<algorithm> | <forward_list> | <numbers> | <string> |
<any> | <fstream> | <numeric> | <string_view> |
<array> | <functional> | <optional> | <strstream> |
<atomic> | <future> | <ostream> | <syncstream> |
<barrier> | <initializer_list> | <queue> | <system_error> |
<bit> | <iomanip> | <random> | <thread> |
<bitset> | <ios> | <ranges> | <tuple> |
<charconv> | <iosfwd> | <ratio> | <typeindex> |
<chrono> | <iostream> | <regex> | <typeinfo> |
<codecvt> | <istream> | <scoped_allocator> | <type_traits> |
<compare> | <iterator> | <semaphore> | <unordered_map> |
<complex> | <latch> | <set> | <unordered_set> |
<concepts> | <limits> | <shared_mutex> | <utility> |
<condition_variable> | <list> | <source_location> | <valarray> |
<coroutine> | <locale> | <span> | <variant> |
<deque> | <map> | <sstream> | <vector> |
<exception> | <memory> | <stack> | <version> |
<execution> | <memory_resource> | <stdexcept> | |
<filesystem> | <mutex> | <stop_token> | |
<format> | <new> | <streambuf> |
<cassert> | <cfenv> | <climits> | <csetjmp> | <cstddef> | <cstdlib> | <cuchar> |
<cctype> | <cfloat> | <clocale> | <csignal> | <cstdint> | <cstring> | <cwchar> |
<cerrno> | <cinttypes> | <cmath> | <cstdarg> | <cstdio> | <ctime> | <cwctype> |
import <vector>; // imports the <vector> header unit std::vector<int> vi; // OK— end example
abort_handler_s | mbstowcs_s | strncat_s | vswscanf_s |
asctime_s | memcpy_s | strncpy_s | vwprintf_s |
bsearch_s | memmove_s | strtok_s | vwscanf_s |
constraint_handler_t | memset_s | swprintf_s | wcrtomb_s |
ctime_s | printf_s | swscanf_s | wcscat_s |
errno_t | qsort_s | tmpfile_s | wcscpy_s |
fopen_s | RSIZE_MAX | TMP_MAX_S | wcsncat_s |
fprintf_s | rsize_t | tmpnam_s | wcsncpy_s |
freopen_s | scanf_s | vfprintf_s | wcsnlen_s |
fscanf_s | set_constraint_handler_s | vfscanf_s | wcsrtombs_s |
fwprintf_s | snprintf_s | vfwprintf_s | wcstok_s |
fwscanf_s | snwprintf_s | vfwscanf_s | wcstombs_s |
getenv_s | sprintf_s | vprintf_s | wctomb_s |
gets_s | sscanf_s | vscanf_s | wmemcpy_s |
gmtime_s | strcat_s | vsnprintf_s | wmemmove_s |
ignore_handler_s | strcpy_s | vsnwprintf_s | wprintf_s |
localtime_s | strerrorlen_s | vsprintf_s | wscanf_s |
L_tmpnam_s | strerror_s | vsscanf_s | |
mbsrtowcs_s | strlen_s | vswprintf_s |
Subclause | Header | |
Types | <cstddef> | |
Implementation properties | <cfloat>, <climits>, <limits>, <version> | |
Integer types | <cstdint> | |
Start and termination | <cstdlib> | |
Dynamic memory management | <new> | |
Type identification | <typeinfo> | |
Source location | <source_location> | |
Exception handling | <exception> | |
Initializer lists | <initializer_list> | |
Comparisons | <compare> | |
Coroutines support | <coroutine> | |
Other runtime support | <cstdarg> | |
Concepts library | <concepts> | |
Type traits | <type_traits> | |
Bit manipulation | <bit> | |
Atomics | <atomic> |
Expression | Return type | Requirement |
a == b | convertible to bool | == is an equivalence relation,
that is, it has the following properties:
|
Expression | Return type | Requirement |
a < b | convertible to bool | < is a strict weak ordering relation ([alg.sorting]) |
Expression | Post-condition |
T t; | object t is default-initialized |
T u{}; | object u is value-initialized or aggregate-initialized |
T() T{} | an object of type T is value-initialized
or aggregate-initialized |
Expression | Post-condition |
T u = rv; | u is equivalent to the value of rv before the construction |
T(rv) | T(rv) is equivalent to the value of rv before the construction |
rv's state is unspecified
[ Note : rv must still meet the requirements of the library
component that is using it. The operations listed in those requirements must
work as specified whether rv has been moved from or not. — end note ] |
Expression | Post-condition |
T u = v; | the value of v is unchanged and is equivalent to u |
T(v) | the value of v is unchanged and is equivalent to T(v) |
Expression | Return type | Return value | Post-condition |
t = rv | T& | t | If t and rv do not refer to the same object,
t is equivalent to the value of rv before the assignment |
rv's state is unspecified. |
Expression | Return type | Return value | Post-condition |
t = v | T& | t | t is equivalent to v, the value of v is unchanged |
#include <utility> // Requires: std::forward<T>(t) shall be swappable with std::forward<U>(u). template<class T, class U> void value_swap(T&& t, U&& u) { using std::swap; swap(std::forward<T>(t), std::forward<U>(u)); // OK: uses “swappable with” conditions // for rvalues and lvalues } // Requires: lvalues of T shall be swappable. template<class T> void lv_swap(T& t1, T& t2) { using std::swap; swap(t1, t2); // OK: uses swappable conditions for lvalues of type T } namespace N { struct A { int m; }; struct Proxy { A* a; }; Proxy proxy(A& a) { return Proxy{ &a }; } void swap(A& x, Proxy p) { std::swap(x.m, p.a->m); // OK: uses context equivalent to swappable // conditions for fundamental types } void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry constraint } int main() { int i = 1, j = 2; lv_swap(i, j); assert(i == 2 && j == 1); N::A a1 = { 5 }, a2 = { -5 }; value_swap(a1, proxy(a2)); assert(a1.m == -5 && a2.m == 5); }
Expression | Return type | Operational semantics |
P u(np); | Postconditions: u == nullptr | |
P u = np; | ||
P(np) | Postconditions: P(np) == nullptr | |
t = np | P& | Postconditions: t == nullptr |
a != b | contextually convertible to bool | !(a == b) |
a == np | contextually convertible to bool | a == P() |
np == a | ||
a != np | contextually convertible to bool | !(a == np) |
np != a |
Expression | Return type | Requirement |
h(k) | size_t | The value returned shall depend only on the argument k for the duration of
the program. |
h(u) | size_t | Shall not modify u. |
Variable | Definition |
T, U, C | any cv-unqualified object type ([basic.types]) |
X | an allocator class for type T |
Y | the corresponding allocator class for type U |
XX | the type allocator_traits<X> |
YY | the type allocator_traits<Y> |
a, a1, a2 | lvalues of type X |
u | the name of a variable being declared |
b | a value of type Y |
c | a pointer of type C* through which indirection is valid |
p | a value of type XX::pointer, obtained
by calling a1.allocate, where a1 == a |
q | a value of type XX::const_pointer
obtained by conversion from a value p |
r | a value of type T&
obtained by the expression *p |
w | a value of type XX::void_pointer obtained by
conversion from a value p |
x | a value of type XX::const_void_pointer obtained by
conversion from a value q or a value w |
y | a value of type XX::const_void_pointer obtained by
conversion from a result value of YY::allocate, or else a value of
type (possibly const) std::nullptr_t |
n | a value of type XX::size_type |
Args | a template parameter pack |
args | a function parameter pack with the pattern Args&& |
Expression | Return type | Assertion/note | Default |
pre-/post-condition | |||
X::pointer | T* | ||
X::const_pointer | X::pointer is convertible to X::const_pointer | pointer_traits<X::pointer>::rebind<const T> | |
X::void_pointer Y::void_pointer | pointer_traits<X::pointer>::rebind<void> | ||
X::const_void_pointer Y::const_void_pointer | X::pointer, X::const_pointer, and X::void_pointer are convertible to X::const_void_pointer. | pointer_traits<X::pointer>::rebind<const void> | |
X::value_type | Identical to T | ||
X::size_type | unsigned integer type | a type that can represent the size of the largest object in the allocation model | make_unsigned_t<X::difference_type> |
X::difference_type | signed integer type | a type that can represent the difference between any two pointers
in the allocation model | pointer_traits<X::pointer>::difference_type |
typename X::template rebind<U>::other | Y | See Note A, below. | |
*p | T& | ||
*q | const T& | ||
p->m | type of T::m | equivalent to (*p).m | |
q->m | type of T::m | equivalent to (*q).m | |
static_cast<X::pointer>(w) | X::pointer | static_cast<X::pointer>(w) == p | |
static_cast<X::const_pointer>(x) | X::const_pointer | static_cast< X::const_pointer>(x) == q | |
pointer_traits<X::pointer>::pointer_to(r) | X::pointer | same as p | |
a.allocate(n) | X::pointer | Memory is allocated for an array of n T
and such an object is created
but array elements are not constructed. | |
a.allocate(n, y) | X::pointer | Same as a.allocate(n). The use of y is unspecified, but
it is intended as an aid to locality. | a.allocate(n) |
a.deallocate(p,n) | (not used) | Preconditions: p is a value returned by an earlier call
to allocate that has not been invalidated by
an intervening call to deallocate. | |
a.max_size() | X::size_type | the largest value that can meaningfully be passed to X::allocate() | numeric_limits<size_type>::max() / sizeof(value_type) |
a1 == a2 | bool | Returns true only if storage allocated from each can
be deallocated via the other. operator== shall be reflexive, symmetric,
and transitive, and shall not exit via an exception. | |
a1 != a2 | bool | same as !(a1 == a2) | |
a == b | bool | same as a == Y::rebind<T>::other(b) | |
a != b | bool | same as !(a == b) | |
X u(a); X u = a; | Shall not exit via an exception. Postconditions: u == a | ||
X u(b); | Shall not exit via an exception. Postconditions: Y(u) == b, u == X(b) | ||
X u(std::move(a)); X u = std::move(a); | Shall not exit via an exception. | ||
X u(std::move(b)); | Shall not exit via an exception. | ||
a.construct(c, args) | (not used) | construct_at(c, std::forward<Args>(args)...) | |
a.destroy(c) | (not used) | Effects: Destroys the object at c | destroy_at(c) |
a.select_on_container_copy_construction() | X | return a; | |
X::propagate_on_container_copy_assignment | Identical to or derived from true_type or false_type | true_type only if an allocator of type X should be copied
when the client container is copy-assigned. See Note B, below. | false_type |
X::propagate_on_container_move_assignment | Identical to or derived from true_type or false_type | true_type only if an allocator of type X should be moved
when the client container is move-assigned. See Note B, below. | false_type |
X::propagate_on_- container_swap | Identical to or derived from true_type or false_type | See Note B, below. | false_type |
X::is_always_equal | Identical to or derived from true_type or false_type | true_type only if the expression a1 == a2 is guaranteed
to be true for any two (possibly const) values
a1, a2 of type X. | is_empty<X>::type |
addressof(*(a + n)) == addressof(*a) + nis true.
w1 == w2 w1 != w2either or both objects may be replaced by an equivalently-valued object of type X::const_void_pointer with no change in semantics.
p1 == p2 p1 != p2 p1 < p2 p1 <= p2 p1 >= p2 p1 > p2 p1 - p2either or both objects may be replaced by an equivalently-valued object of type X::const_pointer with no change in semantics.
template<class Tp> struct SimpleAllocator { typedef Tp value_type; SimpleAllocator(ctor args); template<class T> SimpleAllocator(const SimpleAllocator<T>& other); [[nodiscard]] Tp* allocate(std::size_t n); void deallocate(Tp* p, std::size_t n); }; template<class T, class U> bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&); template<class T, class U> bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);— end example
operator new(std::size_t) operator new(std::size_t, std::align_val_t) operator new(std::size_t, const std::nothrow_t&) operator new(std::size_t, std::align_val_t, const std::nothrow_t&)
operator delete(void*) operator delete(void*, std::size_t) operator delete(void*, std::align_val_t) operator delete(void*, std::size_t, std::align_val_t) operator delete(void*, const std::nothrow_t&) operator delete(void*, std::align_val_t, const std::nothrow_t&)
operator new[](std::size_t) operator new[](std::size_t, std::align_val_t) operator new[](std::size_t, const std::nothrow_t&) operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)
operator delete[](void*) operator delete[](void*, std::size_t) operator delete[](void*, std::align_val_t) operator delete[](void*, std::size_t, std::align_val_t) operator delete[](void*, const std::nothrow_t&) operator delete[](void*, std::align_val_t, const std::nothrow_t&)
*out_stream << value; if (delim != 0) *out_stream << delim; return *this;