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4 Assignment 2 [Assignment ID: cpp_compile_time]

4.1 Preamble (Please Read Carefully)
Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General
Information”) which starts on page 1-1 of this document.

4.2 Topics Covered
This assignment covers material primarily related to the following: compile-time computation, constexpr, literal
types.

4.3 Problems — Part A — Nonprogramming Exercises
• 8.1 [lvalues/rvalues]
• 8.9 [temporary objects]
• 8.12 [moving vs. copying]
• 8.28 [data structures]

4.4 Problems — Part B — Compile-Time Fractal Computation
B.1 Constexpr basic string class template (cexpr_basic_string). In this exercise, a class template for representing

an arbitrary sequence of characters (i.e., a string) that can be used in constexpr contexts will be developed.
This class template is called cexpr_basic_string. The cexpr_basic_string class template has two template
parameters:

(a) T. The type of each character in the string (e.g., char, unsigned char, wchar_t).
(b) M. The maximum number of characters that can be held in the string (which does not include the dummy

null character, discussed later).

The class template uses a C-style array (embedded in the cexpr_basic_string object itself) for storing the
character data for a string, which is completely arbitrary. The cexpr_basic_string class template has the
interface given in Listing 1.

The cexpr_basic_string class template always stores an additional dummy null-character (i.e., a character
with the value value_type(0)) immediately following the last character in the string buffer (or at the start of the
string buffer if the string is empty). This dummy character is always present, even in the case of an empty string.
This dummy character is not considered one of the characters in the string so this dummy character is not included
in the count returned by the size member function. It is always the case that, for any cexpr_basic_string
object s, s[s.size()] refers to the dummy null character (which immediately follows the last character of the
string). The above null-termination is employed so that the pointer returned by the data member function can be
used in contexts where a null-terminated character array is required.

Listing 1: Interface for class template cexpr_basic_string

1 namespace ra::cexpr {
2

3 // A basic string class template for use in constexpr contexts.
4 template <class T, std::size_t M>
5 class cexpr_basic_string
6 {
7 public:
8

9 // An unsigned integral type used to represent sizes.
10 using size_type = std::size_t;
11

12 // The type of each character in the string (i.e., an alias for
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13 // the template parameter T).
14 using value_type = T;
15

16 // The type of a mutating pointer to each character in the string.
17 using pointer = T*;
18

19 // The type of a non-mutating pointer to each character in the
20 // string.
21 using const_pointer = const T*;
22

23 // The type of a mutating reference to a character in the string.
24 using reference = T&;
25

26 // The type of a non-mutating reference to a character in the
27 // string.
28 using const_reference = const T&;
29

30 // A mutating iterator type for the elements in the string.
31 using iterator = pointer;
32

33 // A non-mutating iterator type for the elements in the string.
34 using const_iterator = const_pointer;
35

36 // Default construct a string.
37 // Creates an empty string (i.e., a string containing no
38 // characters).
39 //
40 // Time complexity:
41 // Linear in M.
42 constexpr cexpr_basic_string();
43

44 // Copy construct a string.
45 //
46 // Time complexity:
47 // Linear in M.
48 constexpr cexpr_basic_string(const cexpr_basic_string&) =
49 default;
50

51 // Copy assign a string.
52 //
53 // Time complexity:
54 // Linear in M.
55 constexpr cexpr_basic_string& operator=(
56 const cexpr_basic_string&) = default;
57

58 // Destroy a string.
59 //
60 // Time complexity:
61 // Constant.
62 ˜cexpr_basic_string() = default;
63

64 // Creates a string with the contents given by the
65 // null-terminated character array pointed to by s.
66 // If the string does not have sufficient capacity to hold
67 // the character data provided, an exception of type
68 // std::runtime_error is thrown.
69 //
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70 // Time complexity:
71 // Linear in the length of the string s.
72 constexpr cexpr_basic_string(const value_type* s);
73

74 // Creates a string with the contents specified by the characters
75 // in the iterator range [first, last).
76 // If the string does not have sufficient capacity to hold
77 // the character data provided, an exception of type
78 // std::runtime_error is thrown.
79 //
80 // Time complexity:
81 // Linear in the size of the range [first, last).
82 constexpr cexpr_basic_string(const_iterator first,
83 const_iterator last);
84

85 // Returns the maximum number of characters that can be held by a
86 // string of this type.
87 // The value returned is the template parameter M.
88 //
89 // Time complexity:
90 // Constant.
91 static constexpr size_type max_size();
92

93 // Returns the maximum number of characters that the string can
94 // hold. The value returned is always the template parameter M.
95 //
96 // Time complexity:
97 // Constant.
98 constexpr size_type capacity() const;
99

100 // Returns the number of characters in the string (excluding the
101 // dummy null character).
102 //
103 // Time complexity:
104 // Constant.
105 constexpr size_type size() const;
106

107 // Returns a pointer to the first character in the string.
108 // The pointer that is returned is guaranteed to point to a
109 // null-terminated character array.
110 // The user of this class shall not alter the dummy null
111 // character stored at data() + size().
112 //
113 // Time complexity:
114 // Constant.
115 value_type* data();
116 const value_type* data() const;
117

118 // Returns an iterator referring to the first character in the
119 // string.
120 //
121 // Time complexity:
122 // Constant.
123 constexpr iterator begin();
124 constexpr const_iterator begin() const;
125

126 // Returns an iterator referring to the fictitious
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127 // one-past-the-end character in the string.
128 //
129 // Time complexity:
130 // Constant.
131 constexpr iterator end();
132 constexpr const_iterator end() const;
133

134 // Returns a reference to the i-th character in the string if i
135 // is less than the string size; and returns a reference to the
136 // dummy null character if i equals the string size.
137 // Precondition: The index i is such that i >= 0 and i <= size().
138 //
139 // Time complexity:
140 // Constant.
141 constexpr reference operator[](size_type i);
142 constexpr const_reference operator[](size_type i) const;
143

144 // Appends (i.e., adds to the end) a single character to the
145 // string. If the size of the string is equal to the capacity,
146 // the string is not modified and an exception of type
147 // std::runtime_error is thrown.
148 //
149 // Time complexity:
150 // Constant.
151 constexpr void push_back(const T& x);
152

153 // Erases the last character in the string.
154 // If the string is empty, an exception of type std::runtime_error
155 // is thrown.
156 //
157 // Time complexity:
158 // Constant.
159 constexpr void pop_back();
160

161 // Appends (i.e., adds to the end) to the string the
162 // null-terminated string pointed to by s.
163 // Precondition: The pointer s must be non-null.
164 // If the string has insufficient capacity to hold the new value
165 // resulting from the append operation, the string is not modified
166 // and an exception of type std::runtime_error is thrown.
167 //
168 // Time complexity:
169 // Linear in the length of the string s.
170 constexpr cexpr_basic_string& append(const value_type* s);
171

172 // Appends (i.e., adds to the end) to the string another
173 // cexpr_basic_string with the same character type (but
174 // possibly a different maximum size).
175 // If the string has insufficient capacity to hold the new value
176 // resulting from the append operation, the string is not modified
177 // and an exception of type std::runtime_error is thrown.
178 //
179 // Time complexity:
180 // Linear in other.size().
181 template <size_type OtherM>
182 constexpr cexpr_basic_string& append(
183 const cexpr_basic_string<value_type, OtherM>& other);
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184

185 // Erases all of the characters in the string, yielding an empty
186 // string.
187 //
188 // Time complexity:
189 // Constant.
190 constexpr void clear();
191

192 };
193

194 }

For information on how to throw an exception, refer to Section 4.6.

Since the char type is commonly used as the character type for strings, the following alias template is provided
for convenience:

namespace ra::cexpr {
template <std::size_t M>
using cexpr_string = cexpr_basic_string<char, M>;

}

One additional helper function is provided as follows:

namespace ra::cexpr {
constexpr std::size_t to_string(std::size_t n, char* buffer,
std::size_t size, char** end);

}

The to_string function converts the integer n to its equivalent (decimal) null-terminated string representation.
The buffer to be used to store the result starts at the location pointed to by buffer and has a size of size
characters. The resulting string produced by the function is null-terminated. The number of characters written to
the buffer, excluding the null character, is returned. If end is non-null, *end is set to point to the null character at
the end of the converted string. If the buffer provided does not have sufficient capacity to hold the string resulting
from the conversion process, an exception of type std::runtime_error is thrown.

The code for the cexpr_basic_string class template and other helper code should be placed in the
file include/ra/cexpr_basic_string.hpp . Note that the above identifiers (e.g., cexpr_basic_string,
cexpr_string, and to_string) are all in the ra::cexpr namespace.

Write a program called test_cexpr_basic_string to test the code for the cexpr_basic_string class tem-
plate and its associated helper code. The source code for the test program should be placed in the file
app/test_cexpr_basic_string.cpp .

B.2 Mandelbrot variable template (mandelbrot). In this exercise, code is developed that can be used to compute
an image representation of the Mandelbrot set at compile time. The computed image is made available through
a variable template called mandelbrot, which is of type cexpr_string. This string variable holds the image
encoded in the text-based bitmap PNM format.

Let C denote the set of complex numbers. The Mandelbrot set S is the set of all c ∈ C such that the sequence
z0,z1,z2, . . . does not tend toward infinity, where

zn =

{
z2

n−1 + c n≥ 1
c n = 0.

(2)

As it turns out, the boundary of S is a fractal curve. More information about the Mandelbrot set can be found at:

https://en.wikipedia.org/wiki/Mandelbrot_set

Instructor: Michael D. Adams Version: 2024-05-04

https://en.wikipedia.org/wiki/Mandelbrot_set


4-6 SENG 475 & ECE 596C, Summer 2024

The Mandelbrot set S can be represented in the form of a binary image as follows. Define the function χS that
maps C to {0,1} as

χS(z) =

{
1 z ∈ S
0 otherwise

(i.e., χS is effectively a boolean predicate that tests if a complex number is a member of S). Let F denote a binary
image function defined on points in Λ = {0,1, . . . ,W − 1}×{0,1, . . . ,H − 1} (i.e., a rectangular grid of width
W and height H). Define a sampling function λ that maps a point (k, `) ∈ Λ to a point in the rectangular region
[a0,b0]× [a1,b1] of C as given by

λ [(k, `)] =
(

a0 + k
(

b0−a0
W−1

)
,a1 +(H−1− `)

(
b1−a1
H−1

))
,

where (a0,a1) = (−1.6,−1.1) and (b0,b1) = (0.6,1.1). The function F is then given by

F [(k, `)] = χS(λ [(k, `)]).

The function F is effectively the Mandelbrot set represented in the form of an image.

The function χS is computed from the definition of the Mandelbrot set given by (2). In order to ensure some
consistency in the results obtained by different implementations, the function χS must be computed as follows.
To determine the value of χS(c), the implementation must use (2) to compute zi for successively larger values of i
(starting from 0). This iteration stops when either of the following two conditions is met: 1) |zi|> 2 or 2) i = 16.
If iteration stops due to the first condition, the implementation should assume that the sequence z0,z1,z2, . . . grows
without bound, in which case χS(c) = 0. If iteration stops due to the second condition, the implementation should
assume that the sequence z0,z1,z2, . . . remains bounded for all i, in which case χS(c) = 1.

The mandelbrot variable template has two template parameters:

(a) W. The width of the image (in samples).
(b) H. The height of the image (in samples).

The interface for this variable template is as described in Listing 2. In order to minimize the amount of work
required for this exercise, the cexpr_string class template and to_string function developed in Exercise B.1
should be used. The mandelbrot variable template must be of type cexpr_string<M> for some value of M. The
string must be encoded in the text-based PNM format for bitmap images. This particular format is described
shortly. The particular value of M to be used is at the discretion of the implementation. Clearly, however, M
must be chosen sufficiently large that the cexpr_string object can hold the complete PNM-encoded character
sequence for an image of width W and height H. The source for the mandelbrot variable template and all of its
supporting code should be placed in the file include/ra/mandelbrot.hpp .

Listing 2: Interface for the mandelbrot variable template
1 namespace ra::fractal {
2

3 // A variable template for a string that represents an image depicting
4 // the Mandelbrot set. The image has width W and height H.
5 // This object must be of type cexpr_string<M> for some appropriate M.
6 // The string is a binary image encoded in the text-based bitmap PNM
7 // format.
8 // The values of W and H must be such that W >= 2 and H >= 2.
9 template <std::size_t W, std::size_t H>

10 constexpr auto mandelbrot = implementation-defined;
11

12 }

The text-based PNM format for bitmap images is very simple. This format represents a bitmap image of width
W and height H using a character sequence that consists of the following (in order):
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(a) A signature, which consists of the character “P” followed by the character “1”.
(b) A space character.
(c) The width W of the image, which consists of a sequence of one or more decimal digits.
(d) A space character.
(e) The height H of the image, which consists of a sequence of one or more decimal digits.
(f) A newline character.
(g) The (binary) image samples. For each of the H rows in the image starting with the top row, a string of W

characters that are either “0” or “1” characters, followed by a newline character.

To further illustrate this image format, we now consider a simple example. Consider an image of width 8 and
height 4 whose contents resemble a crude letter “V”. This image would be encoded using the following string:

P1 8 4
10000001
01000010
00100100
00011000

Since the amount of complex arithmetic in this exercise is minimal, it is probably easiest to perform the necessary
computations without the formality of using a complex-number class. Unfortunately (at least, as of C++17), the
class template std::complex does not provide constexpr versions of all of the functions that are likely to be
needed for the complex arithmetic in this exercise. Consequently, the std::complex class template is somewhat
less helpful. In any case, regardless of whether a class such as std::complex is used, all real-arithmetic should
be performed using double-precision (i.e., double) arithmetic.

A program called test_mandelbrot should be used to test the mandelbrot variable template. The source for
this program should be placed in the file app/test_mandelbrot.cpp . An example of the source for a very
trivial test program is shown in Listing 3. This example is intended only for illustrative purposes, however. It is
probably advisable to perform more thorough testing than what is achieved by this trivial program. The image
generated by this trivial test program is shown in Figure 1.

Listing 3: Source listing for a very trivial example of a test_mandelbrot program.
1 #include <iostream>
2 #include "ra/mandelbrot.hpp"
3

4 int main()
5 {
6 // Force the image (in PNM format) to be computed at compile time.
7 constexpr auto s = ra::fractal::mandelbrot<256, 256>;
8

9 // Output the image (in PNM format).
10 std::cout << s.begin() << ’\n’;
11 }

Admittedly, this exercise is somewhat of an abuse of compile-time computation in the sense that one would
probably not normally perform this much computation at compile time. Nevertheless, this exercise serves to
clearly demonstrate the power of compile-time computation. In the CMakeLists file, it may be necessary to add
a compiler flag to increase the maximum allowable amount of compile-time computation for the compilation of
the source file app/test_mandelbrot.cpp . (In particular, adding such a flag is necessary if the compilation of
this source file fails due to the compile-time computation limits being exceeded.) In the case of GCC, the max-
imum allowable amount of compile-time computation can be controlled with the -fconstexpr-loop-limit
option. This option takes a parameter that is an integer value specifying the loop limit in constexpr computation.
A value of 10000 should be sufficient to compute the value of mandelbrot<512, 512>. In the case of Clang, the
maximum allowable amount of compile-time computation can be controlled with the -fconstexpr-steps op-
tion. This option takes a parameter that is an integer value specifying the maximum number of steps in constexpr
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Figure 1: Mandelbrot set image.

computation. A value of 100000000 should be sufficient to compute the value of mandelbrot<512, 512>. Note
that the option for specifying the maximum amount of compile-time computation should only be used for the
compilation of the file app/test_mandelbrot.cpp (not for any other files). With CMake, adding a compile
flag to only a single source file can be easily accomplished with the set_source_files_properties command.
This might be accomplished with a command like the following in the CMakeLists.txt file:

# Set the variable EXTRA_COMPILE_FLAGS to the desired compile flags
# to add for the particular compiler being used (as explained above).
# For GCC:
# set(EXTRA_COMPILE_FLAGS "-fconstexpr-loop-limit=10000")
# For Clang:
# set(EXTRA_COMPILE_FLAGS "-fconstexpr-steps=100000000")
# Add the desired flags to the compilation of the
# app/test_mandelbrot.cpp file.
set_source_files_properties(app/test_mandelbrot.cpp PROPERTIES
COMPILE_FLAGS ${EXTRA_COMPILE_FLAGS})

As part of the testing of the code for the mandelbrot variable template, confirm that the generated image does,
in fact, resemble the Mandelbrot set. This can be done by printing the (string) value of the mandelbrot vari-
able template to a file and then displaying this file with an image viewer that supports the PNM format. For
example, the following command can be used to display a file called mandelbrot.pnm (in PNM format) with the
ImageMagick software:

display mandelbrot.pnm

4.5 Problems — Part C — Compile-Time Filter Design
C.1 Constexpr math constants and functions (i.e., pi, sin, cos, tan, sqrt, and others). In this exercise, numerous

variable and function templates are developed that provide support for math constants (such as π) and math
functions (such as sin and square root) that can be used in constexpr contexts.

Each of these templates has a template parameter T that corresponds to the floating-point type to be used to
represent real numbers. Only floating-point types (i.e., float, double, and long double) can be used for
T. The interface provided by the above variable and function templates is given in Listing 4. (Note that all of
these templates are in the namespace ra::cexpr_math.) The source for these variable and function templates is
to be placed in the file include/ra/cexpr_math.hpp .

Listing 4: Interface for cexpr_math functions
1 namespace ra::cexpr_math {
2

3 // The math constant pi.
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4 // The type T is a floating-point type.
5 template <class T>
6 constexpr T pi = std::numbers::pi_v<T>;
7

8 // Returns the absolute value of x.
9 // The type T is a floating-point type.

10 template <class T>
11 constexpr T abs(T x);
12

13 // Returns the square of x.
14 // The type T is a floating-point type.
15 template <class T>
16 constexpr T sqr(T x);
17

18 // Returns the cube of x.
19 // The type T is a floating-point type.
20 template <class T>
21 constexpr T cube(T x);
22

23 // Returns the remainder after division when x is divided by y.
24 // In particular, x - n y is returned where n is the result obtained by
25 // dividing x by y and then rounding (to an integer value) toward zero.
26 // If y is zero, an exception of type std::overflow_error is thrown.
27 // The type T is a floating-point type.
28 template <class T>
29 constexpr T mod(T x, T y);
30

31 // Returns the sine of x.
32 // Note that a particular algorithm must be used to implement this
33 // function.
34 // The type T is a floating-point type.
35 template <class T>
36 constexpr T sin(T x);
37

38 // Returns the cosine of x.
39 // Note that a particular algorithm must be used to implement this
40 // function.
41 // The type T is a floating-point type.
42 template <class T>
43 constexpr T cos(T x);
44

45 // Returns the tangent of x.
46 // Note that a particular algorithm must be used to implement this
47 // function.
48 // If the tangent of x is infinite, an exception of type
49 // std::overflow_error is thrown.
50 // The type T is a floating-point type.
51 template <class T>
52 constexpr T tan(T x);
53

54 // Returns the square root of x.
55 // If x is negative, an exception of type std::domain_error is thrown.
56 // Note that a particular algorithm must be used to implement this
57 // function.
58 // The type T is a floating-point type.
59 template <class T>
60 constexpr T sqrt(T x);
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61

62 }

For information on how to throw an exception, refer to Section 4.6.

As mentioned in the interface description, the implementation technique for some of the function templates must
follow a particular approach. In what follows, these restrictions on the implementation strategies are discussed.

The sin function must be implemented by using the triple-angle formula and small-angle approximation for sin.
The triple-angle formula and small-angle approximation are respectively given by

sin3x = 3sinx−4sin3 x and (3)
sinx≈ x for small nonnegative x. (4)

By rearranging (3), we can obtain the following recursive equation for sinx:

sinx = 3sin(x/3)−4sin3(x/3). (5)

To implement the sin function, (5) should be used recursively for the computation of sinx with the base case for
the recursion corresponding to x ≤ 10−6. In this base case, sinx is simply assumed to be equal to x, with this
assumption being valid for nonnegative x due to (4). (Computing sinx for negative x can be handled by using
the fact that sin is an odd function.) The maximum recursion depth for this algorithm could potentially become
large if sinx is computed for large magnitude x. To eliminate this problem, the algorithm must use the fact that
sin is 2π-periodic in order to reduce the problem of computing sinx for arbitrary x to that of computing sinx for
x ∈ [0,2π). (That is, do not apply (5) to the problem of computing sinx until first ensuring that x ∈ [0,2π).) To
reduce the problem in this way, the mod function will likely be helpful.

The cos function must be implemented by using the sin function and the fact that cos is identical to sin except
for a translation (i.e., shift).

The tan function must be implemented by using the sin and cos functions and the fact that tanx = sinx
cosx (for

cosx 6= 0). The implementation must not divide by zero, under any circumstances. If a circumstance arises that
would lead to a division by zero, an exception should be thrown (as explained in the interface definition).

The sqrt function must be implemented by using the Newton-Raphson (root-finding) method. In the Newton-
Raphson method, to solve for a root of the equation f (x) = 0, we select an initial estimate x0 of the root. Then,
we apply the following iterative process to improve the accuracy of our initial estimate:

xn+1 = xn− f (xn)/ f ′(xn), (6)

where f ′ denotes the first derivative of f . To find the square root of c, we can simply solve for the (real non-
negative) root of the equation f (x) = x2− c. The initial estimate x0 of the root should be chosen as c. The
iteration in (6) should continue until |xn+1− xn| ≤ ε (i.e., the root estimate does not change by more than ε

from one iteration to the next) or n > m, where the tolerance ε and the maximum iteration count m can be
chosen as std::numeric_limits<T>::epsilon() and std::numeric_limits<T>::max_exponent, respec-
tively. (Note that these choices of ε and m are overkill, but at least this eliminates the need to worry that the
computed square root will fail to be accurate enough for our application.) If the number whose square root is to
be computed is negative, an exception should be thrown (as explained in the interface definition).

It is absolutely critical that the exact algorithms specified above be employed for sin, cos, tan, and sqrt.
Failure to do so will likely result in implementations of these functions with accuracy properties that are very
substantially different from what is required, which could lead to your code failing many test cases (due to results
that are not sufficiently accurate).

A program called test_cexpr_math is to be developed to test the variable and function templates from above.
The source for this test program is to be placed in the file app/test_cexpr_math.cpp .
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C.2 Biquad filter design functions. In this exercise, code is developed that can be used to design several types of
discrete-time biquad filters. This code consists of a class template biquad_filter_coefs that is used to rep-
resent the coefficients of a biquad filter as well as several function templates that can be used to design various
types of filters. These filter-design function templates can be employed in constexpr contexts.

In audio and music processing applications, biquad filters are often employed. A (real-coefficient) discrete-time
biquad filter has a transfer function H of the form

H(z) = a0 + a1z−1 + a2z−2

b0 + b1z−1 + b2z−2 , (7)

where a0, a1, a2, b0, b1, and b2 are real coefficients. Such a transfer function can always be normalized such that
the constant term in the denominator is 1 (provided b0 6= 0, which will always be the case here). That is, such a
transfer function can always be expressed in the form

H(z) =
a′0 + a′1z−1 + a′2z−2

1 + b′1z−1 + b′2z−2 . (8)

This can be accomplished by simply dividing each of the numerator and denominator of H(z) by b0. For various
reasons, it is often more convenient to express biquad transfer functions in this normalized form.

In discrete-time signal processing, the sampling frequency is an important quantity. Often, rather than specifying
frequencies directly, it is more convenient to specify them relative to the sampling frequency, leading to the notion
of normalized frequency. The normalized frequency f that corresponds to the actual frequency f ′ and sampling
frequency fs is given by f = 2 f ′/ fs. That is, the normalized frequency 1 corresponds to the Nyquist frequency
(i.e., fs/2). Note that the normalized frequency is always a value in [0,1]. In what follows, the term “normalized
frequency” refers to this definition just introduced.

Although many types of biquad filters are possible, we only consider the design of the following basic types:
1) lowpass, 2) highpass, 3) bandpass, 4) low-frequency shelving boost filter. and 5) low-frequency shelving cut
filter. A lowpass biquad filter with normalized cutoff frequency f and Q factor Q has the filter coefficients given
by

Ω = tan
(

π

2 f
)
,

a0 = Ω
2, a1 = 2Ω

2, a2 = Ω
2,

b0 = Ω
2 + Ω/Q + 1, b1 = 2(Ω

2−1), and b2 = Ω
2−Ω/Q + 1.

A highpass filter with normalized cutoff frequency f and Q factor Q has the filter coefficients given by

Ω = tan
(

π

2 f
)
,

a0 = 1, a1 =−2, a2 = 1,

b0 = Ω
2 + Ω/Q + 1, b1 = 2(Ω

2−1), and b2 = Ω
2−Ω/Q + 1.

A bandpass filter with normalized center frequency f and Q factor Q has the filter coefficients given by

Ω = tan
(

π

2 f
)
,

a0 = Ω/Q, a1 = 0, a2 =−Ω/Q,

b0 = Ω
2 + Ω/Q + 1, b1 = 2(Ω

2−1), and b2 = Ω
2−Ω/Q + 1.

A low-frequency shelving boost filter with normalized cutoff frequency f and gain-control parameter A has the
filter coefficients given by

Ω = tan
(

π

2 f
)
,

a0 = AΩ
2 +
√

2AΩ + 1, a1 = 2(AΩ
2−1), a2 = AΩ

2−
√

2AΩ + 1,

b0 = Ω
2 +
√

2Ω + 1, b1 = 2(Ω
2−1), b2 = Ω

2−
√

2Ω + 1.
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A low-frequency shelving cut filter with normalized cutoff frequency f and gain-control parameter A has the
filter coefficients given by

Ω = tan
(

π

2 f
)
,

a0 = Ω
2 +
√

2Ω + 1, a1 = 2(Ω
2−1), a2 = Ω

2−
√

2Ω + 1,

b0 = AΩ
2 +
√

2AΩ + 1, b1 = 2(AΩ
2−1), b2 = AΩ

2−
√

2AΩ + 1.

To provide a convenient container for holding the coefficients of a biquad filter, a class template called
biquad_filter_coefs is used. This class template has a single template parameter Real, which specifies
the real-number type used to represent the filter coefficients. This template can be instantiated with Real being
any floating-point type (i.e., float, double, or long double). The biquad_filter_coefs class template
has the very simple interface provided in Listing 5. This class template only has public members and all such
members are identified in the interface description.

Listing 5: Interface for biquad_filter_coefs class template
1 namespace ra::biquad {
2

3 // Biquad filter coefficients class.
4 template <class Real>
5 struct biquad_filter_coefs
6 {
7 // The real number type used to represent the filter coefficients.
8 using real = Real;
9

10 // Creates a set of filter coefficients where the coefficients
11 // a0, a1, a2, b0, b1, and b2 are initialized to a0_, a1_, a2_,
12 // b0_, b1_, and b2_, respectively.
13 constexpr biquad_filter_coefs(real a0_, real a1_, real a2_, real b0_,
14 real b1_, real b2_);
15

16 // Creates a set of filter coefficients by copying from another set.
17 // Since Real and OtherReal need not be the same, this constructor
18 // can be used to convert between filter coefficients of different
19 // types.
20 template <class OtherReal>
21 constexpr biquad_filter_coefs(
22 const biquad_filter_coefs<OtherReal>& coefs);
23

24 // The filter coefficients a0, a1, a2, b0, b1, and b2.
25 real a0;
26 real a1;
27 real a2;
28 real b0;
29 real b1;
30 real b2;
31 };
32

33 }

Several function templates are provided for designing various types of biquad filters. These function templates
have the interface shown in Listing 6. Each of these functions has a template parameter Real, which controls
the real-number type used for computing filter coefficients. Depending on how accurate the computed filter
coefficients need to be, the template could be instantiated with Real being any one of the floating-point types
(i.e., float, double, or long double).
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Listing 6: Interface for biquad filter design functions
1 namespace ra::biquad {
2

3 // Returns the coefficients for a biquad lowpass filter with normalized
4 // cutoff frequency f and Q factor q, where f in [0,1] and q > 0.
5 // The filter coefficients are always normalized such that the
6 // coefficient b0 is 1.
7 // The type Real is a floating-point type.
8 // All real arithmetic should be performed with the Real type.
9 template <class Real>

10 constexpr biquad_filter_coefs<Real> lowpass(Real f, Real q);
11

12 // Returns the coefficients for a biquad highpass filter with
13 // normalized cutoff frequency f and Q factor q, where f in [0,1]
14 // and q > 0.
15 // The filter coefficients are always normalized such that the
16 // coefficient b0 is 1.
17 // The type Real is a floating-point type.
18 // All real arithmetic should be performed with the Real type.
19 template <class Real>
20 constexpr biquad_filter_coefs<Real> highpass(Real f, Real q);
21

22 // Returns the coefficients for a biquad bandpass filter with
23 // normalized cutoff frequency f and Q factor q, where f in [0,1]
24 // and q > 0.
25 // The filter coefficients are always normalized such that the
26 // coefficient b0 is 1.
27 // The type Real is a floating-point type.
28 // All real arithmetic should be performed with the Real type.
29 template <class Real>
30 constexpr biquad_filter_coefs<Real> bandpass(Real f, Real q);
31

32 // Returns the coefficients for a biquad low-frequency shelving
33 // boost filter with normalized cutoff frequency f and gain-control
34 // parameter a, where f in [0,1] and a >= 0.
35 // For a gain in dB of G (where G > 0), choose a = 10 ˆ (G / 20).
36 // The filter coefficients are always normalized such that the
37 // coefficient b0 is 1.
38 // The type Real is a floating-point type.
39 // All real arithmetic should be performed with the Real type.
40 template <class Real>
41 constexpr biquad_filter_coefs<Real> lowshelf_boost(Real f, Real a);
42

43 // Returns the coefficients for a biquad low-frequency shelving
44 // cut filter with normalized cutoff frequency f and gain-control
45 // parameter a, where f in [0,1] and a >= 0.
46 // For a gain in dB of G (where G < 0), choose a = 10 ˆ (-G / 20).
47 // The filter coefficients are always normalized such that the
48 // coefficient b0 is 1.
49 // The type Real is a floating-point type.
50 // All real arithmetic should be performed with the Real type.
51 template <class Real>
52 constexpr biquad_filter_coefs<Real> lowshelf_cut(Real f, Real a);
53

54 }

The code for the biquad_filter_coefs class template and the filter-design function templates should be placed
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in the file include/ra/biquad_filter.hpp .

A program called test_biquad_filter should be used to test the filter-design code. The source for this program
should be placed in the file app/test_biquad_filter.cpp . An online biquad filter coefficient calculator,
which may prove useful for testing purposes, can be found at:

http://www.earlevel.com/main/2021/09/02/biquad-calculator-v3

(In the case of low-frequency shelving filters, this online calculator selects the boost and cut cases if the gain G
in dB is positive and negative, respectively.) For example, using the above online calculator, one can confirm that
the filter coefficients obtained for a lowpass filter with a normalized cutoff frequency of 1

4 and a Q factor of 1√
2

are as follows:

a0 ≈ 0.09763076084032914, a1 ≈ 0.19526152168065827, a2 ≈ 0.09763076084032914,
b0 ≈ 1.0, b1 ≈−0.9428060277021066, and b2 ≈ 0.3333290710634233.

4.6 Comments on Exceptions
An exception is an object that describes an error condition that occurs during the execution of a program. An
error condition can be signalled by throwing an exception, which is accomplished with a throw statement. The
standard library defines numerous exception types in the header file stdexcept (e.g., std::runtime_error,
std::overflow_error, and std::domain_error). Each standard library exception type provides a constructor
that takes a pointer to a character array (i.e., string). This string provides some additional information about the error
that the exception is signalling. For example, if one is asked to take the square root of a negative number, one might
throw a domain error (i.e., std::domain_error) as in the code example given below.

1 #include <stdexcept>
2

3 double sqrt(double x)
4 {
5 double result = 0.0;
6 if (x < 0) {
7 // We are attempting to take the square root of a negative number.
8 throw std::domain_error("square root of negative number");
9 }

10 // ... (initialize result)
11 return result;
12 }

More code examples that throw exceptions can be found in the “Exceptions” section of the lecture slides. If
additional information related to throwing exceptions is desired, the following URLs might also be helpful:

• http://en.cppreference.com/w/cpp/error/exception
• http://en.cppreference.com/w/cpp/header/stdexcept
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