SENG 475 & ECE 596C, Summer 2024 7-1

7 Assignment 5 [Assignment ID: cpp_cache]

7.1 Preamble (Please Read Carefully)

Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General
Information”) which starts on page 1-1 of this document.

7.2 Topics Covered

This assignment covers material primarily related to the following: cache-oblivious algorithms, matrix transposition,
matrix multiplication, FFT.

7.3 Problems — Part A — Nonprogramming Exercises

* 8.32 [cache parameters]

8.33 abc d [cache]

* 8.34 [cache misses in algorithm]
* 8.36 [virtual memory parameters]
e 8.37 ab c [address translation]

7.4 Problems — Part B — Linear Algebra

B.1 Cache-oblivious matrix transposition. In this exercise, a function template is to be developed that performs a
matrix transposition using a particular cache-oblivious algorithm. Given an m X n matrix A, we wish to compute
B=AT (where B is an n x m matrix). (Note that, as a matter of notation, an m X n matrix is a matrix with m rows
and n columns.)

The function template to be developed is called matrix_transpose and has the following declaration:

namespace ra::cache {
template <class T>
void matrix_transpose(const T* a, std::size_t m, std::size_t n,
T* b);

The function template matrix_transpose computes the transpose of the matrix having m rows, n columns,
and the element data of type T pointed to by a. The resulting transposed element data is written to the matrix
buffer pointed to by b. All matrices are stored in row-major order (with no padding between rows). The value
of b is permitted to be equal to a. If b equals a, the matrix named by a is replaced by its transpose. Note
that an auxiliary buffer can be used by the implementation to handle this case. The type T can be any numeric
type for which matrix transposition would be meaningful (e.g., int, double, std: :complex<double>). The
matrix_transpose function is to utilize the cache-oblivious algorithm from the lecture slides. This algorithm
uses a divide and conquer strategy and is based on recursion. Note that, for optimal efficiency, the recursion
should not be continued until a 1 x 1 matrix is encountered. For example, the base case for the recursion might
be chosen to correspond to m n < 64.

For comparison purposes, a second function template called naive_matrix_transpose must be provided that
computes the matrix transpose using a straightforward naive approach that does not consider the effects of the
cache. This function template has the following declaration:

namespace ra::cache {
template <class T>
void naive_matrix_transpose (const T* a, std::size_t m,
std::size_t n, T* b);

Instructor: Michael D. Adams Version: 2024-05-04

7-2

SENG 475 & ECE 596C, Summer 2024

B.2

The interface for this function template is identical to the one for matrix_transpose.

All of the code for the matrix_transpose and naive_matrix_transpose function templates must be placed
in the header file | include/ra/matrix_transpose.hpp |

The code used to test the matrix_transpose function template should be placed in a file called

app/test_matrix_transpose.cpp |

Cache-oblivious matrix multiplication. In this exercise, a function template is to be developed that performs
matrix multiplication using a particular cache-oblivious algorithm. Given an m X n matrix A and an n X p matrix
B, we wish to compute the matrix product C = AB, where C is m X p. (Note that, as a matter of notation, an m X n
matrix is a matrix with m rows and »n columns.)

The function template to be developed is called matrix_multiply and has the following declaration:

namespace ra::cache {
template <class 1>
void matrix_multiply(const T* a, const T* b, std::size_t m,
std::size_t n, std::size_t p, T* c¢);

}

The matrix _multiply function template computes the matrix product C = AB. The parameter a points to the
element data for the matrix A with m rows and n columns. The parameter b points to the element data for the
matrix B with n rows and p columns. The parameter c points to the element data for the matrix C with m rows
and p columns. The storage pointed to by a, b, and c is not permitted to overlap. All three matrices have
elements of type T. The type T can be any numeric type for which matrix multiplication would be meaningful
(e.g., int, double, std::complex<double>). All matrix element data is stored in row-major order (with
no padding between rows). The matrix_multiply function is to utilize the cache-oblivious algorithm from the
lecture slides. Note that, for optimal efficiency, the recursion should not be continued until 1 x 1 matrices are
encountered. For example, the base case for the recursion might be chosen to correspond tom n p < 64.

For comparison purposes, a second function template called naive_matrix_multiply must be provided that
computes the matrix product using a straightforward naive approach that does not consider the effects of the
cache. This function template has the following declaration:

namespace ra::cache {
template <class 1>
void naive_matrix_multiply(const T* a, const T* b,
std::size_t m, std::size_t n, std::size_t p, T* c);

}

The interface for this function template is identical to the one for matrix_multiply.

All of the code for the matrix_multiply and naive_matrix_multiply function templates must be placed in
the header file | include/ra/matrix_multiply.hpp |

The code used to test the matrix_multiply function template should be placed in a file called
‘ app/test_matrix_multiply.cpp ‘

7.5 Problems — Part C — Fast Fourier Transform

C.1

Cache-oblivious fast-Fourier transform (FFT). In this exercise, a function template is to be developed that com-
putes a fast-Fourier transform (FFT) using a particular cache-oblivious algorithm.

The function template to be developed is called forward_fft and has the following declaration:

namespace ra::cache {
template <class T>
void forward fft(T* x, std::size_t n);

Version: 2024-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2024 7-3

The forward_fft function template computes the DFT of the sequence of n elements of type T pointed to
by x. This computation is done in place (i.e., the input sequence is overwritten with the DFT result). The
forward_fft function is to utilize the cache-oblivious algorithm from the lecture slides. In order to simplify
the selection of an appropriate factorization of n (which is needed in the DFT algorithm), the implementation
may impose the constraint (on the user) that n must be a power of two. The type T can be any complex number
class that has an interface compatible with std: : complex. For example, the code should work with T chosen as
std::complex<float> and std: :complex<double>. Note that, for optimal efficiency, the recursion should
probably not be continued until a 1-point DFT is encountered (i.e., n = 1). For example, the base case for the
recursion might be chosen to correspond to n < 4. In order to perform matrix transposition (which is needed in
the DFT algorithm), the matrix_transpose template function developed in Exercise B.1 should be used.

All of the code for the forward_fft function template must be placed in the header file ‘ include/ra/fft.hpp ‘

The code used to test the forward_fft function template should be placed in a file called ‘ app/test_fft.cpp ‘

Mathematical constants. Mathematical constants, such as 7 and e, are available in the C++ Standard Library
(e.g., std: :numbers::pi_v and std: :numbers: :e_v). If you need to use 7 or e in your code, you should use
the values provided by the C++ Standard Library; otherwise, your code could potentially fail test cases due to
errors introduced by insufficiently accurate values for mathematical constants.

Instructor: Michael D. Adams Version: 2024-05-04

7-4 SENG 475 & ECE 596C, Summer 2024

Version: 2024-05-04 Instructor: Michael D. Adams

