<algorithm> | <future> | <numeric> | <strstream> |
<any> | <initializer_list> | <optional> | <system_error> |
<array> | <iomanip> | <ostream> | <thread> |
<atomic> | <ios> | <queue> | <tuple> |
<bitset> | <iosfwd> | <random> | <type_traits> |
<chrono> | <iostream> | <ratio> | <typeindex> |
<codecvt> | <istream> | <regex> | <typeinfo> |
<complex> | <iterator> | <scoped_allocator> | <unordered_map> |
<condition_variable> | <limits> | <set> | <unordered_set> |
<deque> | <list> | <shared_mutex> | <utility> |
<exception> | <locale> | <sstream> | <valarray> |
<execution> | <map> | <stack> | <variant> |
<filesystem> | <memory> | <stdexcept> | <vector> |
<forward_list> | <memory_resource> | <streambuf> | |
<fstream> | <mutex> | <string> | |
<functional> | <new> | <string_view> |
<cassert> | <cinttypes> | <csignal> | <cstdio> | <cwchar> |
<ccomplex> | <ciso646> | <cstdalign> | <cstdlib> | <cwctype> |
<cctype> | <climits> | <cstdarg> | <cstring> | |
<cerrno> | <clocale> | <cstdbool> | <ctgmath> | |
<cfenv> | <cmath> | <cstddef> | <ctime> | |
<cfloat> | <csetjmp> | <cstdint> | <cuchar> |
abort_handler_s | mbstowcs_s | strncat_s | vswscanf_s |
asctime_s | memcpy_s | strncpy_s | vwprintf_s |
bsearch_s | memmove_s | strtok_s | vwscanf_s |
constraint_handler_t | memset_s | swprintf_s | wcrtomb_s |
ctime_s | printf_s | swscanf_s | wcscat_s |
errno_t | qsort_s | tmpfile_s | wcscpy_s |
fopen_s | RSIZE_MAX | TMP_MAX_S | wcsncat_s |
fprintf_s | rsize_t | tmpnam_s | wcsncpy_s |
freopen_s | scanf_s | vfprintf_s | wcsnlen_s |
fscanf_s | set_constraint_handler_s | vfscanf_s | wcsrtombs_s |
fwprintf_s | snprintf_s | vfwprintf_s | wcstok_s |
fwscanf_s | snwprintf_s | vfwscanf_s | wcstombs_s |
getenv_s | sprintf_s | vprintf_s | wctomb_s |
gets_s | sscanf_s | vscanf_s | wmemcpy_s |
gmtime_s | strcat_s | vsnprintf_s | wmemmove_s |
ignore_handler_s | strcpy_s | vsnwprintf_s | wprintf_s |
L_tmpnam_s | strerror_s | vsprintf_s | wscanf_s |
localtime_s | strerrorlen_s | vsscanf_s | |
mbsrtowcs_s | strlen_s | vswprintf_s |
Subclause | Header(s) | |
<ciso646> | ||
Types | <cstddef> | |
Implementation properties | <cfloat> <limits> <climits> | |
Integer types | <cstdint> | |
Start and termination | <cstdlib> | |
Dynamic memory management | <new> | |
Type identification | <typeinfo> | |
Exception handling | <exception> | |
Initializer lists | <initializer_list> | |
Other runtime support | <cstdarg> | |
Type traits | <type_traits> | |
Atomics | <atomic> | |
Deprecated headers | <cstdalign> <cstdbool> |
Expression | Return type | Requirement |
a == b | convertible to bool |
Expression | Return type | Requirement |
a < b | convertible to bool | < is a strict weak ordering relation ([alg.sorting]) |
Expression | Post-condition |
T t; | object t is default-initialized |
T u{}; | object u is value-initialized or aggregate-initialized |
T() T{} | an object of type T is value-initialized
or aggregate-initialized |
Expression | Post-condition |
T u = rv; | u is equivalent to the value of rv before the construction |
T(rv) | T(rv) is equivalent to the value of rv before the construction |
Expression | Post-condition |
T u = v; | the value of v is unchanged and is equivalent to u |
T(v) | the value of v is unchanged and is equivalent to T(v) |
Expression | Return type | Return value | Post-condition |
t = rv | T& | t | If t and rv do not refer to the same object,
t is equivalent to the value of rv before the assignment |
rv's state is unspecified. |
Expression | Return type | Return value | Post-condition |
t = v | T& | t | t is equivalent to v, the value of v is unchanged |
#include <utility> // Requires: std::forward<T>(t) shall be swappable with std::forward<U>(u). template <class T, class U> void value_swap(T&& t, U&& u) { using std::swap; swap(std::forward<T>(t), std::forward<U>(u)); // OK: uses “swappable with” conditions // for rvalues and lvalues } // Requires: lvalues of T shall be swappable. template <class T> void lv_swap(T& t1, T& t2) { using std::swap; swap(t1, t2); // OK: uses swappable conditions for } // lvalues of type T namespace N { struct A { int m; }; struct Proxy { A* a; }; Proxy proxy(A& a) { return Proxy{ &a }; } void swap(A& x, Proxy p) { std::swap(x.m, p.a->m); // OK: uses context equivalent to swappable // conditions for fundamental types } void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry constraint } int main() { int i = 1, j = 2; lv_swap(i, j); assert(i == 2 && j == 1); N::A a1 = { 5 }, a2 = { -5 }; value_swap(a1, proxy(a2)); assert(a1.m == -5 && a2.m == 5); }
Expression | Return type | Operational semantics |
P u(np); | Postconditions: u == nullptr | |
P u = np; | ||
P(np) | Postconditions: P(np) == nullptr | |
t = np | P& | Postconditions: t == nullptr |
a != b | contextually convertible to bool | !(a == b) |
a == np | contextually convertible to bool | a == P() |
np == a | ||
a != np | contextually convertible to bool | !(a == np) |
np != a |
Variable | Definition |
T, U, C | any cv-unqualified object type ([basic.types]) |
X | an Allocator class for type T |
Y | the corresponding Allocator class for type U |
XX | the type allocator_traits<X> |
YY | the type allocator_traits<Y> |
a, a1, a2 | lvalues of type X |
u | the name of a variable being declared |
b | a value of type Y |
c | a pointer of type C* through which indirection is valid |
p | a value of type XX::pointer, obtained
by calling a1.allocate, where a1 == a |
q | |
w | a value of type XX::void_pointer obtained by
conversion from a value p |
x | a value of type XX::const_void_pointer obtained by
conversion from a value q or a value w |
y | a value of type XX::const_void_pointer obtained by
conversion from a result value of YY::allocate, or else a value of
type (possibly const) std::nullptr_t. |
n | a value of type XX::size_type. |
Args | a template parameter pack |
args | a function parameter pack with the pattern Args&& |
Expression | Return type | Assertion/note | Default |
pre-/post-condition | |||
X::pointer | T* | ||
X::const_pointer | X::pointer is convertible to X::const_pointer | pointer_traits<X::pointer>::rebind<const T> | |
X::void_pointer Y::void_pointer | pointer_traits<X::pointer>::rebind<void> | ||
X::const_void_pointer Y::const_void_pointer | X::pointer, X::const_pointer, and X::void_pointer are convertible to X::const_void_pointer. | pointer_traits<X::pointer>::rebind<const void> | |
X::value_type | Identical to T | ||
X::size_type | unsigned integer type | a type that can represent the size of the largest object in the allocation model. | make_unsigned_t<X::difference_type> |
X::difference_type | signed integer type | a type that can represent the difference between any two pointers
in the allocation model. | pointer_traits<X::pointer>::difference_type |
typename X::template rebind<U>::other | Y | See Note A, below. | |
*p | T& | ||
*q | const T& | *q refers to the same object as *p | |
p->m | type of T::m | equivalent to (*p).m | |
q->m | type of T::m | equivalent to (*q).m | |
static_cast<X::pointer>(w) | X::pointer | static_cast<X::pointer>(w) == p | |
static_cast<X::const_pointer>(x) | X::const_pointer | static_cast< X::const_pointer>(x) == q | |
pointer_traits<X::pointer>::pointer_to(r) | X::pointer | ||
a.allocate(n) | X::pointer | ||
a.allocate(n, y) | X::pointer | Same as a.allocate(n). The use of y is unspecified, but
it is intended as an aid to locality. | a.allocate(n) |
a.deallocate(p,n) | (not used) | Requires: p shall be a value returned by an earlier call
to allocate that has not been invalidated by
an intervening call to deallocate. | |
a.max_size() | X::size_type | the largest value that can meaningfully be passed to X::allocate() | numeric_limits<size_type>::max() / sizeof(value_type) |
a1 == a2 | bool | returns true only if storage allocated from each can
be deallocated via the other. operator== shall be reflexive, symmetric,
and transitive, and shall not exit via an exception. | |
a1 != a2 | bool | same as !(a1 == a2) | |
a == b | bool | same as a == Y::rebind<T>::other(b) | |
a != b | bool | same as !(a == b) | |
X u(a); X u = a; | Shall not exit via an exception. Postconditions: u == a | ||
X u(b); | Shall not exit via an exception. Postconditions: Y(u) == b, u == X(b) | ||
X u(std::move(a)); X u = std::move(a); | Shall not exit via an exception. | ||
X u(std::move(b)); | Shall not exit via an exception. | ||
a.construct(c, args) | (not used) | Effects: Constructs an object of type C at
c | ::new ((void*)c) C(forward<Args>(args)...) |
a.destroy(c) | (not used) | Effects: Destroys the object at c | c->~C() |
a.select_on_container_copy_construction() | X | Typically returns either a or X() | return a; |
X::propagate_on_container_copy_assignment | Identical to or derived from true_type or false_type | true_type only if an allocator of type X should be copied
when the client container is copy-assigned. See Note B, below. | false_type |
X::propagate_on_container_move_assignment | Identical to or derived from true_type or false_type | true_type only if an allocator of type X should be moved
when the client container is move-assigned. See Note B, below. | false_type |
X::propagate_on_- container_swap | Identical to or derived from true_type or false_type | See Note B, below. | false_type |
X::is_always_equal | Identical to or derived from true_type or false_type | true_type only if the expression a1 == a2 is guaranteed
to be true for any two (possibly const) values
a1, a2 of type X. | is_empty<X>::type |
w1 == w2 w1 != w2either or both objects may be replaced by an equivalently-valued object of type X::const_void_pointer with no change in semantics.
p1 == p2 p1 != p2 p1 < p2 p1 <= p2 p1 >= p2 p1 > p2 p1 - p2either or both objects may be replaced by an equivalently-valued object of type X::const_pointer with no change in semantics.
template <class Tp>
struct SimpleAllocator {
typedef Tp value_type;
SimpleAllocator(ctor args);
template <class T> SimpleAllocator(const SimpleAllocator<T>& other);
Tp* allocate(std::size_t n);
void deallocate(Tp* p, std::size_t n);
};
template <class T, class U>
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
template <class T, class U>
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
operator new(std::size_t) operator new(std::size_t, std::align_val_t) operator new(std::size_t, const std::nothrow_t&) operator new(std::size_t, std::align_val_t, const std::nothrow_t&)
operator delete(void*) operator delete(void*, std::size_t) operator delete(void*, std::align_val_t) operator delete(void*, std::size_t, std::align_val_t) operator delete(void*, const std::nothrow_t&) operator delete(void*, std::align_val_t, const std::nothrow_t&)
operator new[](std::size_t) operator new[](std::size_t, std::align_val_t) operator new[](std::size_t, const std::nothrow_t&) operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)
operator delete[](void*) operator delete[](void*, std::size_t) operator delete[](void*, std::align_val_t) operator delete[](void*, std::size_t, std::align_val_t) operator delete[](void*, const std::nothrow_t&) operator delete[](void*, std::align_val_t, const std::nothrow_t&)
*out_stream << value; if (delim != 0) *out_stream << delim; return *this;