7 Expressions [expr]

7.6 Compound expressions [expr.compound]

7.6.2 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.
unary-expression:
	postfix-expression
	unary-operator cast-expression
	++ cast-expression
	-- cast-expression
	await-expression
	sizeof unary-expression
	sizeof ( type-id )
	sizeof ... ( identifier )
	alignof ( type-id )
	noexcept-expression
	new-expression
	delete-expression
unary-operator: one of
	*  &  +  -  !  ~

7.6.2.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object type, or a pointer to a function type and the result is an lvalue referring to the object or function to which the expression points.
If the type of the expression is “pointer to T”, the type of the result is “T.
Note
:
Indirection through a pointer to an incomplete type (other than cv void) is valid.
The lvalue thus obtained can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to a prvalue, see [conv.lval].
— end note
 ]
The result of each of the following unary operators is a prvalue.
The result of the unary & operator is a pointer to its operand.
  • If the operand is a qualified-id naming a non-static or variant member m of some class C with type T, the result has type “pointer to member of class C of type T” and is a prvalue designating C​::​m.
  • Otherwise, if the operand is an lvalue of type T, the resulting expression is a prvalue of type “pointer to T” whose result is a pointer to the designated object ([intro.memory]) or function.
    Note
    :
    In particular, taking the address of a variable of type “cv T” yields a pointer of type “pointer to cv T.
    — end note
     ]
  • Otherwise, the program is ill-formed.
Example
:
struct A { int i; };
struct B : A { };
... &B::i ...       // has type int A​::​*
int a;
int* p1 = &a;
int* p2 = p1 + 1;   // defined behavior
bool b = p2 > p1;   // defined behavior, with value true
— end example
 ]
Note
:
A pointer to member formed from a mutable non-static data member ([dcl.stc]) does not reflect the mutable specifier associated with the non-static data member.
— end note
 ]
A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed in parentheses.
Note
:
That is, the expression &(qualified-id), where the qualified-id is enclosed in parentheses, does not form an expression of type “pointer to member”.
Neither does qualified-id, because there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to member function” as there is from an lvalue of function type to the type “pointer to function” ([conv.func]).
Nor is &unqualified-id a pointer to member, even within the scope of the unqualified-id's class.
— end note
 ]
If & is applied to an lvalue of incomplete class type and the complete type declares operator&(), it is unspecified whether the operator has the built-in meaning or the operator function is called.
The operand of & shall not be a bit-field.
Note
:
The address of an overloaded function can be taken only in a context that uniquely determines which version of the overloaded function is referred to (see [over.over]).
Since the context might determine whether the operand is a static or non-static member function, the context can also affect whether the expression has type “pointer to function” or “pointer to member function”.
— end note
 ]
The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the result is the value of the argument.
Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.
The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result is the negation of its operand.
Integral promotion is performed on integral or enumeration operands.
The negative of an unsigned quantity is computed by subtracting its value from , where n is the number of bits in the promoted operand.
The type of the result is the type of the promoted operand.
The operand of the logical negation operator ! is contextually converted to bool; its value is true if the converted operand is false and false otherwise.
The type of the result is bool.
The operand of ~ shall have integral or unscoped enumeration type; the result is the ones' complement of its operand.
Integral promotions are performed.
The type of the result is the type of the promoted operand.
There is an ambiguity in the grammar when ~ is followed by a type-name or decltype-specifier.
The ambiguity is resolved by treating ~ as the unary complement operator rather than as the start of an unqualified-id naming a destructor.
Note
:
Because the grammar does not permit an operator to follow the ., ->, or ​::​ tokens, a ~ followed by a type-name or decltype-specifier in a member access expression or qualified-id is unambiguously parsed as a destructor name.
— end note
 ]

7.6.2.2 Increment and decrement [expr.pre.incr]

The operand of prefix ++ is modified ([defns.access]) by adding 1.
The operand shall be a modifiable lvalue.
The type of the operand shall be an arithmetic type other than cv bool, or a pointer to a completely-defined object type.
An operand with volatile-qualified type is deprecated; see [depr.volatile.type].
The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a bit-field.
The expression ++x is equivalent to x+=1.
Note
:
See the discussions of addition and assignment operators for information on conversions.
— end note
 ]
The operand of prefix -- is modified ([defns.access]) by subtracting 1.
The requirements on the operand of prefix -- and the properties of its result are otherwise the same as those of prefix ++.
Note
:
For postfix increment and decrement, see [expr.post.incr].
— end note
 ]

7.6.2.3 Await [expr.await]

The co_­await expression is used to suspend evaluation of a coroutine ([dcl.fct.def.coroutine]) while awaiting completion of the computation represented by the operand expression.
await-expression:
	co_await cast-expression
An await-expression shall appear only in a potentially-evaluated expression within the compound-statement of a function-body outside of a handler.
In a declaration-statement or in the simple-declaration (if any) of a for-init-statement, an await-expression shall appear only in an initializer of that declaration-statement or simple-declaration.
An await-expression shall not appear in a default argument ([dcl.fct.default]).
An await-expression shall not appear in the initializer of a block-scope variable with static or thread storage duration.
A context within a function where an await-expression can appear is called a suspension context of the function.
Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
  • p is an lvalue naming the promise object ([dcl.fct.def.coroutine]) of the enclosing coroutine and P is the type of that object.
  • a is the cast-expression if the await-expression was implicitly produced by a yield-expression, an initial suspend point, or a final suspend point ([dcl.fct.def.coroutine]).
    Otherwise, the unqualified-id await_­transform is looked up within the scope of P by class member access lookup ([basic.lookup.classref]), and if this lookup finds at least one declaration, then a is p.await_­transform(cast-expression); otherwise, a is the cast-expression.
  • o is determined by enumerating the applicable operator co_­await functions for an argument a ([over.match.oper]), and choosing the best one through overload resolution ([over.match]).
    If overload resolution is ambiguous, the program is ill-formed.
    If no viable functions are found, o is a.
    Otherwise, o is a call to the selected function with the argument a.
    If o would be a prvalue, the temporary materialization conversion ([conv.rval]) is applied.
  • e is an lvalue referring to the result of evaluating the (possibly-converted) o.
  • h is an object of type std​::​coroutine_­handle<P> referring to the enclosing coroutine.
  • await-ready is the expression e.await_­ready(), contextually converted to bool.
  • await-suspend is the expression e.await_­suspend(h), which shall be a prvalue of type void, bool, or std​::​coroutine_­handle<Z> for some type Z.
  • await-resume is the expression e.await_­resume().
The await-expression has the same type and value category as the await-resume expression.
The await-expression evaluates the (possibly-converted) o expression and the await-ready expression, then:
  • If the result of await-ready is false, the coroutine is considered suspended. Then:
    • If the type of await-suspend is std​::​coroutine_­handle<Z>, await-suspend.resume() is evaluated.
      Note
      : This resumes the coroutine referred to by the result of await-suspend. Any number of coroutines may be successively resumed in this fashion, eventually returning control flow to the current coroutine caller or resumer ([dcl.fct.def.coroutine]). — end note
       ]
    • Otherwise, if the type of await-suspend is bool, await-suspend is evaluated, and the coroutine is resumed if the result is false.
    • Otherwise, await-suspend is evaluated.
    If the evaluation of await-suspend exits via an exception, the exception is caught, the coroutine is resumed, and the exception is immediately re-thrown ([except.throw]). Otherwise, control flow returns to the current coroutine caller or resumer ([dcl.fct.def.coroutine]) without exiting any scopes ([stmt.jump]).
  • If the result of await-ready is true, or when the coroutine is resumed, the await-resume expression is evaluated, and its result is the result of the await-expression.
Example
:
template <typename T>
struct my_future {
  /* ... */
  bool await_ready();
  void await_suspend(std::coroutine_handle<>);
  T await_resume();
};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {
  struct awaiter {
    std::chrono::system_clock::duration duration;
    /* ... */
    awaiter(std::chrono::system_clock::duration d) : duration(d) {}
    bool await_ready() const { return duration.count() <= 0; }
    void await_resume() {}
    void await_suspend(std::coroutine_handle<> h) { /* ... */ }
  };
  return awaiter{d};
}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
  std::cout << "just about go to sleep...\n";
  co_await 10ms;
  std::cout << "resumed\n";
  co_await h();
}

auto f(int x = co_await h());   // error: await-expression outside of function suspension context
int a[] = { co_await h() };     // error: await-expression outside of function suspension context
— end example
 ]

7.6.2.4 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes occupied by a non-potentially-overlapping object of the type of its operand.
The operand is either an expression, which is an unevaluated operand ([expr.prop]), or a parenthesized type-id.
The sizeof operator shall not be applied to an expression that has function or incomplete type, to the parenthesized name of such types, or to a glvalue that designates a bit-field.
The result of sizeof applied to any of the narrow character types is 1.
The result of sizeof applied to any other fundamental type ([basic.fundamental]) is implementation-defined.
Note
:
In particular, sizeof(bool), sizeof(char16_­t), sizeof(char32_­t), and sizeof(wchar_­t) are implementation-defined.68
— end note
 ]
Note
:
See [intro.memory] for the definition of byte and [basic.types] for the definition of object representation.
— end note
 ]
When applied to a reference type, the result is the size of the referenced type.
When applied to a class, the result is the number of bytes in an object of that class including any padding required for placing objects of that type in an array.
The result of applying sizeof to a potentially-overlapping subobject is the size of the type, not the size of the subobject.69
When applied to an array, the result is the total number of bytes in the array.
This implies that the size of an array of n elements is n times the size of an element.
The lvalue-to-rvalue ([conv.lval]), array-to-pointer ([conv.array]), and function-to-pointer ([conv.func]) standard conversions are not applied to the operand of sizeof.
If the operand is a prvalue, the temporary materialization conversion is applied.
The identifier in a sizeof... expression shall name a pack.
The sizeof... operator yields the number of elements in the pack ([temp.variadic]).
A sizeof... expression is a pack expansion ([temp.variadic]).
Example
:
template<class... Types>
struct count {
  static const std::size_t value = sizeof...(Types);
};
— end example
 ]
The result of sizeof and sizeof... is a prvalue of type std​::​size_­t.
Note
:
A sizeof expression is an integral constant expression ([expr.const]).
The type std​::​size_­t is defined in the standard header <cstddef> ([cstddef.syn], [support.types.layout]).
— end note
 ]
sizeof(bool) is not required to be 1.
The actual size of a potentially-overlapping subobject may be less than the result of applying sizeof to the subobject, due to virtual base classes and less strict padding requirements on potentially-overlapping subobjects.

7.6.2.5 Alignof [expr.alignof]

An alignof expression yields the alignment requirement of its operand type.
The operand shall be a type-id representing a complete object type, or an array thereof, or a reference to one of those types.
The result is a prvalue of type std​::​size_­t.
Note
:
An alignof expression is an integral constant expression ([expr.const]).
The type std​::​size_­t is defined in the standard header <cstddef> ([cstddef.syn], [support.types.layout]).
— end note
 ]
When alignof is applied to a reference type, the result is the alignment of the referenced type.
When alignof is applied to an array type, the result is the alignment of the element type.

7.6.2.6 noexcept operator [expr.unary.noexcept]

The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand ([expr.prop]), can throw an exception ([except.throw]).
noexcept-expression:
	noexcept ( expression )
The result of the noexcept operator is a prvalue of type bool.
Note
:
A noexcept-expression is an integral constant expression ([expr.const]).
— end note
 ]
The result of the noexcept operator is true unless the expression is potentially-throwing ([except.spec]).

7.6.2.7 New [expr.new]

The new-expression attempts to create an object of the type-id or new-type-id to which it is applied.
The type of that object is the allocated type.
This type shall be a complete object type, but not an abstract class type or array thereof ([intro.object], [basic.types], [class.abstract]).
Note
:
Because references are not objects, references cannot be created by new-expressions.
— end note
 ]
Note
:
The type-id may be a cv-qualified type, in which case the object created by the new-expression has a cv-qualified type.
— end note
 ]
new-expression:
	:: new new-placement new-type-id new-initializer 
	:: new new-placement ( type-id ) new-initializer
new-placement:
	( expression-list )
new-type-id:
	type-specifier-seq new-declarator
new-declarator:
	ptr-operator new-declarator 
	noptr-new-declarator
noptr-new-declarator:
	[ expression ] attribute-specifier-seq
	noptr-new-declarator [ constant-expression ] attribute-specifier-seq
new-initializer:
	( expression-list )
	braced-init-list
If a placeholder type appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the allocated type is deduced as follows: Let init be the new-initializer, if any, and T be the new-type-id or type-id of the new-expression, then the allocated type is the type deduced for the variable x in the invented declaration ([dcl.spec.auto]):
T x init ;
Example
:
new auto(1);                    // allocated type is int
auto x = new auto('a');         // allocated type is char, x is of type char*

template<class T> struct A { A(T, T); };
auto y = new A{1, 2};           // allocated type is A<int>
— end example
 ]
The new-type-id in a new-expression is the longest possible sequence of new-declarators.
Note
:
This prevents ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts.
— end note
 ]
Example
:
new int * i;                    // syntax error: parsed as (new int*) i, not as (new int)*i
The * is the pointer declarator and not the multiplication operator.
— end example
 ]
Note
:
Parentheses in a new-type-id of a new-expression can have surprising effects.
Example
:
new int(*[10])();               // error
is ill-formed because the binding is
(new int) (*[10])();            // error
Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound types:
new (int (*[10])());
allocates an array of 10 pointers to functions (taking no argument and returning int).
— end example
 ]
— end note
 ]
Objects created by a new-expression have dynamic storage duration ([basic.stc.dynamic]).
Note
:
The lifetime of such an object is not necessarily restricted to the scope in which it is created.
— end note
 ]
When the allocated object is not an array, the result of the new-expression is a pointer to the object created.
When the allocated object is an array (that is, the noptr-new-declarator syntax is used or the new-type-id or type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
Note
:
Both new int and new int[10] have type int* and the type of new int[i][10] is int (*)[10]
— end note
 ]
The attribute-specifier-seq in a noptr-new-declarator appertains to the associated array type.
Every constant-expression in a noptr-new-declarator shall be a converted constant expression ([expr.const]) of type std​::​size_­t and its value shall be greater than zero.
Example
:
Given the definition int n = 42, new float[n][5] is well-formed (because n is the expression of a noptr-new-declarator), but new float[5][n] is ill-formed (because n is not a constant expression).
— end example
 ]
If the type-id or new-type-id denotes an array type of unknown bound ([dcl.array]), the new-initializer shall not be omitted; the allocated object is an array with n elements, where n is determined from the number of initial elements supplied in the new-initializer ([dcl.init.aggr], [dcl.init.string]).
If the expression in a noptr-new-declarator is present, it is implicitly converted to std​::​size_­t.
The expression is erroneous if:
  • the expression is of non-class type and its value before converting to std​::​size_­t is less than zero;
  • the expression is of class type and its value before application of the second standard conversion ([over.ics.user])70 is less than zero;
  • its value is such that the size of the allocated object would exceed the implementation-defined limit; or
  • the new-initializer is a braced-init-list and the number of array elements for which initializers are provided (including the terminating '\0' in a string-literal) exceeds the number of elements to initialize.
If the expression is erroneous after converting to std​::​size_­t:
When the value of the expression is zero, the allocation function is called to allocate an array with no elements.
A new-expression may obtain storage for the object by calling an allocation function ([basic.stc.dynamic.allocation]).
If the new-expression terminates by throwing an exception, it may release storage by calling a deallocation function.
If the allocated type is a non-array type, the allocation function's name is operator new and the deallocation function's name is operator delete.
If the allocated type is an array type, the allocation function's name is operator new[] and the deallocation function's name is operator delete[].
Note
:
An implementation is required to provide default definitions for the global allocation functions ([basic.stc.dynamic], [new.delete.single], [new.delete.array]).
A C++ program can provide alternative definitions of these functions ([replacement.functions]) and/or class-specific versions ([class.free]).
The set of allocation and deallocation functions that may be called by a new-expression may include functions that do not perform allocation or deallocation; for example, see [new.delete.placement].
— end note
 ]
If the new-expression begins with a unary ​::​ operator, the allocation function's name is looked up in the global scope.
Otherwise, if the allocated type is a class type T or array thereof, the allocation function's name is looked up in the scope of T.
If this lookup fails to find the name, or if the allocated type is not a class type, the allocation function's name is looked up in the global scope.
An implementation is allowed to omit a call to a replaceable global allocation function ([new.delete.single], [new.delete.array]).
When it does so, the storage is instead provided by the implementation or provided by extending the allocation of another new-expression.
During an evaluation of a constant expression, a call to an allocation function is always omitted.
Note
:
Only new-expressions that would otherwise result in a call to a replaceable global allocation function can be evaluated in constant expressions ([expr.const]).
— end note
 ]
The implementation may extend the allocation of a new-expression e1 to provide storage for a new-expression e2 if the following would be true were the allocation not extended:
  • the evaluation of e1 is sequenced before the evaluation of e2, and
  • e2 is evaluated whenever e1 obtains storage, and
  • both e1 and e2 invoke the same replaceable global allocation function, and
  • if the allocation function invoked by e1 and e2 is throwing, any exceptions thrown in the evaluation of either e1 or e2 would be first caught in the same handler, and
  • the pointer values produced by e1 and e2 are operands to evaluated delete-expressions, and
  • the evaluation of e2 is sequenced before the evaluation of the delete-expression whose operand is the pointer value produced by e1.
Example
:
void can_merge(int x) {
  // These allocations are safe for merging:
  std::unique_ptr<char[]> a{new (std::nothrow) char[8]};
  std::unique_ptr<char[]> b{new (std::nothrow) char[8]};
  std::unique_ptr<char[]> c{new (std::nothrow) char[x]};

  g(a.get(), b.get(), c.get());
}

void cannot_merge(int x) {
  std::unique_ptr<char[]> a{new char[8]};
  try {
    // Merging this allocation would change its catch handler.
    std::unique_ptr<char[]> b{new char[x]};
  } catch (const std::bad_alloc& e) {
    std::cerr << "Allocation failed: " << e.what() << std::endl;
    throw;
  }
}
— end example
 ]
When a new-expression calls an allocation function and that allocation has not been extended, the new-expression passes the amount of space requested to the allocation function as the first argument of type std​::​size_­t.
That argument shall be no less than the size of the object being created; it may be greater than the size of the object being created only if the object is an array and the allocation function is not a non-allocating form ([new.delete.placement]).
For arrays of char, unsigned char, and std​::​byte, the difference between the result of the new-expression and the address returned by the allocation function shall be an integral multiple of the strictest fundamental alignment requirement of any object type whose size is no greater than the size of the array being created.
Note
:
Because allocation functions are assumed to return pointers to storage that is appropriately aligned for objects of any type with fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating character arrays into which objects of other types will later be placed.
— end note
 ]
When a new-expression calls an allocation function and that allocation has been extended, the size argument to the allocation call shall be no greater than the sum of the sizes for the omitted calls as specified above, plus the size for the extended call had it not been extended, plus any padding necessary to align the allocated objects within the allocated memory.
The new-placement syntax is used to supply additional arguments to an allocation function; such an expression is called a placement new-expression.
Overload resolution is performed on a function call created by assembling an argument list.
The first argument is the amount of space requested, and has type std​::​size_­t.
If the type of the allocated object has new-extended alignment, the next argument is the type's alignment, and has type std​::​align_­val_­t.
If the new-placement syntax is used, the initializer-clauses in its expression-list are the succeeding arguments.
If no matching function is found then
  • if the allocated object type has new-extended alignment, the alignment argument is removed from the argument list;
  • otherwise, an argument that is the type's alignment and has type std​::​align_­val_­t is added into the argument list immediately after the first argument;
and then overload resolution is performed again.
Example
:
  • new T results in one of the following calls:
    operator new(sizeof(T))
    operator new(sizeof(T), std::align_val_t(alignof(T)))
    
  • new(2,f) T results in one of the following calls:
    operator new(sizeof(T), 2, f)
    operator new(sizeof(T), std::align_val_t(alignof(T)), 2, f)
    
  • new T[5] results in one of the following calls:
    operator new[](sizeof(T) * 5 + x)
    operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)))
    
  • new(2,f) T[5] results in one of the following calls:
    operator new[](sizeof(T) * 5 + x, 2, f)
    operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)), 2, f)
    
Here, each instance of x is a non-negative unspecified value representing array allocation overhead; the result of the new-expression will be offset by this amount from the value returned by operator new[].
This overhead may be applied in all array new-expressions, including those referencing a placement allocation function, except when referencing the library function operator new[](std​::​size_­t, void*).
The amount of overhead may vary from one invocation of new to another.
— end example
 ]
Note
:
Unless an allocation function has a non-throwing exception specification, it indicates failure to allocate storage by throwing a std​::​bad_­alloc exception ([basic.stc.dynamic.allocation], [except], [bad.alloc]); it returns a non-null pointer otherwise.
If the allocation function has a non-throwing exception specification, it returns null to indicate failure to allocate storage and a non-null pointer otherwise.
— end note
 ]
If the allocation function is a non-allocating form ([new.delete.placement]) that returns null, the behavior is undefined.
Otherwise, if the allocation function returns null, initialization shall not be done, the deallocation function shall not be called, and the value of the new-expression shall be null.
Note
:
When the allocation function returns a value other than null, it must be a pointer to a block of storage in which space for the object has been reserved.
The block of storage is assumed to be appropriately aligned and of the requested size.
The address of the created object will not necessarily be the same as that of the block if the object is an array.
— end note
 ]
A new-expression that creates an object of type T initializes that object as follows:
The invocation of the allocation function is sequenced before the evaluations of expressions in the new-initializer.
Initialization of the allocated object is sequenced before the value computation of the new-expression.
If the new-expression creates an object or an array of objects of class type, access and ambiguity control are done for the allocation function, the deallocation function ([class.free]), and the constructor ([class.ctor]) selected for the initialization (if any).
If the new-expression creates an array of objects of class type, the destructor is potentially invoked ([class.dtor]).
If any part of the object initialization described above71 terminates by throwing an exception and a suitable deallocation function can be found, the deallocation function is called to free the memory in which the object was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause the object's memory to be freed.
Note
:
This is appropriate when the called allocation function does not allocate memory; otherwise, it is likely to result in a memory leak.
— end note
 ]
If the new-expression begins with a unary ​::​ operator, the deallocation function's name is looked up in the global scope.
Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function's name is looked up in the scope of T.
If this lookup fails to find the name, or if the allocated type is not a class type or array thereof, the deallocation function's name is looked up in the global scope.
A declaration of a placement deallocation function matches the declaration of a placement allocation function if it has the same number of parameters and, after parameter transformations ([dcl.fct]), all parameter types except the first are identical.
If the lookup finds a single matching deallocation function, that function will be called; otherwise, no deallocation function will be called.
If the lookup finds a usual deallocation function and that function, considered as a placement deallocation function, would have been selected as a match for the allocation function, the program is ill-formed.
For a non-placement allocation function, the normal deallocation function lookup is used to find the matching deallocation function ([expr.delete]).
Example
:
struct S {
  // Placement allocation function:
  static void* operator new(std::size_t, std::size_t);

  // Usual (non-placement) deallocation function:
  static void operator delete(void*, std::size_t);
};

S* p = new (0) S;   // error: non-placement deallocation function matches
                    // placement allocation function
— end example
 ]
If a new-expression calls a deallocation function, it passes the value returned from the allocation function call as the first argument of type void*.
If a placement deallocation function is called, it is passed the same additional arguments as were passed to the placement allocation function, that is, the same arguments as those specified with the new-placement syntax.
If the implementation is allowed to introduce a temporary object or make a copy of any argument as part of the call to the allocation function, it is unspecified whether the same object is used in the call to both the allocation and deallocation functions.
If the conversion function returns a signed integer type, the second standard conversion converts to the unsigned type std​::​size_­t and thus thwarts any attempt to detect a negative value afterwards.
This may include evaluating a new-initializer and/or calling a constructor.

7.6.2.8 Delete [expr.delete]

The delete-expression operator destroys a most derived object or array created by a new-expression.
delete-expression:
	:: delete cast-expression
	:: delete [ ] cast-expression
The first alternative is a single-object delete expression, and the second is an array delete expression.
Whenever the delete keyword is immediately followed by empty square brackets, it shall be interpreted as the second alternative.72
The operand shall be of pointer to object type or of class type.
If of class type, the operand is contextually implicitly converted to a pointer to object type.73
The delete-expression's result has type void.
If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned conversion function, and the converted operand is used in place of the original operand for the remainder of this subclause.
In a single-object delete expression, the value of the operand of delete may be a null pointer value, a pointer to a non-array object created by a previous new-expression, or a pointer to a subobject representing a base class of such an object.
If not, the behavior is undefined.
In an array delete expression, the value of the operand of delete may be a null pointer value or a pointer value that resulted from a previous array new-expression.74
If not, the behavior is undefined.
Note
:
This means that the syntax of the delete-expression must match the type of the object allocated by new, not the syntax of the new-expression.
— end note
 ]
Note
:
A pointer to a const type can be the operand of a delete-expression; it is not necessary to cast away the constness of the pointer expression before it is used as the operand of the delete-expression.
— end note
 ]
In a single-object delete expression, if the static type of the object to be deleted is different from its dynamic type and the selected deallocation function (see below) is not a destroying operator delete, the static type shall be a base class of the dynamic type of the object to be deleted and the static type shall have a virtual destructor or the behavior is undefined.
In an array delete expression, if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.
The cast-expression in a delete-expression shall be evaluated exactly once.
If the object being deleted has incomplete class type at the point of deletion and the complete class has a non-trivial destructor or a deallocation function, the behavior is undefined.
If the value of the operand of the delete-expression is not a null pointer value and the selected deallocation function (see below) is not a destroying operator delete, the delete-expression will invoke the destructor (if any) for the object or the elements of the array being deleted.
In the case of an array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion of their constructor; see [class.base.init]).
If the value of the operand of the delete-expression is not a null pointer value, then:
Note
:
The deallocation function is called regardless of whether the destructor for the object or some element of the array throws an exception.
— end note
 ]
If the value of the operand of the delete-expression is a null pointer value, it is unspecified whether a deallocation function will be called as described above.
Note
:
An implementation provides default definitions of the global deallocation functions operator delete for non-arrays ([new.delete.single]) and operator delete[] for arrays ([new.delete.array]).
A C++ program can provide alternative definitions of these functions ([replacement.functions]), and/or class-specific versions ([class.free]).
— end note
 ]
When the keyword delete in a delete-expression is preceded by the unary ​::​ operator, the deallocation function's name is looked up in global scope.
Otherwise, the lookup considers class-specific deallocation functions ([class.free]).
If no class-specific deallocation function is found, the deallocation function's name is looked up in global scope.
If deallocation function lookup finds more than one usual deallocation function, the function to be called is selected as follows:
  • If any of the deallocation functions is a destroying operator delete, all deallocation functions that are not destroying operator deletes are eliminated from further consideration.
  • If the type has new-extended alignment, a function with a parameter of type std​::​align_­val_­t is preferred; otherwise a function without such a parameter is preferred. If any preferred functions are found, all non-preferred functions are eliminated from further consideration.
  • If exactly one function remains, that function is selected and the selection process terminates.
  • If the deallocation functions have class scope, the one without a parameter of type std​::​size_­t is selected.
  • If the type is complete and if, for an array delete expression only, the operand is a pointer to a class type with a non-trivial destructor or a (possibly multi-dimensional) array thereof, the function with a parameter of type std​::​size_­t is selected.
  • Otherwise, it is unspecified whether a deallocation function with a parameter of type std​::​size_­t is selected.
For a single-object delete expression, the deleted object is the object denoted by the operand if its static type does not have a virtual destructor, and its most-derived object otherwise.
Note
:
If the deallocation function is not a destroying operator delete and the deleted object is not the most derived object in the former case, the behavior is undefined, as stated above.
— end note
 ]
For an array delete expression, the deleted object is the array object.
When a delete-expression is executed, the selected deallocation function shall be called with the address of the deleted object in a single-object delete expression, or the address of the deleted object suitably adjusted for the array allocation overhead ([expr.new]) in an array delete expression, as its first argument.
Note
:
Any cv-qualifiers in the type of the deleted object are ignored when forming this argument.
— end note
 ]
If a destroying operator delete is used, an unspecified value is passed as the argument corresponding to the parameter of type std​::​destroying_­delete_­t.
If a deallocation function with a parameter of type std​::​align_­val_­t is used, the alignment of the type of the deleted object is passed as the corresponding argument.
If a deallocation function with a parameter of type std​::​size_­t is used, the size of the deleted object in a single-object delete expression, or of the array plus allocation overhead in an array delete expression, is passed as the corresponding argument.
Note
:
If this results in a call to a replaceable deallocation function, and either the first argument was not the result of a prior call to a replaceable allocation function or the second or third argument was not the corresponding argument in said call, the behavior is undefined ([new.delete.single], [new.delete.array]).
— end note
 ]
Access and ambiguity control are done for both the deallocation function and the destructor ([class.dtor], [class.free]).
A lambda-expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if the lambda-expression is enclosed in parentheses.
This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.
For nonzero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression.
Zero-length arrays do not have a first element.