22 Containers library [containers]

22.4 Associative containers [associative]

22.4.5 Class template multimap [multimap]

22.4.5.1 Overview [multimap.overview]

A multimap is an associative container that supports equivalent keys (possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type T based on the keys.
The multimap class supports bidirectional iterators.
A multimap meets all of the requirements of a container and of a reversible container ([container.requirements]), of an associative container ([associative.reqmts]), and of an allocator-aware container (Table 76).
A multimap also provides most operations described in [associative.reqmts] for equal keys.
This means that a multimap supports the a_­eq operations in [associative.reqmts] but not the a_­uniq operations.
For a multimap<Key,T> the key_­type is Key and the value_­type is pair<const Key,T>.
Descriptions are provided here only for operations on multimap that are not described in one of those tables or for operations where there is additional semantic information.
namespace std {
  template<class Key, class T, class Compare = less<Key>,
           class Allocator = allocator<pair<const Key, T>>>
  class multimap {
  public:
    // types
    using key_type               = Key;
    using mapped_type            = T;
    using value_type             = pair<const Key, T>;
    using key_compare            = Compare;
    using allocator_type         = Allocator;
    using pointer                = typename allocator_traits<Allocator>::pointer;
    using const_pointer          = typename allocator_traits<Allocator>::const_pointer;
    using reference              = value_type&;
    using const_reference        = const value_type&;
    using size_type              = implementation-defined; // see [container.requirements]
    using difference_type        = implementation-defined; // see [container.requirements]
    using iterator               = implementation-defined; // see [container.requirements]
    using const_iterator         = implementation-defined; // see [container.requirements]
    using reverse_iterator       = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;
    using node_type              = unspecified;

    class value_compare {
      friend class multimap;
    protected:
      Compare comp;
      value_compare(Compare c) : comp(c) { }
    public:
      bool operator()(const value_type& x, const value_type& y) const {
        return comp(x.first, y.first);
      }
    };

    // [multimap.cons], construct/copy/destroy
    multimap() : multimap(Compare()) { }
    explicit multimap(const Compare& comp, const Allocator& = Allocator());
    template<class InputIterator>
      multimap(InputIterator first, InputIterator last,
               const Compare& comp = Compare(),
               const Allocator& = Allocator());
    multimap(const multimap& x);
    multimap(multimap&& x);
    explicit multimap(const Allocator&);
    multimap(const multimap&, const Allocator&);
    multimap(multimap&&, const Allocator&);
    multimap(initializer_list<value_type>,
      const Compare& = Compare(),
      const Allocator& = Allocator());
    template<class InputIterator>
      multimap(InputIterator first, InputIterator last, const Allocator& a)
        : multimap(first, last, Compare(), a) { }
    multimap(initializer_list<value_type> il, const Allocator& a)
      : multimap(il, Compare(), a) { }
    ~multimap();
    multimap& operator=(const multimap& x);
    multimap& operator=(multimap&& x)
      noexcept(allocator_traits<Allocator>::is_always_equal::value &&
               is_nothrow_move_assignable_v<Compare>);
    multimap& operator=(initializer_list<value_type>);
    allocator_type get_allocator() const noexcept;

    // iterators
    iterator               begin() noexcept;
    const_iterator         begin() const noexcept;
    iterator               end() noexcept;
    const_iterator         end() const noexcept;

    reverse_iterator       rbegin() noexcept;
    const_reverse_iterator rbegin() const noexcept;
    reverse_iterator       rend() noexcept;
    const_reverse_iterator rend() const noexcept;

    const_iterator         cbegin() const noexcept;
    const_iterator         cend() const noexcept;
    const_reverse_iterator crbegin() const noexcept;
    const_reverse_iterator crend() const noexcept;

    // capacity
    [[nodiscard]] bool empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;

    // [multimap.modifiers], modifiers
    template<class... Args> iterator emplace(Args&&... args);
    template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
    iterator insert(const value_type& x);
    iterator insert(value_type&& x);
    template<class P> iterator insert(P&& x);
    iterator insert(const_iterator position, const value_type& x);
    iterator insert(const_iterator position, value_type&& x);
    template<class P> iterator insert(const_iterator position, P&& x);
    template<class InputIterator>
      void insert(InputIterator first, InputIterator last);
    void insert(initializer_list<value_type>);

    node_type extract(const_iterator position);
    node_type extract(const key_type& x);
    iterator insert(node_type&& nh);
    iterator insert(const_iterator hint, node_type&& nh);

    iterator  erase(iterator position);
    iterator  erase(const_iterator position);
    size_type erase(const key_type& x);
    iterator  erase(const_iterator first, const_iterator last);
    void      swap(multimap&)
      noexcept(allocator_traits<Allocator>::is_always_equal::value &&
               is_nothrow_swappable_v<Compare>);
    void      clear() noexcept;

    template<class C2>
      void merge(multimap<Key, T, C2, Allocator>& source);
    template<class C2>
      void merge(multimap<Key, T, C2, Allocator>&& source);
    template<class C2>
      void merge(map<Key, T, C2, Allocator>& source);
    template<class C2>
      void merge(map<Key, T, C2, Allocator>&& source);

    // observers
    key_compare key_comp() const;
    value_compare value_comp() const;

    // map operations
    iterator       find(const key_type& x);
    const_iterator find(const key_type& x) const;
    template<class K> iterator       find(const K& x);
    template<class K> const_iterator find(const K& x) const;

    size_type      count(const key_type& x) const;
    template<class K> size_type count(const K& x) const;

    bool           contains(const key_type& x) const;
    template<class K> bool contains(const K& x) const;

    iterator       lower_bound(const key_type& x);
    const_iterator lower_bound(const key_type& x) const;
    template<class K> iterator       lower_bound(const K& x);
    template<class K> const_iterator lower_bound(const K& x) const;

    iterator       upper_bound(const key_type& x);
    const_iterator upper_bound(const key_type& x) const;
    template<class K> iterator       upper_bound(const K& x);
    template<class K> const_iterator upper_bound(const K& x) const;

    pair<iterator, iterator>               equal_range(const key_type& x);
    pair<const_iterator, const_iterator>   equal_range(const key_type& x) const;
    template<class K>
      pair<iterator, iterator>             equal_range(const K& x);
    template<class K>
      pair<const_iterator, const_iterator> equal_range(const K& x) const;
  };

  template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>,
           class Allocator = allocator<iter-to-alloc-type<InputIterator>>>
    multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
      -> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
                  Compare, Allocator>;

  template<class Key, class T, class Compare = less<Key>,
           class Allocator = allocator<pair<const Key, T>>>
    multimap(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
      -> multimap<Key, T, Compare, Allocator>;

  template<class InputIterator, class Allocator>
    multimap(InputIterator, InputIterator, Allocator)
      -> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
                  less<iter-key-type<InputIterator>>, Allocator>;

  template<class Key, class T, class Allocator>
    multimap(initializer_list<pair<Key, T>>, Allocator)
      -> multimap<Key, T, less<Key>, Allocator>;

  // swap
  template<class Key, class T, class Compare, class Allocator>
    void swap(multimap<Key, T, Compare, Allocator>& x,
              multimap<Key, T, Compare, Allocator>& y)
      noexcept(noexcept(x.swap(y)));
}

22.4.5.2 Constructors [multimap.cons]

explicit multimap(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty multimap using the specified comparison object and allocator.
Complexity: Constant.
template<class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elements from the range [first, last).
Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise , where N is last - first.

22.4.5.3 Modifiers [multimap.modifiers]

template<class P> iterator insert(P&& x); template<class P> iterator insert(const_iterator position, P&& x);
Constraints: is_­constructible_­v<value_­type, P&&> is true.
Effects: The first form is equivalent to return emplace(std​::​forward<P>(x)).
The second form is equivalent to return emplace_­hint(position, std​::​forward<P>(x)).

22.4.5.4 Erasure [multimap.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate> typename multimap<Key, T, Compare, Allocator>::size_type erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
  if (pred(*i)) {
    i = c.erase(i);
  } else {
    ++i;
  }
}
return original_size - c.size();