. The last algorithm
manages to eliminate the bit errors in the response and hence will not require the use
of error correction coding often used in secure sketch or fuzzy extractor methods that
have previously been proposed. The use of physically unclonable functions, coupled

Cybersecurity in Smart Homes,
coordinated by Rida KHATOUN. © ISTE Ltd 2022.

Cybersecurity in Smart Homes: Architectures, Solutions and Technologies,
First Edition. Rida Khatoun.
© ISTE Ltd 2022. Published by ISTE Ltd and John Wiley & Sons, Inc.

126 Cybersecurity in Smart Homes

with the proposed algorithms, provide a layer of protection against the common IoT
attacks and the novel deep learning attacks that EW claimed to be a serious security
threat to IoT devices in telehealth applications.

3.1. Introduction

An emerging application of smart homes is telehealth, where healthcare delivery
is extended to serve stay-at-home patients and remote or isolated communities.
Telehealth is motivated by the escalating healthcare costs and the fact that many
patients can not afford long-term hospital stays and prefer staying in their homes
or within their remote communities. Telehealth relies very heavily on equipping the
home with smart IoT devices that can sense the patient’s vitals and can also deliver
medication in a secure environment that is immune to cyber attacks. This approach
allows us to reach out to many disadvantaged communities, thereby democratizing
healthcare, as well as leading to reduced costs and speedy patient recovery times
(Ellenbecker et al. 2008; National Institute on Aging 2020).

IoT devices used in smart homes are considered the weakest link in the security
protocols implemented. As a result, contemplating the implementation of critical
telehealth services in a smart home is very risky due to the device limitations of the
Internet of Things (IoT). Some of the limitations include:

1) Limited resources, such as computer processing capabilities, which often
prevent the implementation of secure key exchange algorithms that use complex
elliptic functions.

2) Storing secret keys in non-volatile memory (NVRAM) is considered a security
gap since simple memory attacks can reveal those secret keys. Furthermore, these
secret keys are are hard to update since the NVRAM must be reprogrammed.

3) Users often do not customize or update each IoT device password or operating
system firmware and rely solely on factory-set defaults. This is what system attackers
first look for to launch their attacks.

4) IoT devices are located in unsecured premises and can be subject to theft,
counterfeiting and reverse engineering.

These limitations impact the effectiveness of security protocols for both
authentication and secure key exchange. A very promising technique for endowing a
simple IoT device with a unique identity and the ability to secure secret keys without
using NVRAM is to use silicon-based physically unclonable functions (PUF).

There are many types of PUFs based on different physical phenomena such as
optical, acoustical and electrical. However only silicon PUFs implemented as electric
circuits are practical for inexpensive implementations on simple IoT devices. Silicon
PUFs are practical means of adding unique, unclonable identities to IoT devices. This

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 127

is equivalent to biometrics in humans, such as iris, retina, voice, facial or fingerprint.
PUFs not only help to authenticate IoT devices, but also aid in storing secret keys in the
way a PUF is constructed. Traditionally, secret keys are stored in IoT devices using
NVRAM. The disadvantage of NVRAM is the ability of an attacker to extract the
secret keys, using many techniques such as memory persistence, reverse engineering,
etc. A very attractive property of PUFs is their tamper-resistance which provides
immunity from reverse engineering attacks that aim to extract the unique device
response. The unique response of the PUF prevents the manufacturer, the user and
the attacker from duplicating the PUF function, even when the PUF hardware design
and structure are known.

Authentication using PUFs is based on establishing a challenge-response pair
(CRP) where a set of challenges and their associated unique response is established
by the device manufacturer. This dataset is then shared with a trusted certification
authority (CA) for later use by administrators of the telehealth system to construct a
secure and trusted system.

There are several criteria for CRP establishment:

1) Several CRP must be established so that each CRP is used only once to prevent
attackers from forging a valid response by observing past CRP activities.

2) The number of bits for each response must be “large enough” to be able
to establish enough Hamming distance (HD) separation between valid devices and
counterfeit ones.

3) Techniques must be established to remove the inevitable dynamic noise from
the PUF response to be able to match the noisy response to the one provided by the
manufacturer and stored at a CA.

4) Algorithms must be provided to extract a high-entropy stable and repeatable
secret key from a noisy low-entropy response.

The ability to construct inexpensive PUFs for IoT edge devices allows us to impart
a unique device identity (ID), which is used for device authentication and developing
stable and secure session keys. A very significant advantage is that the session key is
obtained at the beginning of each session without the use of NVRAM. The key will be
shared between the device and the authenticator through the use of publicly available
helper data that will not compromise either the key or the device response.

Ensuring security of telehealth systems is hard, since many devices are distributed
in insecure locations. Many types of attacks become feasible, such as eavesdropping,
theft, tampering, man-in-the-middle, denial of service, etc. Central to ensuring
security is authentication and key exchange. Cryptographic protocols are based on
primitive operations such as block ciphers, stream ciphers and cryptographic hash
functions. These primitive operations rely on storing a secret key stored in non-volatile
memory, which proves to be their Achilles heel, especially for unsecured IoT devices
(Delvaux 2017b).

128 Cybersecurity in Smart Homes

The use of PUFs for mutual authentication in IoT devices has been the recognized
solution to endowing IoT devices with a unique identity, akin to a fingerprint or retina
image for human users. A PUF serves to authenticate a device and also provides a
measure of tamper resistance (Gassend et al. 2002; Ravikanth et al. 2002; Guajardo
et al. 2007; Suh and Devadas 2007; Maes et al. 2009, 2012; Maes 2013; Herder
et al. 2014; Delvaux 2017b). Operation of the PUF relies on a challenge-response
pair (CRP), where the server issues a challenge and the IoT device, or client, provides
a response that is unique to the device. The problem with PUF response is it is noisy
but has low entropy. Therefore, techniques have been developed to recover reliable
and stable response from the noisy response using fuzzy extractors or secure sketch
(Linnartz and Tuyls 2003; Boyen 2004; Dodis et al. 2004, 2008). The advantage of
the fuzzy extractor is that it also serves to generate a secret key with high entropy from
the low-entropy noisy response.

Contributions: The contributions of this chapter can be summarized as follows:

1) Novel statistical modeling and analysis of SRAM PUFs is presented. The model
includes the effects of static random process variations and dynamic CMOS noise.

2) The main physical, device and system parameters affecting the PUF response
are identified and techniques to estimate them are presented for both the IoT device
manufacturer and for the IoT device user in the field.

3) A novel NOR-based SRAM PUF cell design is proposed that enables rapid
device resetting at a speed matching the operating speed of the system and does not
require the waste of too much delay or energy resetting the entire SRAM.

4) Three algorithms are proposed for generating the challenge response pairs. The
techniques illustrate the impact of system parameters in uniquely identifying valid
devices from counterfeit ones.

5) A discussion is provided on how to harden SRAM PUF against typical IoT
attacks and deep learning attacks in particular.

Organization: The rest of this chapter is structured as follows. In section 3.2 we
discuss the literature related to the use of PUFs for authentication and secure key
exchange. In section 3.3 we review the architecture of a telehealth system where
the smart home is the target for the healthcare delivery. In section 3.4 we discuss
physically unclonable functions and using secure sketch and fuzzy extractors to
remove the dynamic noise from the PUF response. In section 3.5 we discuss the use
of convolutional coding as a means of generating the helper data without revealing the
IoT device response when a challenge is issued. In section 3.6 the structure of SRAM
PUFs is presented and a novel NOR-based SRAM is discussed. A statistical model
of the SRAM PUF is also developed. In section 3.7 we propose three algorithms for
issuing the PUF challenge-response pair (CRP) data and their effect on system design.
In section 3.8 we discuss the attacks targeting smart homes, especially deep learning
attacks.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 129

3.2. Related literature

A high-level authentication and key exchange protocol for a smart home IoT
system was recently proposed by Fakroon et al. (2020, 2021). The protocol used a
two-factor authentication scheme that preserved user anonymity and untraceability.
In the 2020 publication, the IoT edge devices were assumed to have secret keys
stored in NVRAM. On the other hand, the 2021 publication assumed the secret keys
could be derived from a built-in PUF that gave the IoT edge devices unique IDs.
Security analysis of the scheme was conducted through formal analysis using the
Burrows-Abadi-Needham logic (BAN), informal analysis and model check using the
automated validation of Internet security protocols and applications (AVISPA) tool. A
review of PUF-based security techniques can be found in Dodis et al. (2004, 2008).
The authors discussed how to use a low-entropy PUF response to generate secure keys
with high entropy. Secret key extraction techniques used fuzzy extractors to obtain
session keys from the noisy PUF responses.

PUFs are classified as strong PUFs and weak PUFs as explained by Delvaux
et al. (2014) and Delvaux (2017b). The discussion discussed the impact of strong
and weak PUFs on device authentication and secure key exchange. A discussion
was also provided about the helper data algorithm and how it can be used to obtain
high-entropy stable keys from noisy, low-entropy PUF responses. At a different level,
the abstraction of PUF operation as a one-way functions can be found in Ravikanth
(2001) and Ravikanth et al. (2002). They compared algorithmic one-way functions
(e.g. RSA encryption) with physical one-way functions (e.g. PUFs). A discussion of
silicon PUFs can be found in Gassend et al. (2002). The discussion focused mainly
on delay-based PUFs such as arbiter PUF and ring oscillator PUF. The authors also
discussed helper data, which is used to generate session keys from PUF responses.

An initial attempt at analyzing delay-based PUFs can be found in Suh and Devadas
(Suh and Devadas 2007). The analysis considered the need to use each CRP only
once. Techniques were proposed to generate a sufficiently large number of responses
through increasing the number of options to configure the circuit delays. The authors
also discussed low-cost authentication techniques that do not require the use of the
more expensive cryptographic primitives.

It is interesting to explore how PUFs can be incorporated using the popular FPGA
technology. This is especially true for SRAM PUFs, which could make use of the
built-in block RAM provided in many FPGA modules. However, resetting the SRAM
might not be a simple matter, since this was not part of the design requirements of
an FPGA block RAM (Xilinx 2021). Guajardo et al. (2007) studied SRAM PUF
structures implemented in FPGA technology. To overcome noise associated with the

130 Cybersecurity in Smart Homes

response of the PUF a fuzzy extractor was used. This also helped extract secure and
stable session keys with high entropy.

In a series of publications, Maes et al. (2012, 2009) and Maes (2013) discussed
seven silicon-based as well as non-silicon-based PUFs. The authors also discussed the
secure sketch techniques used to generate session keys that were proposed by Dodis
et al. (2004, 2008).

Reviewing the published literature, we can make several conclusions about the
current state of the art in using PUFs for IoT authentication and secure exchange:

1) The literature discusses, sometimes implicitly, one algorithm for issuing the
CRP pairs: a single challenge is issued and the device response is observed. This is
a simple algorithm that does not utilize the IoT device statistical characteristics to
its advantage. Perhaps the only advantage of this algorithm is that it maximizes the
number of CRP pairs, which is critical, especially for weak PUFs.

2) The parameters that define the response of the IoT PUF device are not identified
in most published works. General statements are typically stated such as: “a large
number of response bits are needed to differentiate valid from counterfeit devices”.
At best a sketch is provided about the desired Hamming distance (HD) separation
between valid devices and counterfeit devices.

3) Values of the PUF circuit parameters, the statistical parameters and the choice
of overall system parameters are not studied to see how the response of the PUF can
be controlled and optimized. A lack of accurate logical PUF models explains why this
is the accepted view of using PUFs.

3.3. System design considerations

Telehealth Network Model: Figure 3.3 shows the architecture of the telehealth
system. The main agents in the system include:

– Network Server (S): The network server is usually located in a hospital. We
can consider the server to be a root-of-trust (RoT) since it contains tamper-resistant
hardware like a trusted platform module (TPM).

– Mobile User (M): This can be thought of as the smart devices or telephones
used by the healthcare professionals such as doctors and nurses.

– IoT Edge Device (D): The IoT edge devices include Internet-enabled
sensors/actuators that could be located in a remote health care unit or could be located
in a body area network (BAN) attached to a stay-at-home patient.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 131

D1 D2 Dn...

Server
(HRoT)

Internet
Cloud

Database

M1 Mn...

Figure 3.1. Telehealth network model. For a color version of this
figure, see www.iste.co.uk/khatoun/cybersecurity.zip

3.4. Silicon physically unclonable functions (PUF)

Silicon static random access memory (SRAM) used to construct a PUF is a
practical technique to give a unique “fingerprint” or identity to a silicon device and
the ability to generate a secret key without the need to store it in NVRAM. The main
advantages of silicon SRAM PUF are several:

1) Silicon SRAM based on CMOS technology does not require any extra
processing steps which makes them practical to implement at no additional costs or
delays (Holcomb et al. 2009).

2) The area cost is less than that required by an identity stored in NVRAM since
circuits often require extra hardware such as charge pump to program the NVRAM.

3) The identity can not be cloned or reverse-engineered without destroying the
fingerprint itself and removing the possibility of any device recyling.

4) The number of CRP goes beyond the number of words of the memory. In fact,
the number of challenge-response pairs (CRP) is given by equation [3.6] or equation
[3.7] later in this chapter.

In addition, a PUF provides tamper resistance since any changes to the device
physical parameters will lead to a corrupted identity (Maes et al. 2009). The concept
of silicon PUF was first proposed by Gassend et al. (2002). Silicon PUF operation
relies on the inevitable random variations that are introduced during the fabrication
of semiconductor devices. This gives the means to uniquely identify the individual

132 Cybersecurity in Smart Homes

devices. Furthermore, such a PUF can not be replicated through reverse engineering
even by the device manufacturer. SRAM cells provide an compact way to create a
silicon PUF through the unique startup values of the individual words in the memory
(Guajardo et al. 2007; Boehm and Hofer 2009; Schrijen 2020). The SRAM content
each time the SRAM PUF starts up is slightly different due to the inevitable dynamic
noise (Su et al. 2008; Yu et al. 2011). Dodis was the first to propose using forward
error correcting codes (FEC) to overcome the noisy inconsistent SRAM PUF output
(Dodis et al. 2004, 2008). This was later improved upon by other authors (Boyen
2004; Bȯsch et al. 2008; Maes et al. 2009, 2012; van der Leest et al. 2012; Maes
2013; Delvaux et al. 2014; Hiller 2016; Delvaux 2017a, 2017b; Gao et al. 2018,
2019; Schrijen 2020).

3.4.1. Mutual authentication and key exchange using PUF

Figure 3.2 shows the basic structure of the secure sketch at the server and client.
The server selects a challenge c and uses the database supplied by the manufacturer to
extract the expected response r. The server also performs forward error correction
coding (FEC) on the response to produce helper data w. The secure sketch also
produces a hashed value h for the response. This value will serve to establish mutual
authentication between the server (gateway provided by Internet service provider, in
our case) and the client (IoT edge device, in our case).

...
Encoder

r r’

r
Decoder

w

w
h*

H(r)
h

PUF/
IoT Device

Database
c

c c

Server Side Client SideK

Key
Generator

Key
Extractor

H(r)

K

Fuzzy Extractor Fuzzy Extractor

Figure 3.2. Basic structure of the secure sketch at the server (on the left)
and client (on the right). For a color version of this figure, see

www.iste.co.uk/khatoun/cybersecurity.zip

The client receives the challenge c and helper data w and in response produces
the actual noisy response r′, and with the help of w it decodes r′ to produce the
error-free response r. The client then hashes this value and sends h∗ to the server to
be authenticated.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 133

3.4.2. Fuzzy extractor

At the server side, the fuzzy extractor uses the expected response w to generate the
secret key K and helper data w as shown on the left in Figure 3.3. The helper data r
can be made public without divulging the secret key. On the right side of Figure 3.3,
the IoT device with the PUF is the client which, upon receiving the challenge c and
helper data P , generates the noisy response r′. As long as the Hamming distance
between r and r′ is less than a certain threshold, the fuzzy extractor uses the corrected
response r and helper data w to generate the secret key K .

...
r Key

Generator
Key

Extractor
K

w w K

Server Side Client Side

r

Figure 3.3. Basic structure of the fuzzy extractor at the server and client. For a
color version of this figure, see www.iste.co.uk/khatoun/cybersecurity.zip

It should be noted that the secret key changes each time a new challenge c is
issued. In this chapter we will use this feature to generate a nonce which could be K
or a hashed value of K to increase its entropy. This will serve to construct a secret key
shared among the entities of our system: mobile device (M), server (S), and IoT edge
device (D).

The key regeneration using the fuzzy extractor process can be expressed by the
equation

(Kd, Nd) = key_regen(c, w) [3.1]

where Kd is the secret key and Nd is the secret random number.

Some implementations were done in FPGA platforms (Herrewege et al. 2012;
Maes et al. 2012) and some were implemented on microcontrollers (Aysu et al. 2015).
Gao et al. (2019) proposed an SRAM-based PUF key generator on a microcontroller
using RF energy harvesting.

3.5. Convolutional encoding and Viterbi decoding the SRAM words

As explained in section 3.4.1, the PUF response is inherently noisy due to the
CMOS dynamic noise. Means have to be provided for removing this noise from the
response. This is the job of the secure sketch which is derived from forward error
correcting coding (FEC) theory. The helper data w in Figure 3.2 is used to remove the

134 Cybersecurity in Smart Homes

dynamic noise. However, the system designer must ensure that w does not reveal any
information about the device response since w will be sent across unsecured channels.
Furthermore, the error correcting capability of the secure sketch must be limited to a
certain number of bit errors. If it exceeds that limit, there is a danger of inadvertently
converting the response from a counterfeit device to that of a valid device.

Convolutional codes are a powerful FEC technique that is the only FEC that can
handle both random errors and bust errors. The error correcting capability can be
increased or decreased by increasing or decreasing the code rate, respectively.

A rate k/n convolutional encoder accepts k message bits and adds redundant bits
to produce n output bits for each message with n > k. A convolutional encoder is
specified by the three-tuple (n, k, m) where:

1) n: number of bits of the message after encoding;

2) k: number of information bits of the message before encoding;

3) m: order of the code or number of storage registers.

The code rate is defined by the first two parameters k/n. We can write the
convolutional encoder as

yi[n] =
k−1∑

j=0

hi[j] x[n− j] [3.2]

where x[n] is thek-bit input symbol,yi[n] is the ithk-bit output symbol with 0≤ i < n,
and hi[j] is the k-bit generator polynomial weight with 0 ≤ j < m the number of
delay elements. x[n] represents the input symbol stream and y[n] represents the output
symbol stream.

Figure 3.4 shows a 1/2 convolutional encoder. The disadvantage of the structure
in Figure 3.4 is the delay incurred to add m inputs using XOR gates. The constraint
length for the k/n encoder with the structure in Figure 3.4 is km, which indicates the
number of delay elements needed to generate the outputs from k inputs.

Figure 3.5 shows an alternative form for a 1/2 convolutional encoder. This form
has the advantage of pipelining the partial output results at the expense of doubling
the number of delay elements. The constraint length for the k/n encoder with the
structure in Figure 3.5 is knm, which indicates the number of delay elements needed
to generate the outputs from k inputs.

The generator polynomial for the structure in Figure 3.4 or 3.5 is defined as

p1(x) = h1[0]x
3 + h1[1]x

2 + h1[2]x
1 + h1[3] [3.3]

p2(x) = h2[0]x
3 + h2[1]x

2 + h2[2]x
1 + h2[3] [3.4]

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 135

y1[n]

D D D
x[n] x[n-1] x[n-2] x[n-3]

h1[0] h1[1] h1[2] h1[3]

y2[n]

h2[0] h2[1] h2[2] h2[3]

Figure 3.4. Structure of a (2, 1, 3) convolutional encoder. For a color version
of this figure, see www.iste.co.uk/khatoun/cybersecurity.zip

y1[n]
D

x[n]

h1[3] h1[2] h1[1] h1[0]

y2[n]

D D

D D D

h2[3] h2[2] h2[1] h2[0]

Figure 3.5. Structure of an alternative form for a (2, 1, 3) convolutional encoder.
For a color version of this figure, see www.iste.co.uk/khatoun/cybersecurity.zip

Typically the generator polynomial is represented in matrix form as an n×(m+1)
matrix G. For the (2, 1, 3) encoder we can write

G =

[
h1[0] h1[1] h1[2] h1[3]
h2[0] h2[1] h2[2] h2[3]

]
[3.5]

For a degree 3 polynomial in GF(2) we can use several primitive polynomials
such as

p(x) =

{
x3 + x2 + x+ 1
x3 + x+ 1

136 Cybersecurity in Smart Homes

The golden SRAM words are defined according to the rules in [3.18]. These
criteria will determine which bits of a given SRAM word are to be used for
encoding/decoding and which ones will be overpassed according to the algorithms
discussed in section 3.7.

The manufacturer applies convolutional coding to the golden SRAM data word
before transmission. The ICs in the field use Viterbi decoding on the actual PUF output
to generate the corrected SRAM word. The decoder uses hard decision algorithm,
where each bit is interpreted as either ‘0’ or ‘1’.

3.6. CMOS SRAM PUF construction

The basic structure of an SRAM CMOS cell is shown in Figure 3.6, which is
basically two cross-coupled CMOS inverters. An excellent discussion of the operation
of the CMOS SRAM memory is found in (Prince 1991, section 5.5). As we shall see
in section 3.6.2, part of the requirement for an SRAM PUF is to perform repeated
resetting of the SRAM. An SRAM PUF might have to be reset over 1,000 or more
times to obtain a dependable response free of dynamic noise. This is a basic feature of
the proposed algorithm discussed in sections 3.7.2 and 3.7.3 later in this chapter. The
basic SRAM can be reset in one of two ways

1) Disconnect then reconnect the power supply VDD . This will force the initial
state of the two outputs of the cell to be 0 simultaneously. However, this is a slow
process since the power supply rails usually have very large parasitic capacitances.

2) Ground the bit lines B = B = 0 and set the word line W = 1. This will
ensure the initial state of the two outputs of the cell to be 0 simultaneously. This
option requires modifying the word lines W and W for the entire SRAM module.
This approach is not feasible if the SRAM block is used to store data in addition to the
PUF function.

W W

B B

Figure 3.6. Basic cell structure for a 6-transistor SRAM CMOS cell

A third alternative is to modify the cell structure so that resetting the cell can be
done at a speed matching the write speed of an SRAM. Figure 3.7 shows the basic cell

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 137

structure of a NOR gate-based SRAM PUF and Figure 3.8 shows the details of the cell
structure. In Figures 3.7 and 3.8, the contents of the cell are obtained through the bit
lines B and B for the bit value and its complement, respectively. Signal W is usually
referred to as the word line and, when asserted, connects the outputs of the cell to the
bit lines. Finally, signal R is the reset signal and when it is asserted to ‘1’, both NOR
gates’ outputs will be 0. As soon as R = 0, the storage cell stores ‘1’ or ‘0’ depending
on several factors such as:

1) Threshold voltage values for the n-MOS and p-MOS transistors of the NOR
gates and the pass-gate controlled by signal W .

2) Delay between the signal R and the lower inputs to the NOR gates.

3) Parasitic capacitances seen by the outputs of the two NOR gates.

W WR

B B

Figure 3.7. Basic cell structure for NOR gate-based SRAM PUF

VDD

W W

R

B B

VDD

Figure 3.8. Detail of the basic cell structure for NOR gate-based SRAM PUF

The cell structure in Figure 3.8 was first simulated using the analog device
simulator QUCS (Jahn and Borrás 2007). The simulator confirmed the basic operation
of the SRAM cell under normal operation when R = 0 and W = 1. When the cell
was reset (R = 1), both outputs B and B both reached the same reset value due to
symmetry conditions. When the reset was not asserted R = 0, the SRAM cell assumed
a random value 1 or 0.

138 Cybersecurity in Smart Homes

It should be mentioned that the cell design can use two NOR gates or two inverters.
The inverter-based design, also known as the 6-transistor design, must add enough
pass-gates to allow for breaking up the feedback path and setting the inputs of the two
inverters to equal values, whether 0 or 1. There is therefore no saving in terms of the
MOS transistor count to using the 6-transistor cell design.

Assuming the number of words in the SRAM PUF to be N and that a challenge
selects addresses of k words, the number of challenge-response pairs (CRP) is given
by the permutation

CRP = Nk $ N [3.6]

when repetitions are allowed. Alternatively we have

CRP =
N !

(N − k)!
$ N [3.7]

when repetitions are not allowed. Adopting this strategy, one can construct strong
PUF out of NOR-based SRAM PUF, especially if the order of the response bits is
pre-arranged and can be securely varied at the start of each session.

3.6.1. SRAM PUF statistical model

The operation of SRAM PUF relies to two random physical phenomena: random
processing variations and dynamic noise, which are analog processes. Both these
phenomena control the digital binary value of the stored bits after SRAM initialization.
Random process variation is static for a given device and facilitates creation of the
device “biometric” or unique fignerprint. Random dynamic noise, on the other hand,
is dynamic and introduces noise to the device identity (ID).

One way to analyze an SRAM-based PUF is to accurately model the devices and
wire delays of the basic cell. However, this will not account for all the factors, such as
doping variations, oxide thickness variations, random parasitic loading capacitances,
etc. Instead we resort here to developing a logical model that encompasses all these
physical phenomena. This approach is akin to the logical modeling of faults instead
of modeling all possible physical faults in an integrated circuit.

The random variable we choose to model should be amenable to measurements
under mass production settings by the device manufacturer. In the context of using
an SRAM PUF, an appropriate random variable is the content of the SRAM memory
cells. This is a binary random variable that is characterized by the two probabilities a
and b denoting the probability that the SRAM cell is ‘1’ or ‘0’, respectively. Ideally
random process variations and CMOS noise are absent and the structure of each

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 139

SRAM cell is completely symmetric making the ideal probabilities ai and bi satisfy
the equality

ai = bi = 0.5

Due to the central limit theorem, the random process variation (RPV) effect on the
pair (ai, bi) follows the biased Gaussian distribution whose pdf is given by

fAp =
1

σp

√
2π

e−(ap−ai)
2/2σ2

p [3.8]

where ap is the adjusted value of ai due to RPV and σ2
p is the variance of the RPV

process. We should note that ai and σp are identical for all SRAM bits within a device
or among different devices.

The value of ap is given by

ap = G(ai,σp) [3.9]

where G(ai,σp) is a Gaussian random process with mean ai and variance σ2
p .

Figure 3.9 shows the different types of distributions due to the random processes
involved in determining the bit value probabilities.

Figure 3.9(a) shows the pdf of the random variable ap due to RPV which is a
biased Gaussian process with mean ai and variance σ2

p .

There are several sources of dynamic or short-term noise in CMOS devices
including:

1) Thermal noise as additive white Gaussian noise (AWGN), showing flat spectral
distribution.

2) Shot noise due to charge carrier flow across p-n junctions.

3) Flicker noise due to charge trapping in the device, showing 1/f spectral
distribution.

These noise sources introduce variations in the value of transition probability a
each time the CMOS inverter undergoes a transition.

Figure 3.9(b) shows the pdf of the random dynamic noise n which is given by

fAn(an) =
1

σn

√
2π

e−a2
n/2σ

2
n [3.10]

where σ2
n is the variance of the dynamic noise process. On the other hand, the pdf for

the additive white Gaussian noise (AWGN) is common to all bits within a device and
also for all devices.

140 Cybersecurity in Smart Homes

fAp(ap)

0.0

0.0

ap

fA(a)

0.0

(a)

(c)

(b)

!i= 0.5

fN(n)

1.0

n

1.0

a

1.0!p

fA(a)

0.0

(d)
a

1.0!p

Figure 3.9. The pdf distributions of transition probability a due to the different physical
phenomena. (a) pdf of ap due to random process variations (RPV). (b) pdf of n due to
random dynamic noise. (c) pdf of a due to the combined effects of RPV and random
dynamic noise when ap > ai. (d) pdf of a due to the combined effects of RPV and
random dynamic noise when ap < ai

The combined effects of RPV and dynamic CMOS noise generate a pdf given by

fA(a) =
1

σn

√
2π

e−(a−ap)
2/2σ2

n [3.11]

where ap is the contribution of RPV and σn is the contribution of random dynamic
noise.

Figure 3.9(c) shows the pdf of the transition probability a when both RPF and
dynamic noise are present and the mean value µp > µi. Figure 3.9(d) shows the pdf

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 141

of the transition probability a when both RPF and dynamic noise are present and the
mean value µp < µi. For either case, the probability a is given by:

a = G(ap,σn) [3.12]

3.6.2. Extracting the SRAM cell statistical parameters

The value of the a bit at location b in word w is denoted by v(w, b) with w denoting
the SRAM word and b denoting the location b in the word. The range of the indices w
and b is given by

0 ≤ w < W and 0 ≤ b < B

where W is the total number of words in the SRAM and B is the word size.

The values of W and B are set during the fabrication phase of the device. The
values of the probability ap and variance σ2

p can be extracted by the manufacturer
during the pre-deployment phase by following these steps:

1) The manufacturer performs N initializations and observes the stored values of
vk(w, b) in the tagged bit at each step k.

2) The probability ap is obtained as

ap(w, b) =
1

N

N−1∑

k=0

vk(w, b) [3.13]

3) The variance σ2
n due to dynamic noise is obtained as

σ2
n(w, b) =

1

N

N−1∑

k=0

[vk(w, b)− ap(w, b)]
2 [3.14]

Alternatively, the overall σ2
n can be estimated as

σ2
n =

1

W B N

W−1∑

w=0

B−1∑

b=0

N−1∑

k=0

[vk(w, b) − ap(w, b)]
2 [3.15]

In order to measure the RPV parameters ai and σi the manufacturer now studies
the contents of all the bits in the SRAM memory.

1) The values ap(w, b) for all bits in the SRAM memory are obtained previously.

2) The value ai is obtained as:

ai =
1

WB

W−1∑

w=0

B−1∑

b=0

ap(w, b) [3.16]

142 Cybersecurity in Smart Homes

3) The value σi is obtained as:

σ2
i =

1

WB

W−1∑

w=0

B−1∑

b=0

[ap(w, b)− ai]
2 [3.17]

3.6.3. Obtaining the golden SRAM PUF memory content

The manufacturer of the SRAM PUF can run N initialization steps on each
device to obtain the values of ai, σi, ap, and σn, as explained in section 3.6.2. The
digitization, or analog-to-digital conversion, step gives the golden or reference stored
value v(w, b) of each bit in the SRAM PUF where 0 ≤ w < W is the SRAM row
index or word address and 0 ≤ b < B is the bit index within a word. The assignment
of golden or reference memory content is given by the rules:

v(w, b) =

{
0, 0 ≤ ap(w, b) ≤ ai
1, ai < ap(w, b) ≤ 1

[3.18]

The conditions in equation [3.18] indicate the cell is skewed toward 0 or 1,
respectively, and the effect of dynamic noise is negligible. Such cells provide the
desired randomness that make the PUF hard to clone or reverse engineer (Holcomb
et al. 2009).

The manufacturer now prepares a dataset for each device’s SRAM PUF. The
dataset contains the following information:

1) W the number of words in the SRAM PUF.

2) B the number of bits in each word.

3) Golden value v(w, b) associated with each bit in the SRAM PUF based on
criteria in equation [3.18].

The user now has the ability to choose the challenge/response pairs to use.

3.6.4. Bit error rate (BER)

The bit error rate of an SRAM cell is due to two mutually exclusive events: the bit
is measured as ‘0’ when it should be ‘1’ or it is measured as ‘1’ when it should be ‘0’.
We can write the BER as

pe = A+B [3.19]

where A is the probability that the SRAM bit is measured ‘0’ when it should be ‘1’
because ap > ai and B is the probability that the SRAM bit is measured ‘1’ when it
should be ‘0’ because ap < ai. The two probabilities are

A =

∫ ai

a=0

1

σn

√
2π

e−(a−ap)
2/2σ2

n da [3.20]

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 143

for the case when ap > ai, and

B = 1−
∫ ai

a=0

1

σn

√
2π

e−(a−ap)
2/2σ2

n da [3.21]

for the case when ap < ai.

3.6.5. Signal-to-noise ratio (SNR) for SRAM PUF

The term “signal” in the context of this work refers to the probability ap. More
specifically, we take the absolute difference |ap − ai| as the definition of our signal
for the following reasons:

1) When ap = ai the SRAM cell value has equal probability of being 1 or 0 and
this value totally depends on the effects of dynamic noise.

2) When ai < ap ≤ 1 the SRAM cell value is biased to be 1 with little effects
from dynamic noise especially when ap → 1.

3) When 0 ≤ µp < ai the SRAM cell value is biased to be 0 with little effects
from dynamic noise especially when ap → 0.

We can now define the system-level signal-to-noise ratio (SNR) of a tagged SRAM
cell as the ratio of the energy due random process variations relative to dynamic noise
energy:

SNR = 10 log

(
(ap − ai)2 + σ2

p

σ2
n

)
[3.22]

where the contribution of the random process variations (through ap and σp) and
dynamic noise (through σn) are beyond the control of the device manufacturer.

Bits in an SRAM word, and for that matter, all bits in the SRAM, do not have the
same SNR. The mininum SNR is when µp = ai:

SNRmin = 10 log

(
σ2
p

σ2
n

)

= 20 log

(
σp

σn

)
[3.23]

On the other hand, maximum SNR occurs when either ap = 0 or when ap = 1.
Since ai = 0.5, we can write:

SNRmax = 10 log

(
a2i + σ2

p

σ2
n

)
[3.24]

When SNR ≈ SNRmin, the response to the challenge is noisy. Similarly when
SNR ≈ SNRmax, the response to the challenge is more stable and less dependent on
noise.

144 Cybersecurity in Smart Homes

3.7. Algorithms for issuing CRP

In this section we propose and analyze several algorithms for issuing the CRP data
and their effect on system design.

3.7.1. Algorithm #1: single-challenge

The single-challenge algorithm used to authenticate a device follows the steps
depicted in Figure 3.10. Four steps are required for authenticating the device and
generating the session key.

1: Server selects a single CRP (c, r)

2: Server generates w, K and h

3: Client uses (c, w) to generate r′1, K , and h∗

4: Server authenticates device

Server Channel Client

1. Select CRP (c, r)

2. Generate w, K , h
(c,w)−→ # 3. Use (c, w) to

generate r′1, K , and h∗

4. Verify h∗ = h
h∗
←−

Figure 3.10. Algorithm #1 for the authentication of
an IoT edge device and secure key exchange

Table 3.1 shows the maximum intra Hamming distance and inter Hamming
distance for different word sizes B for the case when W = 1K words, N = 1024
initialization operations and SNRmax = 20 dB.

We observe from Table 3.1 that the number of errors in the PUF response increases
as B increases, as indicated by the intra Hamming distance. The errors are due to the
effects of dynamic noise. We also observe from Table 3.1 that word lengths B ≥ 256
are required to ensure clear separation between different device IDs.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 145

B (bits) 32 64 128 256 512
Maximum Intra Hamming Distance (bits) 0 0 52 92 171
Inter-Intra Hamming Distance Separation (bits) -12 -6 -3 10 49

Table 3.1. The Algorithm #1 maximum intra Hamming distance and inter
Hamming distance for the case when W = 1K words, N = 1024

initialization operations and SNRmax = 20 dB

Algorithm #1 is vulnerable to effects of dynamic noise which leads to a large intra
Hamming distance and a small, or even negative, inter Hamming distance. The former
leads to developing error correction codes capable of correcting a large number of
bits. The latter might lead to false positive that declares or accepts a device as being
authentic while it is, in fact, fake.

To be able to mitigate the above effects, the system designer must be able to ensure
that the distribution of the intra Hamming distance is sufficiently separated from the
inter Hamming distance. This approach is expensive since it requires:

1) Using large SRAM word size.

2) Being able to correct a large number of error bits through using many
redundancy bits.

Figure 3.11 shows the histograms for intra and inter Hamming distance
distributions for the case whenW = 1K words, B = 128 bits, N = 1024 initialization
operations and SNRmax = 20 dB. We notice that when B = 128 bits the inter and intra
Hamming distance histograms are touching. It would be hard to distinguish between
a valid device and a fake one.

Figure 3.12 shows the histograms for intra and inter Hamming distance
distributions for the case whenW = 1K words, B = 512 bits, N = 1024 initialization
operations and SNRmax = 20 dB. When B = 256 the the inter and intra Hamming
distance histograms are well separated. It would be easy to distinguish between a
valid device and a fake one.

Figure 3.13 shows the histograms for intra and inter Hamming distance
distributions for the case when W = 1K words and B = 512 bits. When B = 512 the
separation between inter and intra Hamming distances is increased compared to the
case when B = 256.

It might prove expensive to implement an SRAM PUF with a word size of 512 bits.
This problem can be simply solved by changing the challenge c to use multiple words
that need not be consecutive. For example, if the SRAM PUF is a memory with word
size B = 64, then generating a 512-bit response is feasible by simply having the
challenge c correspond to addressing 8 words. This actually allows us to enrich the

146 Cybersecurity in Smart Homes

space of possible challenges by being able to generate all possible permutations so that
we have 8! = 40, 032 possible challenges that use the same 8 words of the SRAM.

20 30 40 50 60 70 80
0

50

100

150

200

250

300

Figure 3.11. The Algorithm #1 histogram on the left shows the intra Hamming distance
distribution. The histogram on the right shows the inter Hamming distance distribution.
The case when W = 1K words, B = 128 bits, N = 1024 initialization operations and
SNRmax = 20 dB

40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

Figure 3.12. The Algorithm #1 histogram on the left shows the intra Hamming distance
distribution. The histogram on the right shows the inter Hamming distance distribution.
The case when W = 1K words, B = 256 bits, N = 1024 initialization operations and
SNRmax = 20 dB

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 147

100 150 200 250 300
Intra Hamming Distance

0

100

200

300

400

500

C
ou

nt

Figure 3.13. The Algorithm #1 histogram on the left shows the intra Hamming distance
distribution. The histogram on the right shows the inter Hamming distance distribution.
The case when W = 1K words, B = 0.5K bits, N = 1024 initialization operations and
SNRmax = 20 dB

3.7.2. Algorithm #2: repeated challenge

The basic idea behind Algorithm #2 is to eliminate dynamic noise by repeating the
steps used by the manufacturer to obtain the golden reference SRAM as discussed in
section 3.6.2.

Algorithm #2 performs N initializations of the SRAM PUF and prepares an
N ×B response matrix R′ whose rows are the individual responses r′[n] for the same
challenge c. A row vector x is obtained as the sum of columns of R′.

x =
1

N
× SumColumns(R′) [3.25]

where SumColumns(R′) sums the individual B columns of matrix R′ to produce a
row B-vector x. The sum operation effectively cancels out the random dynamic noise
which effectively performs repetition coding or majority voting.

The response of the device being authenticated is estimated in bitwise fashion. The
bit at location b of w′

2 is obtained as:

v′2[b] =

{
0 when 0 ≤ x[b] < ai
1 when ai ≤ x[b] < 1

[3.26]

Using the helper data w, the error-corrected response r2 is obtained. The steps used
by Algorithm #2 are shown in Figure 3.14. Four steps are required for authenticating
the device and generating the session key.

148 Cybersecurity in Smart Homes

1: Server selects a CRP (c, r2, N)

2: Server generates w, K and h

3: Client uses (c, w, N) to generate r′2, K , and h∗

4: Server authenticates device

Server Channel Client
1. Select CRP (c, r2, N)

2. Generate w, K , h
(c,w,N)−→ # 3. Use c, w to

generate R′, r′2, K ,
and h∗

4. Verify h∗ = h
h∗
←−

Figure 3.14. Algorithm #2 for the authentication of
an IoT edge device and secure key exchange.

Table 3.2 shows the maximum intra Hamming distance and inter Hamming
distance for different word sizes B for the case when W = 1K words, N = 1024
initialization operations and SNRmax = 20 dB.

B (bits) 32 64 128 256 512
Maximum Intra Hamming Distance (bits) 0 2 4 7 12
Inter-Intra Hamming Distance Separation (bits) 7 21 42 211 207

Table 3.2. The Algorithm #2 maximum intra Hamming distance and inter
Hamming distance for the case when W = 1K words, N = 1024

initialization operations and SNRmax = 20 dB

We see from the table that the intra Hamming distance is at least an order of
magnitude less that the case for Algorithm #1. The inter Hamming distance, of course,
remained the same as in Algorithm #1.

From Table 3.2 we make a very interesting discovery which is the ability to reduce
the word size B and yet be able to authenticate devices. Table 3.2 shows that we are
able to authenticate IoT devices even when B ≈ 32 bits. This would not be possible
with Algorithm #1.

3.7.3. Algorithm #3: repeated challenge with bit selection

Algorithm #3 is derived from Algorithm #2. The main idea of this algorithm is to
consider or select the response bits that have high SNR in a further attempt to reduce

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 149

the effects of dynamic noise. The criterion to select a response bit to be part of the
filtered response is given by

w′
3[b] = w′

2[b] when

0 ≤ x[b] < ai −∆
or

ai +∆ < x[b] ≤ 1
[3.27]

The steps used by Algorithm #3 are shown in Figure 3.15 where A is the vector
of bit addresses selected according to equation [3.27]. Four steps are required for
authenticating the device and generating the session key.

1: Server selects a CRP (c, r3, N , A, ∆)

2: Server generates w, K and h

3: Client uses (c, w, N , A, ∆) to generate r′3, K , and h∗

4: Server authenticates device

Server Channel Client
1. Select CRP (c, r3, N , A, ∆)

2. Generate w, K , h
(c,w,N,A,∆)−→ # 3. Use c, w, N,

A, ∆ to generate
W′, r′3, K , and h∗

4. Verify h∗ = h
h∗
←−

Figure 3.15. Algorithm #3 for the authentication of
an IoT edge device and secure key exchange.

Table 3.3 shows the maximum intra Hamming distance and inter Hamming
distance for the case when W = 1K words, N = 1024 initialization operations and
SNRmax = 20 dB and ∆ = 0.3.

Table 3.3 shows that we are able to authenticate IoT devices even when B ≈ 32
bits. This would not be possible with Algorithm #1.

B (bits) 32 64 128 256 512
Maximum Intra Hamming Distance (bits) 0 0 4 6 9
Inter-Intra Hamming Distance Separation (bits) 7 21 40 95 213

Table 3.3. The Algorithm #3 maximum intra Hamming distance and inter Hamming
distance for different word sizes B for the case when W = 1K words, N = 1024

initialization operations, SNRmax = 20 dB and ∆ = 0.3.

150 Cybersecurity in Smart Homes

3.8. Security of PUF-based IoT devices

The smart home is the target of several attacks such as (Fakroon et al. 2020):

1) replay;

2) eavesdropping;

3) device loss;

4) impersonation;

5) man-in-the-middle;

6) forward-backward secrecy;

7) user credentials;

8) session key guessing;

9) user identification and tracking;

10) side-channel;

11) over-production and counterfeiting;

12) deep learning and machine learning;

13) reverse engineering;

14) nonvolatile memory attacks.

We should note several general principles to ensure the security of the telehealth
system, which includes smart home and IoT devices.

– The attacks mentioned above depend on getting the secret key associated with
each IoT device through targeting the NVRAM content. Here this is prevented through
storing the secret keys within the circuit structure of the PUF.

– Studying the CRP responses is thwarted by hiding the IoT device response r
and never sending it between the communicating entities. This provides a level of
protection against using deep learning to mimic the PUF function.

– Secret session keys K and hash values h are based on chaining and context such
that a previous hash value or current device environment are used to generate a session
K and h in addition to the response r (Fakroon et al. 2021).

– The use of PUFs in IoT devices constitutes an inexpensive means of providing
tamper-proofing to a certain degree. It is not expected that each IoT device would
be a root of trust (RoT) but at least it provides immunity to reverse engineering and
tampering.

– Security measures must be layered starting from the physical layer (PUFs),
then the communication layer and ending with the application layer. Multifactor
authentication is also feasible here since each PUF can provide some of these factors.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 151

3.9. Conclusions

This chapter developed novel statistical models for SRAM PUF performance.
The main parameters affecting the SRAM PUF performance were identified and
techniques to measure them were proposed. These parameters can be estimated by the
manufacturer at the pre-deployment phase and can also be measured in the field. This
chapter also proposed three algorithms for generating CRP and establishing device
authentication and secure key exchange. Algorithm #1 is based on a single challenge.
Algorithm #2 is based on repeated challenge. Algorithm #3 is based on repeated
challenge with bit selection. We noted that Algorithm #1 can be used when the SRAM
word size is B > 256 bits. Further, Algorithm #1 introduces a rather large number
of bits in error in the response. Two new algorithms are proposed in this chapter:
Algorithm #2 and Algorithm #3. These two algorithms solved the two main problems
associated with noisy PUF responses: the need to use a large number of bits B and
the large number of errors in the response.

3.10. Acknowledgements

This research was supported by a grant from the National Research Council of
Canada (NRC) through the Collaborative R&D Initiative.

3.11. References

Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M. (2015). End-to-end design
of a PUF-based privacy preserving authentication protocol. International Workshop on
Cryptographic Hardware and Embedded Systems, 556–576.

Boehm, C. and Hofer, M. (2009). Using SRAMs as physical unclonable functions. 17th Austrian
Workshop on Microelectronics – Austrochip, 117–122.

Bosch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P. (2008). Efficient helper
data key extractor on FPGAs. In Cryptographic Hardware and Embedded Systems (CHES),
Oswald, E. and Rohatgi, P. (eds). Springer, Heidelberg.

Boyen, X. (2004). Reusable cryptographic fuzzy extractors. 11th ACM Conference on Computer
and Communications Security – CCS, October.

Delvaux, J. (2017a). Machine-learning attacks on PolyPUF, OB-PUF, RPUF, and PUF–FSM.
IACR Cryptology, November.

Delvaux, J. (2017b). Security analysis of PUF-based key generation and entity authentication.
PhD Thesis, University of KU Leuven and Shanghai Jiao Tong University.

Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I. (2014). Helper data algorithms for
PUF-based key generation: Overview and analysis. IEEE Transactions on Computers, 34(6),
889–902.

152 Cybersecurity in Smart Homes

Dodis, Y., Reyzin, L., Smith, A. (2004). Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. In EUROCRYPT, Cachin, C. and Camenisch, J. (eds).
Springer, Heidelberg.

Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A. (2008). Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1),
97–139.

Ellenbecker, C.H., Samia, L., Cushman, M.J., Alster, K. (2008). Patient safety and quality in
home health care. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses,
Hughes, R.G. (ed.). Agency for Healthcare Research and Quality, Rockville [Online].
Available at: https://www.ncbi.nlm.nih.gov/books/NBK2651/.

Fakroon, M., Alshahrani, M., Gebali, F., Traorè, I. (2020). Secure remote anonymous user
authentication scheme for smart home environment. Springer’s Internet Things, 9 [Online].
Available at: https://doi.org/10.1016/j.iot.2020.100343.

Fakroon, M., Gebali, F., Mamun, M. (2021). Multifactor authentication scheme using physically
unclonable functions. Springer’s Internet Things, 13 [Online]. Available at: https://
doi.org/10.1016/j.iot.2020.100343.

Gao, Y., Ma, H., Al-Sarawi, S.F., Abbott, D., Ranasinghe, D.C. (2018). PUF-FSM: A controlled
strong PUF. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(5), 1104–1108.

Gao, Y., Su, Y., Yang, W., Chen, S., Nepal, S., Ranasinghe, D.C. (2019). Building secure SRAM
PUF key generators on resource constrained devices. The Third Workshop on Security,
Privacy and Trust in the Internet of Things, 912–917.

Gassend, B., Clarke, D., Dijk, M.V., Devadas, S. (2002). Silicon physical random functions.
Proceedings of the 9th ACM Conference on Computer and Communications Security,
148–160.

Guajardo, J., Kumar, S., Schrijen, G., Tuyls, P. (2007). FPGA intrinsic PUFs and their use for
IP protection. In Cryptographic Hardware and Embedded Systems – CHES, Paillier, P. and
Verbauwhede, I. (eds). Springer, Heidelberg.

Herder, C., Yu, M.-D., Koushanfar, F., Devadas, S. (2014). Physical unclonable functions and
applications: A tutorial. Proceedings of the IEEE, 102(8), 1126–1141.

Herrewege, A.V., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R., Verbauwhede,
I., Wachsmann, C. (2012). Reverse fuzzy extractors: Enabling lightweight mutual
authentication for PUF-enabled RFIDs. International Conference on Financial
Cryptography and Data Security, 374–389.

Hiller, M. (2016). Key derivation with physical unclonable functions. PhD Thesis, Universität
München, Munich.

Holcomb, D.E., Burleson, W.P., Fu, K. (2009). Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Transactions on Computers, 58(9),
1198–1210.

SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments 153

Jahn, S. and Borrás, J.C. (2007). Qucs: A tutorial getting started with Qucs [Online]. Available
at: http://qucs.sourceforge.net/docs/tutorial/getstarted.pdf.

van der Leest, V., Preneel, B., van der Sluis, E. (2012). Soft decision error correction for
compact memory-based PUFs using a single enrollment. In Cryptographic Hardware and
Embedded Systems (CHES), Prouff, E. and Schaumont, P. (eds). Springer, Heidelberg.

Linnartz, J.P. and Tuyls, P. (2003). New shielding functions to enhance privacy and prevent
misuse of biometric templates. In Audio- and Video-Based Biometric Person Authentication,
Kittler, J. and Nixon, M.S. (eds). Springer, Heidelberg.

Maes, R. (2013). Physically Unclonable Functions: Constructions, Properties and
Applications. Springer, Heidelberg.

Maes, R., Tuyls, P., Verbauwhede, I. (2009). Low-overhead implementation of a soft decision
helper data algorithm for SRAM PUFs. In Cryptographic Hardware and Embedded Systems
(CHES), Clavier, C. and Gaj, K. (eds). Springer, Heidelberg.

Maes, R., van Herrewege, A., Verbauwhede, I. (2012). PUFKY: A fully functional PUF-based
cryptographic key generator. In Cryptographic Hardware and Embedded Systems (CHES),
Prouff, E. and Schaumont, P. (eds). Springer, Heidelberg.

National Institute on Aging (2020). Aging in place: Growing older at home [Online]. Available
at: https://www.nia.nih.gov/health/aging-place-growing-older-home.

Prince, B. (1991). Semiconductor Memories, 2nd edition. John Wiley, New York.

Ravikanth, P. (2001). Physical one-way functions. PhD Thesis, Massachussetts Institute of
Technology, MA.

Ravikanth, P., Recht, B., Taylor, J., Gershenfeld, N. (2002). Physical one-way functions.
Science, 297(5589), 2026–2030.

Schrijen, G.-J. (2020). SRAM PUF: A closer look at the most reliable and most secure PUF
[Online]. Available at: https://www.design-reuse.com/articles/47782/sram-puf-a-closer-
look-at-the-most-reliable-and-most-secure-puf.html.

Su, Y., Holleman, J., Otis, B. (2008). A digital 1.6 pJ/bit chip identification circuit using process
variations. IEEE Journal of Solid-State Circuits, 43(1), 69–77.

Suh, G.E. and Devadas, S. (2007). Physical unclonable functions for device authentication and
secret key generation. Design Automation Conference, 9–14.

Xilinx, Inc. (2021). UltraScale architecture memory resources user guide, Xilinx [Online].
Available at: https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-
memory-resources.pdf.

Yu, M., M’Raihi, D., Sowell, R., Devadas, S. (2011). Lightweight and secure PUF key
storage using limits of machine learning. In Cryptographic Hardware and Embedded Systems
(CHES), Preneel, B. and Takagi, T. (eds). Springer, Heidelberg.

	Cover
	Half-Title Page
	Title Page
	Copyright Page
	Contents
	1. Home Automation Solutions for SecureWSN
	1.1. Introduction
	1.2. Background
	1.2.1. SecureWSN
	1.2.2. Communication standards
	1.2.3. The monitor-analyze-plan-execute-knowledge model
	1.2.4. Hardware and libraries

	1.3. Design decisions
	1.3.1. Requirements
	1.3.2. HAIFA architecture
	1.3.3. WebMaDa integration

	1.4. Implementation
	1.4.1. CoMaDa integration
	1.4.2. HAIFA’s ZigBee Gateway
	1.4.3. WebMaDa integration
	1.4.4. Uploading HA data to WebMaDa
	1.4.5. Sending HA messages from WebMaDa to CoMaDa
	1.4.6. WebMaDa’s frontend

	1.5. Evaluation of HAIFA
	1.5.1. Actuator interoperability (R1)
	1.5.2. Rule-based automation (R2)
	1.5.3. Node hardware interoperability (R3)
	1.5.4. CoMaDa and WebMaDa management (R4)

	1.6. Summary and conclusions
	1.7. Acknowledgements
	1.8. References

	2. Smart Home Device Security: A Survey of Smart Home Authentication Methods with a Focus on Mutual Authentication and Key Management Practices
	2.1. Introduction
	2.2. Smart home – introduction and technologies
	2.2.1. Smart home – introduction
	2.2.2. Smart home devices – categories

	2.3. Smart home security
	2.3.1. Threats
	2.3.2. Vulnerabilities
	2.3.3. IoT communication protocols
	2.3.4. Enhancements to IoT communication protocols
	2.3.5. IoT security architectures

	2.4. Smart home authentication mechanisms
	2.4.1. Stages of defining an authentication protocol for IoT
	2.4.2. Taxonomy of authentication schemes for IoT

	2.5. A primer on mutual authentication and key management terminologies
	2.5.1. X.509 certificate
	2.5.2. CoAP and DTLS
	2.5.3. TLS 1.3
	2.5.4. Key management fundamentals

	2.6. Mutual authentication in smart home systems
	2.6.1. Device and user onboarding
	2.6.2. Flow of user authentication and authorization
	2.6.3. Examples of mutual authentication schemes

	2.7. Challenges and open research issues
	2.8. Conclusion
	2.9. References

	3. SRAM Physically Unclonable Functions for Smart Home IoT Telehealth Environments
	3.1. Introduction
	3.2. Related literature
	3.3. System design considerations
	3.4. Silicon physically unclonable functions (PUF)
	3.4.1. Mutual authentication and key exchange using PUF
	3.4.2. Fuzzy extractor

	3.5. Convolutional encoding and Viterbi decoding the SRAM words
	3.6. CMOS SRAM PUF construction
	3.6.1. SRAM PUF statistical model
	3.6.2. Extracting the SRAM cell statistical parameters
	3.6.3. Obtaining the golden SRAM PUF memory content
	3.6.4. Bit error rate (BER)
	3.6.5. Signal-to-noise ratio (SNR) for SRAM PUF

	3.7. Algorithms for issuing CRP
	3.7.1. Algorithm #1: single-challenge
	3.7.2. Algorithm #2: repeated challenge
	3.7.3. Algorithm #3: repeated challenge with bit selection

	3.8. Security of PUF-based IoT devices
	3.9. Conclusions
	3.10. Acknowledgements
	3.11. References

	4. IoT Network Security in Smart Homes
	4.1. Introduction
	4.2. IoT and smart home security
	4.3. IoT network security
	4.4. Prevailing standards and initiatives
	4.5. Conclusion
	4.6. References

	5. IoT in a New Age of Unified and Zero-Trust Networks and Increased Privacy Protection
	5.1. Introduction
	5.2. Internet of Things
	5.3. IoT security and privacy challenges
	5.3.1. Security challenges
	5.3.2. Privacy challenges

	5.4. Literature review
	5.5. Security and privacy protection with a zero-trust approach
	5.6. Case study: secure and private interactive intelligent conversational systems
	5.6.1. LinTO technical characteristics
	5.6.2. Use case
	5.6.3. Use case mapping on the reference architecture

	5.7. Discussion
	5.8. Conclusion
	5.9. Acknowledgements
	5.10. References

	6. IOT, Deep Learning and Cybersecurity in Smart Homes: A Survey
	6.1. Introduction
	6.2. Problems encountered
	6.3. State of the art
	6.3.1. IoT overview
	6.3.2. History
	6.3.3. Literature review
	6.3.4. Advantages, disadvantages and challenges

	6.4. IoT architecture
	6.4.1. Sensing layer
	6.4.2. Network layer
	6.4.3. Service layer
	6.4.4. Application–interface layer

	6.5. IoT security
	6.5.1. Security in the sensing layer
	6.5.2. Security in the network layer
	6.5.3. Security in the service layer
	6.5.4. Security in the application–interface layer
	6.5.5. Cross-layer threats
	6.5.6. Security attacks
	6.5.7. Security requirements in IOT
	6.5.8. Security solutions for IOT

	6.6. Artificial intelligence, machine learning and deep learning
	6.6.1. Artificial intelligence
	6.6.2. Machine learning
	6.6.3. Deep learning
	6.6.4. Deep learning vs. machine learning

	6.7. Smart homes
	6.7.1. Human activity recognition in smart homes
	6.7.2. Neural network algorithm for human activity recognition
	6.7.3. Deep neural networks used in human activity recognition

	6.8. Anomaly detection in smart homes
	6.8.1. What are anomalies?
	6.8.2. Types of anomaly
	6.8.3. Categories of anomaly detection techniques
	6.8.4. Related work of anomaly detection in smart homes

	6.9. Conclusion
	6.10. References

	7 sTiki: A Mutual Authentication Protocol for Constrained Sensor Devices
	7.1. Introduction
	7.2. Definitions and history of IoT
	7.3. IoT-related security concerns
	7.3.1. Security analysis guidelines
	7.3.2. Security analysis by threat models
	7.3.3. sTiki’s security expectations

	7.4. Background knowledge for sTiki
	7.4.1. Application dependencies for sTiki
	7.4.2. Inspiring resource-efficient security protocols

	7.5. The sTiki protocol
	7.5.1. Design decisions taken
	7.5.2. Implementation of sTiki’s components

	7.6. sTiki’s evaluation
	7.6.1. Secured communication between aggregator and server
	7.6.2. Secured communication between collector and aggregator
	7.6.3. Communication costs
	7.6.4. Integration into an existing system
	7.6.5. Comparison to existing approaches

	7.7. Summary and conclusions
	7.8. Acknowledgements
	7.9. References

	List of Authors
	Index

