
An Analysis of Library Usage in the C++
Code Base of Fedora Linux 37
Jiachao Deng and Michael D. Adams
2024-10-29

1/25



Outline1 Introduction

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

2/25



Challenges of Large-Scale C++ Code Analysis1 Introduction

1 #include <iostream>

2
3 int main(int argc,

4 char const *argv[]) {

5
6 std::cout << "Hello, World!\n";

7 return std::cout.flush() ? 0 : 1;

8 }

Listing 1: A hello world program in C++

Header Files

Source File

Compiler

Object File

Figure 1: Translating a C++ source file to abinary file.
3/25



Outline2 Background

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

4/25



Software Packaging2 Background
Binary Package

Binaries

Metadata

Libraries

Documentation

······

Source Package

Source Code

Metadata

Documentation

······

Patches
Building

Figure 2: A binary package built from a source package.
source build binary
5/25



Compiler Front-End Libraries2 Background

1 #include <iostream>

2
3 int main(int argc,

4 char const *argv[]) {

5
6 std::cout << "Hello,

World!\n";

7 return std::cout.flush() ? 0

: 1;

8 }

Listing 2: A hello world program.
Figure 3: Abstract language tree of the hello worldprogram.

6/25



Compiler Flags2 Background
1 #include <iostream>

2
3 #ifdef ENABLE FOO FEATURE

4 void foo() { std::cout << "Foo feature enabled\n"; }

5 #endif

6
7 int main() {

8 #ifdef ENABLE FOO FEATURE

9 foo();

10 #else

11 std::cout << "Foo feature not available.\n";

12 #endif

13 return 0;

14 }

Listing 3: Code blocks toggled by a compiler flag.
7/25



Build Systems and Build Wrapper2 Background

Header Files Source File

Header Files Source File

Header Files Source File Compiler Object Files

Build System

Configure and Invoke

Figure 4: A build system orchestrates the compilation of source files.
8/25



The bear Build Wrapper2 Background

Compiler

bear  Wrapper

Header Files Source File

Header Files Source File

Header Files Source File Object Files

Produce

Compilation 
Database

Build System

Figure 5: The bear build wrapper captures compiler flags and outputs a compilation database.
9/25



Software Dependency2 Background

Software Package

Dependency A Dependency B Dependency C

Dependency D Dependency E

Dependency F

------------------------------------------------------------------------------------------------------------------
Code External to the Package

Code Internal to the Package

Figure 6: Software dependencies must be installed before building a package.
10/25



Software Repositories and the dnf Package Manager2 Background

Software 
Repositories

Packages

 Package 
Metadata

dnf
Package 
Manager

User 
System

Figure 7: Obtain software packages from software repositories using the dnf package manager.

11/25



Outline3 Proposed Framework

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

12/25



Functionalities of the Package Processing Framework3 Proposed Framework

Software package selection:
• Source packages that depend on the
gcc-c++ package.

• Source packages that depend on the
clang package and have source fileswith C++ file extensions.

Information that must be prepared for eachsource package:
• Any header files internal/external to thepackage that are included by the one ormore C++ source files in the package.
• All C++ source files in the package thatwould be compiled during the buildprocess, including generated sourcefiles.
• Compiler flags used to compile eachC++ source file in the package.

13/25



Package Processing Steps3 Proposed Framework

The framework has four major steps to process a source package:
• Prebuild. Before building a package, install all dependencies of the package andextract package contents.
• Build. Build the package and capture compiler flags using a build wrapper.
• Postbuild. Clean up unnecessary files for source code analysis.
• Analysis. Apply the analysis tool to package source code.

14/25



Outline4 Proposed Analysis Tool

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

15/25



Definition of the Library Usage4 Proposed Analysis Tool

------------------------------------------------------------------------------------------------------------------

user.cpp

lib_alpha.hpp

User Code

Library Code

lib_beta.hpp

Use Use
Other Directories

Software Build Directory

Figure 8: A package source file uses entities declared in library locations.
16/25



Examples of Library Usage4 Proposed Analysis Tool

1 #include <iostream>

2
3 int main(int argc,

4 char const *argv[]) {

5
6 std::cout << "Hello, World!\n";

7 return std::cout.flush() ? 0 : 1;

8 }

Listing 4: Library usages in the hello world program.

17/25



Outline5 Results of Applying Framework

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

18/25



Results of Package Processing5 Results of Applying Framework

Table 1: Package processing outcomes
Outcome Number of Packages % of Packages
prebuild failed 17 0.57build completed but failed 196 6.58build failed due to hanging 31 1.04postbuild failed 11 0.37
[0%, 50%) analysis success 84 2.82
[50%, 100%) analysis success 372 12.48
100% analysis success 2269 76.14total 2980 100.00

19/25



Source Package Sizes5 Results of Applying Framework

Table 2: Distribution of processed source code size for packages with at least one successfullyanalyzed C++ source file
Lines of Code Number of Packages % of Packages
[1, 10) 7 0.29
[10, 100) 6 0.25
[100, 1000) 201 8.45
[1000, 10000) 645 27.11
[10000, 100000) 1018 42.79
[100000, 1000000) 448 18.83
[1000000, 10000000) 49 2.06
[10000000, 100000000) 5 0.21total 2379 100.00

20/25



Largest Source Packages Processed5 Results of Applying Framework

Table 3: 10 packages with the most lines of C++ code
Name of Source Package Number of Lines
libint2-0:2.6.0 28724722
swig-0:4.0.2 14987941
godot-0:3.4.5 14451968
qt5-qtwebengine-0:5.15.10 12959278
cross-gcc-0:12.1.1 10843595
nextpnr-0:1-12.20220912gitf1349e1 10763584
root-0:6.26.06 7421955
libint-0:1.2.1 7094630
swift-lang-0:5.7 7004290
llvm9.0-0:9.0.1 6662584

21/25



Outline6 Results of Library Usage Analysis

▶ Introduction
▶ Background
▶ Proposed Framework
▶ Proposed Analysis Tool
▶ Results of Applying Framework
▶ Results of Library Usage Analysis

22/25



Standard Library Algorithms6 Results of Library Usage Analysis

Table 4: Most frequently used STD algorithms
Function Name Appear in % of Packages
min 40.31
max 37.24
sort 34.59
find 29.80
copy 22.36
find if 20.47
transform 20.39
reverse 13.37
fill 12.90
lower bound 12.40

Table 5: Least frequently used STD algorithms
Function Name Appear in % of Packages
remove copy 0.25
partition copy 0.21
prev permutation 0.17
replace copy if 0.13
rotate copy 0.08
replace copy 0.08
search n 0.04
is sorted until 0.04
is partitioned 0.04
sample 0.04

23/25



Bounds-Checking When Indexing6 Results of Library Usage Analysis

Table 6: Fraction of indexing operations withoutbuilt-in bounds-checking when using sequentialcontainer/view types
Type Name % of Indexing Operations
array 95.54
basic string 91.96
vector 91.69
deque 90.91
basic string view 87.52

Table 7: Fraction of packages using only indexingoperations without built-in bounds-checkingwhen using sequential container/view types
Type Name % of Packages
array 86.80
basic string view 85.42
vector 77.20
basic string 74.57
deque 63.01

24/25



An Analysis of Library Usage in the C++Code Base of Fedora Linux 37
Thank you for listening!

25/25


	Introduction
	Background
	Proposed Framework
	Proposed Analysis Tool
	Results of Applying Framework
	Results of Library Usage Analysis

