SENG 475 & ECE 596C, Summer 2024 6-1

6 Assignment 4 [Assignment ID: cpp_containers]

6.1 Preamble (Please Read Carefully)

Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General
Information) which starts on page 1-1 of this document.

6.2 Topics Covered

This assignment covers material primarily related to the following: memory management, intrusive and nonintrusive
containers.

6.3 Problems — Part A — Nonprogramming Exercises

e 8.24 a b c [container selection]

* 8.26 [separation of construction/destruction and allocation/deallocation]
e 8.27 [array-based vs. node-based]

8.29 a b ¢ [intrusive vs. nonintrusive containers]

6.4 Problems — Part B — Nonintrusive Set

B.1 Ordered set class template based on sorted array (sv_set). In this exercise, a class template called sv_set is to
be developed that represents an ordered set of unique elements. This template has two parameters:

(a) Key. The type of each of the elements in the set (i.e., the key type).

(b) Compare. The type of the callable entity (e.g., function or functor) used to test if one key is less than another.
Since the elements of the container are ordered, a comparison predicate must be provided by the container
user to define the sorting criterion to be employed by the container. A callable entity f of type Compare can
have the function-call operator applied with exactly two function arguments x and y of type Key and yields
a return type of bool. The value returned by f (x,y) is true if x is less than y and false otherwise
(i.e., f is a less-than predicate). Only a less-than predicate is provided by the user of sv_set, since all other
relational operators (e.g., equal, not-equal, greater-than, greater-than-or-equal, and less-than-or-equal) can
be synthesized from this single predicate. The type Compare need not be default constructible.

The interface for the sv_set class template is given in Listing 8.

The sv_set class template is somewhat similar to std: :set, except that the underlying data structure used to
store container elements differs. In the case of std: :set, container elements are stored in a balanced (node-
based) tree. In contrast, sv_set uses a dynamically-resizable array as the underlying data structure for storing
the elements of the set. In order to facilitate efficient searching for elements, the elements of the array are stored
in sorted order, namely, ascending order by key.

The dynamically-resizable array used by sv_set is somewhat similar to std: :vector. The std: :vector class
template cannot be used in this exercise, however. The code for sv_set must directly manage the storage of
the container elements (i.e., it cannot delegate this responsibility to another class such as std: :vector). Global
operator new and operator delete must be used in order to allocate storage for the container elements.

Listing 8: Interface for class template sv_set

namespace ra::container {

1

2

3 // A class representing a set of unique elements (which uses
4 // a sorted array) .

5 template <class Key, class Compare = std::less<Key>>

6 class sv_set {

7 public:

8

Instructor: Michael D. Adams Version: 2024-05-04

6-2 SENG 475 & ECE 596C, Summer 2024

9 // Note:

10 // In the time complexity specifications of various functions below,
11 // it 1is assumed that the following operations for the Compare type
12 // are constant time: default construction, destruction, copy
13 // construction and assignment, and move construction and assignment.
14

15 // A dummy type used to indicate that elements in a range are
16 // both ordered and unique.

17 struct ordered_and_unique_range {};

18

19 // The type of the elements held by the container. This 1is

20 // simply an alias for the template parameter Key.

21 using value_type = Key;

2 using key_type = Key;

23

2% // The type of the function/functor used to compare two keys.
25 // This is simply an alias for the template parameter Compare.
2 using key_compare = Compare;

27

28 // An unsigned integral type used to represent sizes.

29 using size_type = std::size_t;

30

31 // The mutable (random-access) iterator type for the container.
) // This type must support all of the functionality associated
3 // with a random-access iterator.

34 using iterator = /# implementation defined #*/;

35

36 // The non-mutable (random—-access) const_iterator type for

3 // the container.

38 // This type must support all of the functionality associated
39 // with a random-access iterator.

40 using const_iterator = /+ implementation-defined */;

41

) // Default construct a set.

43 //

44 // Creates an empty set (i.e., a set containing no elements)
45 // with a capacity of zero (i.e., no allocated storage for

46 // elements).

4 //

m // Time complexity:

9 // Constant.

50 sv_set () noexcept (std::is_nothrow_default_constructible_v<

51 key_compare>) ;

52

53 // Construct a set with the specified comparison object.

54 //

55 // Creates an empty set (i.e., a set containing no elements)
56 // with a capacity of zero (i.e., no allocated storage for

57 // elements). The comparison object associated with the set is
58 // set to comp.

59 //

60 // Time complexity:

61 // Constant.

62 explicit sv_set (const Compare& comp);

63

64 // Construct a set from a range.

65 //

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 6-3

66

67

68

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

/7
/7
/7
/7
/7
/7
/7
7’/
/7
/7
/7
/7
/7
/7
7’/
/7
7’/
/7
/7

Create a set consisting of the n elements in the range starting at
first, where the elements in the range must be both unique and
ordered with respect to the comparison operation embodied by the
key_compare type. If the specified range 1is not both ordered and
unique, the behavior of this function is undefined.

The comparison object associated with the set is set to comp.

Time complexity:
Linear in n.

Template constraints:
The type InputlIterator must meet the requirements of an input
iterator.

Note:

The parameter of type ordered_and_unique_range is always ignored.
This parameter 1is only present to allow for future expansion
(i.e., adding a constructor that does not require an ordered

and unique range).

template <class InputlIterator>

SV_

set (ordered_and_unique_range, Inputlterator first,

std::size_t n, const Compare& comp = Compare());

/7
/7
/7
/7
/7
7’/
/7
/7

SV_

Move construct a set.

Creates a new set by moving from the specified set other. After
construction, the source set (i.e., other) is guaranteed to be

empty.

Time complexity:
Constant.
set (sv_set&& other) noexcept (

std::is_nothrow_move_constructible_v<key_compare>);

7’/
/7
/7
7’/
/7
/7
7’/
/7
/7
/7
/7
/7
7’/
/7
/7

SV_

Move assign a set.

Assigns the value of the specified set other to #this via a move
operation. After the move operation, the source set (i.e., other)
is guaranteed to be empty.

Iterator/reference invalidation:
Move assignment may invalidate iterators/references to elements
in the moved-from and moved-to containers.

Time complexity:
Linear in size().

Preconditions:
The objects #this and other are distinct.
set& operator=(sv_set&& other) noexcept (

std::is_nothrow_move_assignable_v<key_compare>);

7’/
/7
/7
/7
/7

Copy construct a set.
Creates a new set by copying from the specified set other.

Time complexity:

Instructor: Michael D. Adams Version: 2024-05-04

6-4 SENG 475 & ECE 596C, Summer 2024

123 // Linear in other.size().

124 sv_set (const sv_set& other);

125

126 // Copy assign a set.

127 //

128 // Assigns the value of the specified set other to #this.
129 //

130 // Iterator/reference invalidation:

131 // Copy assignment may invalidate iterators/references to elements in
132 // the copied-to container.

133 //

134 // Time complexity:

135 // Linear in size() and other.size().

136 sv_set& operator=(const sv_set& other);

137

138 // Destroy a set.

139 //

140 // Erases all elements in the container and destroys the container.
141 //

142 // Time complexity:

143 // Linear in size().

144 “sv_set();

145

146 // Get the comparison object for the container.

147 //

148 // Return value:

149 // Returns the comparison object for the container.

150 //

151 // Time complexity:

152 // Constant.

153 key_compare key_comp() const;

154

155 // Get an iterator referring to the first element in a set.
156 //

157 // Return value:

158 // Returns an iterator referring to the first element in the set if
159 // the set is not empty and end() otherwise.

160 //

161 // Time complexity:

162 // Constant.

163 const_iterator begin() const noexcept;

164 iterator begin() noexcept;

165

166 // Get an iterator referring to the one-past-the-end position in a
167 // set.

168 //

169 // Return value:

170 // Returns an iterator referring to the fictitious one-past-the-end
171 // element for the set.

172 //

173 // Time complexity:

174 // Constant.

175 const_iterator end() const noexcept;

176 iterator end() noexcept;

177

178 // Get the size of a set.

179 //

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 6-5

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

226

227

228

229

230

232

233

235

236

// Return value:

// Returns the number of elements in the set (i.e., the size
// of the set).

//

// Time complexity:

// Constant.

size_type size() const noexcept;

// Get the capacity of a set.

//

// Return value:

// Returns the number of elements for which storage is

// available (i.e., the capacity of the set). This value 1is
// always at least as great as size().

//

// Time complexity:

// Constant.

size_type capacity() const noexcept;

// Reserve storage for use by a set.

//

// Reserves storage in the container for at least n elements.

// After this function has been called with a value of n, it

// 1s guaranteed that no memory-allocation is needed as long

// as the size of the container does not exceed n.

// Calling this function has no effect if the capacity of the

// container is already at least n (i.e., the capacity of

// the container is never reduced by this function).

//

// Iterator/reference invalidation:

// The reserve member function may invalidate iterators/references
// to elements in the container if the capacity of the container is
// increased.

//

// Time complexity:

// At most linear in size().

void reserve(size_type n);

// Minimize the amount of storage used for the elements in a set.
//

// Reduces the capacity of the container to the container size.
// If the capacity of the container is greater than its size,

// the capacity is reduced to the size of the container.

// Calling this function has no effect if the capacity of the

// container does not exceed its size.

//

// Iterator/reference invalidation:

// The shrink_to_fit member function may invalidate

// iterators/references to elements in the container if the capacity
// of the container is decreased.

//

// Time complexity:

// At most linear in size().

void shrink_to_fit();

// Insert an element in a set.

s

Instructor: Michael D. Adams Version: 2024-05-04

6-6 SENG 475 & ECE 596C, Summer 2024

237 // Inserts the element x in the set.

238 // If the element x is already in the set, no insertion is

239 // performed (since a set cannot contain duplicate values).

240 //

241 // Return value:

242 // The second (i.e., boolean) component of the returned pair

243 // 1s true if and only if the insertion takes place; and the

244 // first (i.e., iterator) component of the pair refers to

245 // the element with key equivalent to the key of x

246 // (i.e., the element inserted if insertion took place or

247 // the element found with an equal key if insertion did not

248 // take place).

249 //

250 // Iterator/reference invalidation:

251 // The insert member function may invalidate iterators/references that
252 // refer to elements in the container only if an insertion is actually
253 // performed (i.e., the element to be inserted is not already in the
254 // container). If an insertion is performed into a container whose
255 // size is less than its capacity, insert may invalidate only the

256 // iterators/references that refer to elements in the container with
257 // a value greater than the inserted element.

258 //

259 // Time complexity:

260 // Search logarithmic in size() plus insertion linear in either the
261 // number of elements with larger keys than x (if size() < capacity())
262 // or size() (if size() == capacity()).

263 std::pair<iterator, bool> insert (const key_type& x);

264

265 // Remove an element from a set.

266 //

267 // Erases the element referenced by pos from the container.

268 // Returns an iterator referring to the element following the

269 // erased one in the container 1if such an element exists or

270 // end() otherwise.

271 //

m // Iterator/reference invalidation:

273 // The erase member function may invalidate iterators/references that
274 // refer to elements in the container with a value greater than the
275 // erased element.

276 //

2 // Time complexity:

278 // Linear in number of elements with larger keys than x.

279 iterator erase(const_iterator pos);

280

281 // Swap the contents of two sets.

28 //

283 // Swaps the contents of the container with the contents of the

284 // container x.

285 //

286 // Iterator/reference invalidation:

287 // The swap member function may invalidate iterators/references to
288 // elements in both of the containers being swapped.

289 //

290 // Time complexity: Constant.

291 void swap(sv_set& x) noexcept (

292 std::is_nothrow_swappable_v<key_compare>);

293

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 6-7

294 // Clear the contents of the set.

295 //

296 // Erases any elements in the container, yielding an empty container.
297 //

208 // Time complexity:

209 // Linear in size().

300 void clear () noexcept;

301

302 // Find an element in a set.

303 //

304 // Searches the container for an element with the key k.

305 // If an element is found, an iterator referencing the element

306 // 1s returned; otherwise, end() 1s returned.

307 //

308 // Time complexity:

309 // Logarithmic.

310 iterator find(const key_type& k);

311 const_iterator find(const key_type& k) const;

312

313 // Additional Remarks

314 //

315 // Iterator/reference invalidation:

316 // Each nonmutating (public) member function of sv_set 1s guaranteed
317 // not to invalidate iterators/references to elements in the

318 // container. The mutating (public) member functions of sv_set can
319 // only invalidate iterators/references as documented herein.

320 // Clearly, if an element is removed from the container, all

321 // iterators/references that refer to it will be invalidated.

322
323 };

34}

The term “input iterator” is used in the above interface specification. If you are unsure as to what exactly an input
iterator is, refer to the section of the lecture slides on containers, iterators, and algorithms. This section discusses
iterator categories as well as input iterators specifically.

All of the necessary declarations and definitions for the sv_set class template should be placed in a header file
called | include/ra/sv_set.hpp |

Although the particular types to be used for the type members iterator and const_iterator are not specified,
they must meet the requirements of a random access iterator. Raw pointer types may be used for these iterator
types.

As indicated above, the sv_set class template must be placed in the namespace ra: :container.

Constructors and testing. Since the code that tests the sv_set class template does not have access to the internal
(i.e., private) state used to implement the class template, test code must rely heavily on the constructors of the
class in order to place data in sv_set objects in order to perform testing. If any of the constructors of the
class have bugs, this could easily result in every single test case failing. So, it is critically important that the
constructors be very well tested. For example, the constructor that takes an ordered_and_unique_range and
iterator range is used heavily by the instructor’s test code to place data in sv_set objects for testing. If this
constructor were to work incorrectly, every test using this constructor would likely fail, due to placing the wrong
data inside sv_set objects during part of the test.

Some functionality of the standard library that may potentially prove useful in this exercise includes:
std::copy, std::copy_backward, std::move, std::move_backward, std::uninitialized_copy,
std::uninitialized_copy_n, std::uninitialized_move, std::uninitialized_move_n,
std::uninitialized fill, std::uninitialized_fill_n, std::destroy_at, and std: :destroy.

Instructor: Michael D. Adams Version: 2024-05-04

6-8 SENG 475 & ECE 596C, Summer 2024

The code used to test the sv_set class template should be placed in a file called ‘ app/test_sv_set.cpp ‘

It is very strongly recommended that the ASan and LSan code sanitizers be employed during the testing of the
code for this exercise. ASan is helpful for detecting bugs related to bad pointers, while LSan is helpful for detect-
ing memory leaks. An option for enabling ASan and/or LSan can be placed in a file called ‘ Sanitizers.cmake ‘
and then included in the CMakeLists.txt file.

6.5 Problems — Part C — Intrusive List

C.1 Intrusive doubly-linked list class template (1ist). In this exercise, a class template called 1ist is to be developed
that represents an intrusive doubly-linked list with a sentinel node. The 1ist class template relies on a (non-
template) helper class called 1ist_hook, which stores per-node list management information. The 1ist_hook
class (which is a non-template class) is used to store per-node information needed for list management (i.e.,
pointers to the successor and predecessor nodes). For a type T to be compatible with 1ist, T must include a
data member of type 1ist_hook. The interfaces for the 1ist class template and 1ist_hook class are given in
Listing 9.

Listing 9: Interface for class template 1ist

| namespace ra::intrusive {

3 // Per-node list management information class.

4 // This type contains per-node list management information (i.e., the

5 // successor and predecessor in the 1list). This class has the list class
6 // template as a friend. This type must contain pointers (of type

7 // 1list_hookx) to the next and previous node in the 1list.

8 class list_hook {

9 public:

i // Default construct a list hook.

12 // This constructor creates a list hook that does not belong to any
13 // list.

14 list_hook();

15

16 // Copy construct a list hook.

17 // This constructor creates a list hook that does not belong to any
18 // 1list. The argument to the constructor is ignored. The copy

19 // construction operation is defined only so that types with 1list hooks
20 // are copy constructible. The list class itself never copies (or

21 // moves) a list hook.

b2 list_hook (const list_hook&);

23

2% // Copy assign a list hook.

25 // The copy assignment operator is defined as a no-op. The argument to
26 // the operator is ignored. The copy assignment operation is defined
27 // only so that types with list hooks are copy assignable. The 1list
28 // class itself never copies (or moves) a list hook.

29 list_hook& operator=(const list_hooké&);

30

31 // Destroy a list hook.

2 // The 1list hook being destroyed must not belong to a list. If the

33 // 1list hook belongs to a list, the resulting behavior is undefined.
34 “list_hook();

35 bi

36

37 // Intrusive doubly-linked list (with sentinel node).

38 template <class T, list_hook T::* Hook>

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024

6-9

39

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

66

67

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Instructor: Michael D. Adams

class list {
public:

// The type of the elements in the list.
using value_type = T;

// The pointer-to-member associated with the list hook object.
static constexpr list_hook T::* hook_ptr = Hook;

// The type of a mutating reference to a node in the list.
using reference = T&;

// The type of a non-mutating reference to a node in the list.
using const_reference = const T¢;

// The mutating (bidirectional) iterator type for the list. This type
// must provide all of the functionality of a bidirectional iterator.
// If desired, the Boost Iterator library may be used to implement

// this type.

using iterator = /* implementation defined #*/;

// The non-mutating (bidirectional) iterator type for the list. This
// type must provide all of the functionality of a bidirectional

// iterator. If desired, the Boost Iterator library may be used to
// implement this type.

using const_iterator = /x implementation defined x/;

// An unsigned integral type used to represent sizes.
using size_type = std::size_t;

// Default construct a list.
//

// Creates an empty list.

//

// Time complexity:

// Constant.

list();

// Destroy a list.

/7

// Erases any elements from the list and then destroys the list.
/S

// Time complexity:

// Either linear or constant.

“list();

// Move construct a list.

//

// The elements in the source list (i.e., other) are moved from the

// source list to the destination list (i.e., *this), preserving their
// relative order. After the move, the source list is empty.

//

// Time complexity:

// Constant.

list (list&& other);

// Move assign a list.

Version: 2024-05-04

6-10 SENG 475 & ECE 596C, Summer 2024

9% //

97 // The elements of the source list (i.e., other) are swapped with the
98 // elements of the destination list (i.e., #this). The relative order
9 // of the elements in each list 1is preserved.

100 //

101 // Precondition:

102 // The objects #this and other are distinct.

103 //

104 // Time complexity:

105 // Constant.

106 list& operator=(list&& other);

107

108 // Do not allow the copying of lists.

109 list (const list&) = delete;

110 list& operator=(const list&) = delete;

111

12 // Swap the elements of two lists.

113 //

114 // Swaps the elements of #this and x.

115 // Swapping the elements of a list with itself has no effect.
116 //

17 // Time complexity:

118 // Constant.

119 void swap(listé& x);

120

121 // Returns the number of elements in the list.

122 //

123 // Time complexity:

124 // Constant.

125 size_type size() const;

126

127 // Inserts an element in the list before the element referred to
128 // by the iterator pos.

129 // An iterator that refers to the inserted element is returned.
130 //

131 // Time complexity:

132 // Constant.

133 iterator insert (iterator pos, value_type& value);

134

135 // Erases the element in the list at the position specified by the
136 // iterator pos.

137 // An iterator that refers to the element following the erased element
138 // 1is returned if such an element exists; otherwise, end() 1is
139 // returned.

140 //

141 // Time complexity:

142 // Constant.

143 iterator erase(iterator pos);

144

145 // Inserts the element with the value x at the end of the list.
146 //

147 // Time complexity:

148 // Constant.

149 void push_back (value_type& x);

150

151 // Erases the last element in the list.

152 //

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 6-11

153 // Precondition:

154 // The 1list 1is not empty.

155 //

156 // Time complexity:

157 // Constant.

158 void pop_back();

159

160 // Returns a reference to the last element in the list.
161 //

162 // Precondition:

163 // The list 1is not empty.

164 //

165 // Time complexity:

166 // Constant.

167 reference back();

168 const_reference back() const;

169

170 // Erases any elements from the list, yielding an empty list.
171 //

172 // Time complexity:

173 // Either linear or constant.

174 void clear();

175

176 // Returns an iterator referring to the first element in the list
177 // 1f the list is not empty and end() otherwise.

178 //

179 // Time complexity:

180 // Constant.

181 const_iterator begin() const;

182 iterator begin();

183

184 // Returns an iterator referring to the fictitious one-past-the-end
185 // element.

186 //

187 // Time complexity:

188 // Constant.

189 const_iterator end() const;

190 iterator end();

191
192 };

193}

All of the necessary declarations and definitions for the list class template should be placed in a header file
called| include/ra/intrusive_list.hpp |

Note that list and list_hook are contained in the namespace ra::intrusive. The iterator and
const_iterator types must provide all of the functionality of a bidirectional iterator. This includes, amongst
other things, prefix and postfix increment, prefix and postfix decrement, dereference operators (both unary
operator* and operator->). These iterator types must also behave in a const-correct manner. The code
must be exception safe.

Determining the parent object from a pointer to one of its members requires nonportable (i.e., compiler-
dependent) code. To simplify this exercise, the overloaded function parent_from_member is provided for mak-
ing this determination. The relevant declarations are as follows:

namespace ra::util {
template<class Parent, class Member>
inline Parent *parent_from_member (Member *member,

Instructor: Michael D. Adams Version: 2024-05-04

6-12

SENG 475 & ECE 596C, Summer 2024

const Member Parent::* ptr_to_member);

template<class Parent, class Member>
inline const Parent *parent_from member (const Member *member,
const Member Parent::* ptr_to_member);

}

Given a pointer member to a subobject of some parent object (of type Parent) and a pointer-to-member
ptr_to_member associated with that subobject, the function parent_from_member returns a pointer to the par-
ent object of *member. The code for the above functions is provided in the file ‘ parent_from_member.hpp ‘

This file must be placed in the directory and the contents of this file should not be modified. The
code provided for parent_from_member is only guaranteed to work for the compilers (GCC and Clang) used in

the course. (The code may not work with other compilers, such as the MSVC compiler.)

The 1ist class template should be tested with a variety of element types. A trivial example illustrating the use
of the 1ist class is given in Listing 10.

Listing 10: Example use of 1ist

1 #include "ra/intrusive_list.hpp"
3 namespace ri = ra::intrusive;

s struct Widget {

6 Widget (int value_) : value(value_) {}
7 int value;

8 ri::list_hook hook;

v)5

10

11 int main()

12 {

13 std::vector<Widget> storage;

14 storage.push_back (Widget (42));

15 ri::list<Widget, &Widget::hook> values;
16 for (auto&& i : storage) {

17 values.push_back(i);

18 }

19 values.clear();

The code wused to test the 1list class template should be placed in a file -called

app/test_intrusive_list.cpp|
It is very strongly recommended that the ASan and LSan code sanitizers be employed during the testing of the
code for this exercise. ASan is helpful for detecting bugs related to bad pointers, while LSan is helpful for detect-
ing memory leaks. An option for enabling ASan and/or LSan can be placed in a file called | Sanitizers.cmake
and then included in the CMakeLists.txt file.

Version: 2024-05-04 Instructor: Michael D. Adams

