
Lecture Slides for Signals and Systems
Edition 6.0

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria

Victoria, British Columbia, Canada

To obtain the .. .most recent version of these lecture slides (with functional hyperlinks) or for additional
information and resources related to these slides (includingvideo lectures and errata), please visit:

https://www.ece.uvic.ca/~mdadams/sigsysbook

If you like these lecture slides, please consider posting a review of them at:

https://play.google.com/store/search?q=ISBN:9781990707094&c=books or
https://books.google.com/books?vid=ISBN9781990707094

youtube.com/iamcanadian1867 github.com/mdadams @mdadams@mastodon.social

https://www.ece.uvic.ca/~mdadams/sigsysbook
https://www.ece.uvic.ca/~mdadams/sigsysbook
https://play.google.com/store/search?q=ISBN:9781990707094&c=books
https://books.google.com/books?vid=ISBN9781990707094
https://youtube.com/iamcanadian1867
https://github.com/mdadams
https://mastodon.social/@mdadams

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Copyright © 2013, 2016, 2020, 2022, 2024 Michael D. Adams

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy
of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

https://creativecommons.org/licenses/by-nc-nd/3.0/

MATLAB is a registered trademark of The MathWorks, Inc.
UNIX and X Window System are registered trademarks of The Open Group.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Corporation.
macOS is a registered trademark of Apple Inc.
Chrome OS is a registered trademark of Google LLC.
Fedora is a registered trademark of Red Hat, Inc.
Ubuntu is a registered trademark of Canonical Ltd.
The YouTube logo is a registered trademark of Google, Inc.
The GitHub logo is a registered trademark of GitHub, Inc.
The Mastodon logo is a trademark of Mastodon gGmbH.

This document was typeset with LATEX.

ISBN 978-1-990707-09-4 (PDF)

https://creativecommons.org/licenses/by-nc-nd/3.0/

License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 iii

License II

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 iv

License III

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 v

License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 vi

License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 vii

License VI

under Section 4(b).
e. Except as otherwise agreed in writing by the Licensor or as may be

otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 viii

License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 ix

License VIII

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at https://creativecommons.org/.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 x

Other Textbooks and Lecture Slides by the Author I

1 M. D. Adams, Exercises for Programming in C++ (Version 2021-04-01),
Apr. 2021, ISBN 978-0-9879197-5-5 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

2 M. D. Adams, Lecture Slides for Programming in C++ (Version
2021-04-01), Apr. 2021, ISBN 978-0-9879197-4-8 (PDF). Available from
Google Books, Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

3 M. D. Adams, Multiresolution Signal and Geometry Processing: Filter
Banks, Wavelets, and Subdivision (Version 2013-09-26), University of
Victoria, Victoria, BC, Canada, Sept. 2013, ISBN 978-1-55058-507-0
(print), ISBN 978-1-55058-508-7 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/waveletbook.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xi

https://www.ece.uvic.ca/~mdadams/cppbook
https://www.ece.uvic.ca/~mdadams/cppbook
https://www.ece.uvic.ca/~mdadams/waveletbook

Other Textbooks and Lecture Slides by the Author II

4 M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry
Processing (Version 2015-02-03), University of Victoria, Victoria, BC,
Canada, Feb. 2015, ISBN 978-1-55058-535-3 (print), ISBN
978-1-55058-536-0 (PDF). Available from Google Books, Google Play
Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/waveletbook.

5 M. D. Adams, Signals and Systems, Edition 6.0, Dec. 2024, ISBN
978-1-990707-07-0 (PDF). Available from Google Books, Google Play
Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/sigsysbook.

6 M. D. Adams, Lecture Slides for Linux System Programming, Edition 0.0,
Dec. 2022, ISBN 978-1-990707-03-2 (PDF). Available from Google
Books, Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xii

https://www.ece.uvic.ca/~mdadams/waveletbook
https://www.ece.uvic.ca/~mdadams/sigsysbook
https://www.ece.uvic.ca/~mdadams/cppbook

Other Textbooks and Lecture Slides by the Author III

7 M. D. Adams, Lecture Slides for the Clang Libraries, Edition 0.2.0,
Jan. 2024, ISBN 978-1-990707-06-3 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xiii

https://www.ece.uvic.ca/~mdadams/cppbook

Part 0

Preface

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xiv

About These Lecture Slides

■ This document constitutes a detailed set of lecture slides on signals and
systems, covering both the continuous-time and discrete-time cases.

■ These slides are organized in such a way as to facilitate the teaching of a
course that covers:

2 only the continuous-time case, or
2 only the discrete-time case, or
2 both the continuous-time and discrete-time cases.

■ These slides are intended to be used in conjunction with the following
textbook:

2 M. D. Adams, Signals and Systems, Edition 6.0, Dec. 2024, ISBN
978-1-990707-07-0 (PDF). Available from Google Books, Google Play
Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xv

https://www.ece.uvic.ca/~mdadams/sigsysbook

Typesetting Conventions

■ In a definition, the term being defined is often typeset in a font like this.

■ To emphasize particular words, the words are typeset in a font like this.

■ To show that particular text is associated with a hyperlink to an internal
target, the text is typesetlike this.

■ To show that particular text is associated with a hyperlink to an external
document, the text is typesetlike this.

■ URLs are typeset like https://www.ece.uvic.ca/~mdadams.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xvi

https://www.ece.uvic.ca/~mdadams
https://www.ece.uvic.ca/~mdadams

Companion Web Site

■ The author of the lecture slides maintains a companion web site for the
lecture slides and the associated textbook.

■ The most recent version of the textbook and lecture slides can be
downloaded from this site.

■ Additional information related to the slides is also available from this site,
including:

2 errata for the slides; and
2 information on the companion web site, companion Git repository, and

companion YouTube channel for the slides.
■ The URL of this web site is:

2 https://www.ece.uvic.ca/~mdadams/sigsysbook

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xvii

https://www.ece.uvic.ca/~mdadams/sigsysbook

Video Lectures

■ The author has prepared video lectures for some of the material covered
in these slides and the associated textbook.

■ All of the videos are hosted by YouTube and available through the author’s
YouTube channel:

2 https://www.youtube.com/iamcanadian1867

■ The most up-to-date information about this video-lecture content can be
found at:

2 https://www.ece.uvic.ca/~mdadams/sigsysbook/#video_lectures

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xviii

https://www.youtube.com/iamcanadian1867
https://www.ece.uvic.ca/~mdadams/sigsysbook/#video_lectures

Companion Git Repository

■ These lecture slides have a companion Git repository.

■ Numerous code examples are available from this repository.

■ This repository is hosted by GitHub.
■ The URL of the main repository page on GitHub is:

2 https://github.com/mdadams/sigsysbook_companion

■ The URL of the actual repository itself is:
2 https://github.com/mdadams/sigsysbook_companion.git

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 xix

https://github.com/mdadams/sigsysbook_companion
https://github.com/mdadams/sigsysbook_companion.git

Part 1

Introduction

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 1

Signals

■ A signal is a function of one or more variables that conveys information
about some (usually physical) phenomenon.

■ For a function f , in the expression f (t1, t2, . . . , tn), each of the {tk} is
called an independent variable, while the function value itself is referred
to as a dependent variable.

■ Some examples of signals include:
2 a voltage or current in an electronic circuit
2 the position, velocity, or acceleration of an object
2 a force or torque in a mechanical system
2 a flow rate of a liquid or gas in a chemical process
2 a digital image, digital video, or digital audio
2 a stock market index

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 2

Classification of Signals
■ Number of independent variables (i.e., dimensionality):

2 A signal with one independent variable is said to be one dimensional (e.g.,
audio).

2 A signal with more than one independent variable is said to be
multi-dimensional (e.g., image).

■ Continuous or discrete independent variables:
2 A signal with continuous independent variables is said to be continuous

time (CT) (e.g., voltage waveform).
2 A signal with discrete independent variables is said to be discrete time

(DT) (e.g., stock market index).
■ Continuous or discrete dependent variable:

2 A signal with a continuous dependent variable is said to be continuous
valued (e.g., voltage waveform).

2 A signal with a discrete dependent variable is said to be discrete valued
(e.g., digital image).

■ A continuous-valued CT signal is said to be analog (e.g., voltage
waveform).

■ A discrete-valued DT signal is said to be digital (e.g., digital audio).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 3

Graphical Representation of Signals

0−10−20−30 10 20 30

x(t)

1

2

3

t

Continuous-Time (CT) Signal

0 321−3 −2 −1
n

x(n)

1

2

3

Discrete-Time (DT) Signal

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 4

Systems

■ A system is an entity that processes one or more input signals in order to
produce one or more output signals.

x1

x2

x0

...

xM

...

y0

y1

y2

yN

...
...

System

︸︷︷︸ ︸︷︷︸
Input Signals Output Signals

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 5

Classification of Systems

■ Number of inputs:
2 A system with one input is said to be single input (SI).
2 A system with more than one input is said to be multiple input (MI).

■ Number of outputs:
2 A system with one output is said to be single output (SO).
2 A system with more than one output is said to be multiple output (MO).

■ Types of signals processed:
2 A system can be classified in terms of the types of signals that it processes.
2 Consequently, terms such as the following (which describe signals) can

also be used to describe systems:
2 one-dimensional and multi-dimensional,
2 continuous-time (CT) and discrete-time (DT), and
2 analog and digital.

2 For example, a continuous-time (CT) system processes CT signals and a
discrete-time (DT) system processes DT signals.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 6

Signal Processing Systems

Discrete-Time
(C/D) Converter

Continuous-to-

(D/C) Converter
Continuous-Time

Discrete-to-

System
Discrete-TimeProcessing Processing

Discrete-Time
Signal
Before

Discrete-Time
Signal
After

Signal
Continuous-Time

Input

Signal
Continuous-Time

Output

Processing a Continuous-Time Signal With a Discrete-Time System

Discrete-to-
Continuous-Time
(D/C) Converter System

Continuous-Time Processing Continuous-to-
Discrete-Time

(C/D) Converter

Processing

Continuous-Time
Signal
Before

Continuous-Time
Signal
After

Signal
Discrete-Time

Input

Signal
Discrete-Time

Output

Processing a Discrete-Time Signal With a Continuous-Time System

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 7

Communication Systems

Transmitter Channel Receiver
SignalSignal

Transmitted Received
Signal

Message
Signal

Message
Estimate of

General Structure of a Communication System

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 8

Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

General Structure of a Feedback Control System

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 9

Why Study Signals and Systems?

■ Engineers build systems that process/manipulate signals.

■ We need a formal mathematical framework for the study of such systems.

■ Such a framework is necessary in order to ensure that a system will meet
the required specifications (e.g., performance and safety).

■ If a system fails to meet the required specifications or fails to work
altogether, negative consequences usually ensue.

■ When a system fails to operate as expected, the consequences can
sometimes be catastrophic.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 10

System Failure Example: Tacoma Narrows Bridge

■ The (original) Tacoma Narrows Bridge was a suspension bridge linking
Tacoma and Gig Harbor (WA, USA).

■ This mile-long bridge, with a 2,800-foot main span, was the third largest
suspension bridge at the time of opening.

■ Construction began in Nov. 1938 and took about 19 months to build at a
cost of $6,400,000.

■ On July 1, 1940, the bridge opened to traffic.

■ On Nov. 7, 1940 at approximately 11:00, the bridge collapsed during a
moderate (42 miles/hour) wind storm.

■ The bridge was supposed to withstand winds of up to 120 miles/hour.

■ The collapse was due to wind-induced vibrations and an unstable
mechanical system.

■ Repair of the bridge was not possible.

■ Fortunately, a dog trapped in an abandoned car was the only fatality.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 11

System Failure Example: Tacoma Narrows Bridge (Continued)

Image of bridge collapse omitted for copyright reasons.

A video of the bridge collapse can be found at
https://youtu.be/j-zczJXSxnw.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 12

https://youtu.be/j-zczJXSxnw

Part 2

Preliminaries

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 13

Section 2.1

Functions, Sequences, System Operators, and Transforms

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 14

Sets

■ A rational number is a number of the form x/y, where x and y are
integers and y ̸= 0 (i.e., a ratio of integers).

■ For example, −5
3 , 17

11 , and 0 = 0
1 are rational numbers, whereas π and e

are irrational numbers (i.e., not rational).

■ The symbols employed to denote several commonly-used sets are as
follows:

Symbol Set
Z integers
R real numbers
C complex numbers
Q rational numbers

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 15

Notation for Sets of Consecutive Integers

■ For two integers a and b, we define the following notation for sets of
consecutive integers:

[a . .b] = {x ∈ Z : a≤ x≤ b},
[a . .b) = {x ∈ Z : a≤ x < b},
(a . .b] = {x ∈ Z : a < x≤ b}, and

(a . .b) = {x ∈ Z : a < x < b}.

■ In this notation, a and b indicate the endpoints of the range for the set,
and the type of brackets used (i.e., parenthesis versus square bracket)
indicates whether each endpoint is included in the set.

■ For example:
2 [0 . .4] denotes the set of integers {0,1,2,3,4};
2 [0 . .4) denotes the set of integers {0,1,2,3}; and
2 [0 . .N−1] and [0 . .N) both denote the set of integers {0,1,2, . . . ,N−1}.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 16

Notation for Intervals on the Real Line
■ For two real numbers a and b, we define the following notation for intervals

on the real line:

[a,b] = {x ∈ R : a≤ x≤ b},
(a,b) = {x ∈ R : a < x < b},
[a,b) = {x ∈ R : a≤ x < b}, and

(a,b] = {x ∈ R : a < x≤ b}.

■ In this notation, a and b indicate the endpoints of the interval for the set,
and the type of brackets used (i.e., parenthesis versus square bracket)
indicate whether each endpoint is included in the set.

■ For example:
2 [0,100] denotes the set of all real numbers from 0 to 100, including both 0

and 100;
2 (−π,π] denotes the set of all real numbers from −π to π, excluding −π but

including π; and
2 [−π,π) denotes the set of all real numbers from −π to π, including −π but

excluding π.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 17

Mappings

■ A mapping is a relationship involving two sets that associates each
element in one set, called the domain, with an element from the other set,
called the codomain.

■ The notation f : A→ B denotes a mapping f whose domain is the set A
and whose codomain is the set B.

■ Example:

1

2

3

4

0

1

2

3

Domain A Codomain B f : A→ B
A = {1,2,3,4}
B = {0,1,2,3}

f (x) =

0 x ∈ {1,2}
1 x = 4
2 x = 3.

■ Although many types of mappings exist, the types of most relevance to
our study of signals and systems are: functions, sequences, system
operators, and transforms.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 18

Functions

■ A function is a mapping where the domain is a set that is continuous in
nature, such as the real numbers or complex numbers.

■ In practice, the codomain is typically either the real numbers or complex
numbers.

■ Functions are also commonly referred to as continuous-time (CT)
signals.

■ Example:
2 Let f : R→ R such that f (t) = t2 (i.e., f is the squaring function).
2 The function f maps each real number t to the real number f (t) = t2.
2 The domain and codomain are the real numbers.
2 Note that f is a function, whereas f (t) is a number (namely, the value of

the function f evaluated at t).

■ Herein, we will focus almost exclusively on functions of a single
independent variable (i.e., one-dimensional functions).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 19

Sequences
■ A sequence is a mapping where the domain is a set that is discrete in

nature, such as the integers, or a subset thereof.

■ In practice, the codomain is typically either the real numbers or complex
numbers.

■ Sequences are also commonly referred to as discrete-time (DT) signals.
■ Example:

2 Let f : Z+→ Z+ such that f (n) = n2, where Z+ denotes the set of
(strictly) positive integers (i.e., f is the sequence of perfect squares).

2 The sequence f maps each (strictly) positive integer n to the (strictly)
positive integer f (n) = n2.

2 The domain and codomain are Z+ (i.e., the positive integers).
2 Note that f is a sequence, whereas f (n) is a number (namely, the value of

the sequence f evaluated at n).

■ As a matter of notation, the nth element of a sequence x is denoted as
either x(n) or xn.

■ Herein, we will focus almost exclusively on sequences with a single
independent variable (i.e., one-dimensional sequences).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 20

Remarks on Notation for Functions and Sequences
■ For a real-valued function f of a real variable and an arbitrary real

number t, the expression f denotes the function f itself and the
expression f (t) denotes the value of the function f evaluated at t.

■ That is, f is a function and f (t) is a number.

■ Unfortunately, the practice of using f (t) to denote the function f is quite
common, although strictly speaking this is an abuse of notation.

■ In contexts where imprecise notation may lead to problems, one should be
careful to clearly distinguish between a function and its value.

■ For the real-valued functions f and g of a real variable and an arbitrary
real number t:

2 The expression f +g denotes a function, namely, the function formed by
adding the functions f and g.

2 The expression f (t)+g(t) denotes a number, namely, the sum of: 1) the
value of the function f evaluated at t; and 2) the value of the function g
evaluated at t.

■ Similar comments as the ones made above for functions also hold in the
case of sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 21

Remarks on Notation for Functions and Sequences (Continued)

■ To express that two functions f and g are equal, we can write either:
1 f = g; or
2 f (t) = g(t) for all t.

■ Of the preceding two expressions, the first (i.e., f = g) is usually
preferable, as it is less verbose.

■ For the functions f and g and an operation ◦ that is defined pointwise for
functions (such as addition, subtraction, multiplication, and division), the
following relationship holds:

(f ◦g)(t) = f (t)◦g(t).

■ Some operations ◦ involving functions (such as convolution, to be
discussed later) cannot be defined in a pointwise manner, in which case
(f ◦g)(t) is a valid mathematical expression, while f (t)◦g(t) is not.

■ Again, similar comments as the ones made above for functions also hold
in the case of sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 22

System Operators
■ A system operator is a mapping used to represent a system.

■ We will focus exclusively on the case of single-input single-output
systems.

■ A (single-input single-output) system operator maps a function or
sequence representing the input of a system to a function or sequence
representing the output of the system.

■ The domain and codomain of a system operator are sets of functions or
sequences, not sets of numbers.

■ Example:
2 Let H : F → F such that Hx(t) = 2x(t) (for all t ∈ R) and F is the set of

functions mapping R to R.
2 The system H maps a function to a function.
2 In particular, the domain and codomain are each F , which is a set of

functions.
2 The system H multiplies its input function x by a factor of 2 in order to

produce its output function Hx.
2 Note that Hx is a function, not a number.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 23

Remarks on Operator Notation for CT Systems

■ For a system operator H and a function x, Hx is the function produced as
the output of the system H when the input is the function x.

■ Brackets around the operand of an operator are often omitted when not
required for grouping.

■ For example, for an operator H, a function x, and a real number t, we
would normally prefer to write:

1 Hx instead of the equivalent expression H(x); and
2 Hx(t) instead of the equivalent expression H(x)(t).

■ Also, note that Hx is a function and Hx(t) is a number (namely, the
value of the function Hx evaluated at t).

■ In the expression H(x1 + x2), the brackets are needed for grouping, since
H(x1 + x2) ̸≡Hx1 + x2 (where “̸≡” means “not equivalent”).

■ When multiple operators are applied, they group from right to left.
■ For example, for the operators H1 and H2, and the function x, the

expression H2H1x means H2[H1(x)].

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 24

Remarks on Operator Notation for DT Systems

■ For a system operator H and a sequence x, Hx is the sequence
produced as the output of the system H when the input is the sequence x.

■ Brackets around the operand of an operator are often omitted when not
required for grouping.

■ For example, for an operator H, a sequence x, and an integer n, we would
normally prefer to write:

1 Hx instead of the equivalent expression H(x); and
2 Hx(n) instead of the equivalent expression H(x)(n).

■ Also, note that Hx is a sequence and Hx(n) is a number (namely, the
value of the sequence Hx evaluated at n).

■ In the expression H(x1 + x2), the brackets are needed for grouping, since
H(x1 + x2) ̸≡Hx1 + x2 (where “̸≡” means “not equivalent”).

■ When multiple operators are applied, they group from right to left.
■ For example, for the operators H1 and H2, and the sequence x, the

expression H2H1x means H2[H1(x)].

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 25

Transforms

■ Later, we will be introduced to several types of mappings known as
transforms.

■ Transforms have a mathematical structure similar to system operators.

■ That is, transforms map functions/sequences to functions/sequences.

■ Due to this similar structure, many of the earlier comments about system
operators also apply to the case of transforms.

■ For example, the Fourier transform (introduced later) is denoted as F and
the result of applying the Fourier transform operator to the
function/sequence x is denoted as Fx.

■ Some examples of transforms of interest in the study of signals and
systems are listed on the next slide.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 26

Examples of Transforms

Name Domain Codomain

CT Fourier Series T -periodic functions
(with domain R)

sequences
(with domain Z)

CT Fourier Transform functions
(with domain R)

functions
(with domain R)

Laplace Transform functions
(with domain R)

functions
(with domain C)

DT Fourier Series N-periodic sequences
(with domain Z)

N-periodic sequences
(with domain Z)

DT Fourier Transform sequences
(with domain Z)

2π-periodic functions
(with domain R)

Z Transform sequences
(with domain Z)

functions
(with domain C)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 27

Section 2.2

Properties of Signals

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 28

Even Symmetry

■ A function x is said to be even if it satisfies

x(t) = x(−t) for all t (where t is a real number).

■ A sequence x is said to be even if it satisfies

x(n) = x(−n) for all n (where n is an integer).

■ Geometrically, the graph of an even signal is symmetric with respect to
the vertical axis.

■ Some examples of even signals are shown below.

−1−2−3 1 2 3

1

2

−1

−2

t

x(t)

−2−3 2 3

1

2

n

−2

−1

x(n)

−1 1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 29

Odd Symmetry

■ A function x is said to be odd if it satisfies

x(t) =−x(−t) for all t (where t is a real number).

■ A sequence x is said to be odd if it satisfies

x(n) =−x(−n) for all n (where n is an integer).

■ An odd signal x must be such that x(0) = 0.
■ Geometrically, the graph of an odd signal is symmetric with respect to the

origin.
■ Some examples of odd signals are shown below.

−1−2−3 1 2 3

1

2

−1

−2

t

x(t)

2 3

1

2

n

−2

−1

x(n)

1−3 −2 −1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 30

Conjugate Symmetry

■ A function x is said to be conjugate symmetric if it satisfies

x(t) = x∗(−t) for all t (where t is a real number).

■ A sequence x is said to be conjugate symmetric if it satisfies

x(n) = x∗(−n) for all n (where n is an integer).

■ The real part of a conjugate symmetric function or sequence is even.

■ The imaginary part of a conjugate symmetric function or sequence is odd.

■ An example of a conjugate symmetric function is a complex sinusoid
x(t) = cos(ωt)+ j sin(ωt), where ω is a real constant.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 31

Periodicity

■ A function x is said to be periodic with period T (or T -periodic) if, for
some strictly-positive real constant T , the following condition holds:

x(t) = x(t +T) for all t (where t is a real number).

■ A sequence x is said to be periodic with period N (or N-periodic) if, for
some strictly-positive integer constant N, the following condition holds:

x(n) = x(n+N) for all n (where n is an integer).

■ Some examples of periodic signals are shown below.

−T T

x(t)

t
2T

. . .

−2T

. . .

0

x(n)

1

2

3

4

−1−3−4 1 2 3 4 5 6 7
n

· · · · · ·

−2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 32

Periodicity (Continued 1)

■ A function/sequence that is not periodic is said to be aperiodic.

■ A T -periodic function x is said to have frequency 1
T and angular

frequency 2π
T .

■ An N-periodic sequence x is said to have frequency 1
N and angular

frequency 2π
N .

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 33

Periodicity (Continued 2)

■ The period of a periodic signal is not unique. That is, a signal that is
periodic with period T is also periodic with period kT , for every (strictly)
positive integer k.

−T T

x(t)

t
2T

. . .

−2T

. . .

2T2T

T T

■ The smallest period with which a signal is periodic is called the
fundamental period and its corresponding frequency is called the
fundamental frequency.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 34

Part 3

Continuous-Time (CT) Signals and Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 35

Section 3.1

Independent- and Dependent-Variable Transformations

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 36

Time Shifting (Translation)

■ Time shifting (also called translation) maps the input function x to the
output function y as given by

y(t) = x(t−b),

where b is a real number.

■ Such a transformation shifts the function (to the left or right) along the time
axis.

■ If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

■ If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 37

Time Shifting (Translation): Example

x(t)

0−1−2−3 1 2 3

1

2

3

t

x(t−1)

0−1−2−3 1 2 3

1

2

3

t

x(t +1)

0−1−2−3 1 2 3

1

2

3

t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 38

Time Reversal (Reflection)

■ Time reversal (also known as reflection) maps the input function x to the
output function y as given by

y(t) = x(−t).

■ Geometrically, the output function y is a reflection of the input function x
about the (vertical) line t = 0.

x(t)

0−1−2−3 1 2 3

1

2

3

t
0−1−2−3 1 2 3

1

2

3

t

x(−t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 39

Time Compression/Expansion (Dilation)

■ Time compression/expansion (also called dilation) maps the input
function x to the output function y as given by

y(t) = x(at),

where a is a strictly positive real number.

■ Such a transformation is associated with a compression/expansion along
the time axis.

■ If a > 1, y is compressed along the horizontal axis by a factor of a, relative
to x.

■ If a < 1, y is expanded (i.e., stretched) along the horizontal axis by a factor
of 1

a , relative to x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 40

Time Compression/Expansion (Dilation): Example

x(t)

0

1

−1−2 21
t

x(2t)

0−1−2 21
t

1

x
(1

2 t
)

0

1

−1−2 21
t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 41

Time Scaling (Dilation/Reflection)

■ Time scaling maps the input function x to the output function y as given by

y(t) = x(at),

where a is a nonzero real number.

■ Such a transformation is associated with a dilation (i.e.,
compression/expansion along the time axis) and/or time reversal.

■ If |a|> 1, the function is compressed along the time axis by a factor of |a|.
■ If |a|< 1, the function is expanded (i.e., stretched) along the time axis by

a factor of
∣∣1

a

∣∣.
■ If |a|= 1, the function is neither expanded nor compressed.

■ If a < 0, the function is also time reversed.

■ Dilation (i.e., expansion/compression) and time reversal commute.

■ Time reversal is a special case of time scaling with a =−1; and time
compression/expansion is a special case of time scaling with a > 0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 42

Time Scaling (Dilation/Reflection): Example

x(t)

0

1

−1−2 21
t

x(2t)

0−1−2 21
t

1

x
(1

2 t
)

0

1

−1−2 21
t

0

1

−1−2 21
t

x(−t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 43

Combined Time Scaling and Time Shifting

■ Consider a transformation that maps the input function x to the output
function y as given by

y(t) = x(at−b),
where a and b are real numbers and a ̸= 0.

■ The above transformation can be shown to be the combination of a
time-scaling operation and time-shifting operation.

■ Since time scaling and time shifting do not commute, we must be
particularly careful about the order in which these transformations are
applied.

■ The above transformation has two distinct but equivalent interpretations:
1 first, time shifting x by b, and then time scaling the result by a;
2 first, time scaling x by a, and then time shifting the result by b/a.

■ Note that the time shift is not by the same amount in both cases.

■ In particular, note that when time scaling is applied first followed by time
shifting, the time shift is by b/a, not b.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 44

Combined Time Scaling and Time Shifting: Example

Given x as shown
below, find

y(t) = x(2t−1).

−1−2 1 2

1

−1

t

x(t)

time shift by 1 and then time scale by 2

−1 1 2 3

1

−1

t

p(t) = x(t−1)

−1−2 1 2

1

−1

− 1
2

3
2

t

y(t) = p(2t)

1
2

time scale by 2 and then time shift by 1
2

−2 1 2
t

q(t) = x(2t)

−1

1

−1

−1−2 1 2
− 1

2
3
2

t
1
2

−1

1

y(t) = q
(
t− 1

2

)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 45

Two Perspectives on Independent-Variable Transformations

■ A transformation of the independent variable can be viewed in terms of
1 the effect that the transformation has on the function; or
2 the effect that the transformation has on the horizontal axis.

■ This distinction is important because such a transformation has opposite
effects on the function and horizontal axis.

■ For example, the (time-shifting) transformation that replaces t by t−b
(where b is a real number) in x(t) can be viewed as a transformation that

1 shifts the function x right by b units; or
2 shifts the horizontal axis left by b units.

■ In our treatment of independent-variable transformations, we are only
interested in the effect that a transformation has on the function.

■ If one is not careful to consider that we are interested in the function
perspective (as opposed to the axis perspective), many aspects of
independent-variable transformations will not make sense.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 46

Amplitude Scaling

■ Amplitude scaling maps the input function x to the output function y as
given by

y(t) = ax(t),

where a is a real number.
■ Geometrically, the output function y is expanded/compressed in amplitude

and/or reflected about the horizontal axis.

−1−2−3 1 2 3

1

2

−1

−2

x(t)

t −1−2−3 1 2 3

1

2

−1

−2

2x(t)

t

−1−2−3 1 2 3

1

2

−1

−2

1
2 x(t)

t
−1−2−3 1 2 3

1

2

−1

−2

t

−2x(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 47

Amplitude Shifting

■ Amplitude shifting maps the input function x to the output function y as
given by

y(t) = x(t)+b,

where b is a real number.

■ Geometrically, amplitude shifting adds a vertical displacement to x.

−1−2−3 1 2 3

1

2

−1

−2

x(t)

t
−1−2−3 1 2 3

1

2

−1

−2

t

x(t)−2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 48

Combined Amplitude Scaling and Amplitude Shifting

■ We can also combine amplitude scaling and amplitude shifting
transformations.

■ Consider a transformation that maps the input function x to the output
function y, as given by

y(t) = ax(t)+b,

where a and b are real numbers.

■ Equivalently, the above transformation can be expressed as

y(t) = a
[
x(t)+ b

a

]
.

■ The above transformation is equivalent to:
1 first amplitude scaling x by a, and then amplitude shifting the resulting

function by b; or
2 first amplitude shifting x by b/a, and then amplitude scaling the resulting

function by a.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 49

Section 3.2

Properties of Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 50

Symmetry and Addition/Multiplication

■ Sums involving even and odd functions have the following properties:
2 The sum of two even functions is even.
2 The sum of two odd functions is odd.
2 The sum of an even function and odd function is neither even nor odd,

provided that neither of the functions is identically zero.

■ That is, the sum of functions with the same type of symmetry also has the
same type of symmetry.

■ Products involving even and odd functions have the following properties:
2 The product of two even functions is even.
2 The product of two odd functions is even.
2 The product of an even function and an odd function is odd.

■ That is, the product of functions with the same type of symmetry is even,
while the product of functions with opposite types of symmetry is odd.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 51

Decomposition of a Function into Even and Odd Parts

■ Every function x has a unique representation of the form

x(t) = xe(t)+ xo(t),

where the functions xe and xo are even and odd, respectively.

■ In particular, the functions xe and xo are given by

xe(t) = 1
2 [x(t)+ x(−t)] and xo(t) = 1

2 [x(t)− x(−t)] .

■ The functions xe and xo are called the even part and odd part of x,
respectively.

■ For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 52

Sum of Periodic Functions

■ Sum of periodic functions. For two periodic functions x1 and x2 with
fundamental periods T1 and T2, respectively, and the sum y = x1 + x2:

1 The sum y is periodic if and only if the ratio T1/T2 is a rational number (i.e.,
the quotient of two integers).

2 If y is periodic, its fundamental period is rT1 (or equivalently, qT2, since
rT1 = qT2), where T1/T2 = q/r and q and r are integers and coprime (i.e.,
have no common factors). (Note that rT1 is simply the least common
multiple of T1 and T2.)

■ Although the above theorem only directly addresses the case of the sum
of two functions, the case of N functions (where N > 2) can be handled by
applying the theorem repeatedly N−1 times.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 53

Right-Sided Functions
■ A function x is said to be right sided if, for some (finite) real constant t0,

the following condition holds:

x(t) = 0 for all t < t0

(i.e., x is only potentially nonzero to the right of t0).
■ An example of a right-sided function is shown below.

t

· · ·

x(t)

t0

■ A function x is said to be causal if

x(t) = 0 for all t < 0.

■ A causal function is a special case of a right-sided function.
■ A causal function is not to be confused with a causal system. In these two

contexts, the word “causal” has very different meanings.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 54

Left-Sided Functions
■ A function x is said to be left sided if, for some (finite) real constant t0, the

following condition holds:

x(t) = 0 for all t > t0

(i.e., x is only potentially nonzero to the left of t0).
■ An example of a left-sided function is shown below.

· · ·

t0
t

x(t)

■ Similarly, a function x is said to be anticausal if

x(t) = 0 for all t > 0.

■ An anticausal function is a special case of a left-sided function.
■ An anticausal function is not to be confused with an anticausal system. In

these two contexts, the word “anticausal” has very different meanings.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 55

Finite-Duration and Two-Sided Functions
■ A function that is both left sided and right sided is said to be finite

duration (or time limited).
■ An example of a finite duration function is shown below.

t0 t1
t

x(t)

■ A function that is neither left sided nor right sided is said to be two sided.
■ An example of a two-sided function is shown below.

t

· · ·
· · ·

x(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 56

Bounded Functions

■ A function x is said to be bounded if there exists some (finite) positive
real constant A such that

|x(t)| ≤ A for all t

(i.e., x(t) is finite for all t).
■ For example, the sine and cosine functions are bounded, since

|sin t| ≤ 1 for all t and |cos t| ≤ 1 for all t.

■ In contrast, the tangent function and any nonconstant polynomial
function p (e.g., p(t) = t2) are unbounded, since

lim
t→π/2

|tan t|= ∞ and lim
|t|→∞

|p(t)|= ∞.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 57

Energy and Power of a Function

■ The energy E contained in the function x is given by

E =
∫ ∞

−∞
|x(t)|2 dt.

■ A signal with finite energy is said to be an energy signal.
■ The average power P contained in the function x is given by

P = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2 dt.

■ A signal with (nonzero) finite average power is said to be a power signal.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 58

Section 3.3

Elementary Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 59

Real Sinusoidal Functions
■ A real sinusoidal function is a function of the form

x(t) = Acos(ωt +θ),

where A, ω, and θ are real constants.
■ Such a function is periodic with fundamental period T = 2π

|ω| and
fundamental frequency |ω|.

■ A real sinusoid has a plot resembling that shown below.

t

Acos(ωt +θ)

Acosθ

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 60

Complex Exponential Functions

■ A complex exponential function is a function of the form

x(t) = Aeλt ,

where A and λ are complex constants.

■ A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of its parameters A and λ.

■ For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 61

Real Exponential Functions

■ A real exponential function is a special case of a complex exponential
x(t) = Aeλt , where A and λ are restricted to be real numbers.

■ A real exponential can exhibit one of three distinct modes of behavior,
depending on the value of λ, as illustrated below.

■ If λ > 0, x(t) increases exponentially as t increases (i.e., a growing exponential).

■ If λ < 0, x(t) decreases exponentially as t increases (i.e., a decaying exponential).

■ If λ = 0, x(t) simply equals the constant A.

t

Aeλt

A

λ > 0

A

Aeλt

t

λ = 0

A

Aeλt

t

λ < 0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 62

Complex Sinusoidal Functions

■ A complex sinusoidal function is a special case of a complex exponential
x(t) = Aeλt , where A is complex and λ is purely imaginary (i.e.,
Re{λ}= 0).

■ That is, a complex sinusoidal function is a function of the form

x(t) = Ae jωt ,

where A is complex and ω is real.
■ By expressing A in polar form as A = |A|e jθ (where θ is real) and using

Euler’s relation, we can rewrite x(t) as

x(t) = |A|cos(ωt +θ)︸ ︷︷ ︸
Re{x(t)}

+ j |A|sin(ωt +θ)︸ ︷︷ ︸
Im{x(t)}

.

■ Thus, Re{x} and Im{x} are the same except for a time shift.

■ Also, x is periodic with fundamental period T = 2π
|ω| and fundamental

frequency |ω|.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 63

Complex Sinusoidal Functions (Continued)

■ The graphs of Re{x} and Im{x} have the forms shown below.

|A|cos(ωt +θ)

t

|A|cosθ

|A|

−|A|

t

|A|sin(ωt +θ)

|A|

|A|sinθ

−|A|

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 64

Plot of x(t) = e jωt for ω ∈ {2π,−2π}

−4

−3

−2

−1

1

2

3

4−2
−1.5

−1
−0.5

0.5

1
1.5

2

−2

−1

1

2

t

Re

Im

ω = 2π

−4

−3

−2

−1

1

2

3

4−2
−1.5

−1
−0.5

0.5

1
1.5

2

−2

−1

1

2

t

Re

Im

ω =−2π

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 65

General Complex Exponential Functions

■ In the most general case of a complex exponential function x(t) = Aeλt , A
and λ are both complex.

■ Letting A = |A|e jθ and λ = σ+ jω (where θ, σ, and ω are real), and
using Euler’s relation, we can rewrite x(t) as

x(t) = |A|eσt cos(ωt +θ)︸ ︷︷ ︸
Re{x(t)}

+ j |A|eσt sin(ωt +θ)︸ ︷︷ ︸
Im{x(t)}

.

■ Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

■ One of three distinct modes of behavior is exhibited by x(t), depending on
the value of σ.

■ If σ = 0, Re{x} and Im{x} are real sinusoids.
■ If σ > 0, Re{x} and Im{x} are each the product of a real sinusoid and a

growing real exponential.
■ If σ < 0, Re{x} and Im{x} are each the product of a real sinusoid and a

decaying real exponential.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 66

General Complex Exponential Functions (Continued)

■ The three modes of behavior for Re{x} and Im{x} are illustrated below.

t

|A|eσt

σ > 0

t

|A|eσt

σ = 0

t

|A|eσt

σ < 0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 67

Relationship Between Complex Exponentials and Real
Sinusoids

■ From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

Ae jωt = Acos(ωt)+ jAsin(ωt).

■ Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

Acos(ωt +θ) =
A
2

[
e j(ωt+θ)+ e− j(ωt+θ)

]
and

Asin(ωt +θ) =
A
2 j

[
e j(ωt+θ)− e− j(ωt+θ)

]
.

■ Note that, above, we are simply restating results from the (appendix)
material on complex analysis.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 68

Unit-Step Function

■ The unit-step function (also known as the Heaviside function), denoted
u, is defined as

u(t) =

{
1 t ≥ 0
0 otherwise.

■ Due to the manner in which u is used in practice, the actual value of u(0)
is unimportant. Sometimes values of 0 and 1

2 are also used for u(0).
■ A plot of this function is shown below.

u(t)

0−1 1

1

t

· · ·

· · ·

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 69

Signum Function

■ The signum function, denoted sgn, is defined as

sgn t =

1 t > 0
0 t = 0
−1 t < 0.

■ From its definition, one can see that the signum function simply computes
the sign of a number.

■ A plot of this function is shown below.

1−2−3 2 3
t

· · ·

· · ·1

−1

−1

sgn t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 70

Rectangular Function

■ The rectangular function (also called the unit-rectangular pulse
function), denoted rect, is given by

rect t =

{
1 −1

2 ≤ t < 1
2

0 otherwise.

■ Due to the manner in which the rect function is used in practice, the actual
value of rect t at t =±1

2 is unimportant. Sometimes different values are
used from those specified above.

■ A plot of this function is shown below.

0− 1
2

1
2

rect t

1

t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 71

Indicator Function

■ Functions and sequences that are one over some subset of their domain
and zero elsewhere appear very frequently in engineering (e.g., the
unit-step function and rectangular function).

■ Indicator function notation provides a concise way to denote such
functions and sequences.

■ The indicator function of a subset S of a set A, denoted χS, is defined as

χS(t) =

{
1 if t ∈ S
0 otherwise.

■ A rectangular pulse (defined on R) having an amplitude of 1, a leading
edge at a, and falling edge at b is χ[a,b].

■ The unit-step function (defined on R) is χ[0,∞).

■ The unit-rectangular pulse (defined on R) is χ[−1/2,1/2].

■ The unit-step sequence (defined on Z) is χ[0..∞).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 72

Triangular Function

■ The triangular function (also called the unit-triangular pulse function),
denoted tri, is defined as

tri t =

{
1−2 |t| |t| ≤ 1

2

0 otherwise.

■ A plot of this function is shown below.

0− 1
2

1
2

1

t

tri t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 73

Cardinal Sine Function

■ The cardinal sine function, denoted sinc, is given by

sinc t =
sin t

t
.

■ By l’Hopital’s rule, sinc0 = 1.

■ A plot of this function for part of the real line is shown below.
[Note that the oscillations in sinc t do not die out for finite t.]

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10π −5π 0 5π 10π

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 74

Floor and Ceiling Functions

■ The floor function, denoted ⌊·⌋, is a function that maps a real number x
to the largest integer not more than x.

■ In other words, the floor function rounds a real number to the nearest
integer in the direction of negative infinity.

■ For example,
⌊
−1

2

⌋
=−1,

⌊1
2

⌋
= 0, and ⌊1⌋= 1.

■ The ceiling function, denoted ⌈·⌉, is a function that maps a real number x
to the smallest integer not less than x.

■ In other words, the ceiling function rounds a real number to the nearest
integer in the direction of positive infinity.

■ For example,
⌈
−1

2

⌉
= 0,

⌈1
2

⌉
= 1, and ⌈1⌉= 1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 75

Some Properties of the Floor and Ceiling Functions

■ Several useful properties of the floor and ceiling functions include:

⌊x+n⌋= ⌊x⌋+n for x ∈ R and n ∈ Z;

⌈x+n⌉= ⌈x⌉+n for x ∈ R and n ∈ Z;

⌈x⌉=−⌊−x⌋ for x ∈ R;

⌊x⌋=−⌈−x⌉ for x ∈ R;
⌈m

n

⌉
=

⌊
m+n−1

n

⌋
=

⌊
m−1

n

⌋
+1 for m,n ∈ Z and n > 0; and

⌊m
n

⌋
=

⌈
m−n+1

n

⌉
=

⌈
m+1

n

⌉
−1 for m,n ∈ Z and n > 0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 76

Delta Function

■ The delta function (also known as the Dirac delta function or
unit-impulse function), denoted δ, is defined as the function with the
following two properties:

δ(t) = 0 for t ̸= 0 and∫ ∞

−∞
δ(t)dt = 1.

■ Technically, δ is not a function in the ordinary sense. Rather, it is what is
known as a generalized function. Consequently, the δ function
sometimes behaves in unusual ways.

■ Graphically, the delta function is represented as shown below.

t
0

1

δ(t)

t

K

t0

Kδ(t− t0)

0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 77

Delta Function as a Limit

■ Consider the function gε (where ε is a real constant) defined by

gε(t) =

{
1
|ε| |t|<

|ε|
2

0 otherwise.
■ A plot of gε is shown below.

0

gε(t)

t

1
|ε|

− |ε|2
|ε|
2

■ Clearly, for any choice of ε,
∫ ∞
−∞ gε(t)dt = 1.

■ The function δ can be obtained as the following limit:
δ(t) = lim

ε→0
gε(t).

■ That is, δ can be viewed as a limiting case of a rectangular pulse where
the pulse width becomes infinitesimally small and the pulse height
becomes infinitely large in such a way that the integral of the resulting
function remains unity.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 78

Properties of Delta Function

■ Equivalence property. For any continuous function x and any real
constant t0,

x(t)δ(t− t0) = x(t0)δ(t− t0).

■ Sifting property. For any continuous function x and any real constant t0,∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0).

■ Scaling property. For any nonzero real constant a,

δ(at) =
1
|a|δ(t).

■ Even property. The δ function is such that

δ(t) = δ(−t).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 79

Graphical Interpretation of Equivalence Property

t0

x(t0)

t

x(t)

Function x
t0

t

δ(t− t0)

1

Time-Shifted Delta Function

t0
t

x(t)δ(t− t0)

x(t0)

Product

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 80

Representing a Rectangular Pulse (Using Unit-Step Functions)

■ For real constants a and b where a≤ b, consider a function x of the form

x(t) =

{
1 a≤ t < b
0 otherwise

(i.e., x is a rectangular pulse of height one, with a rising edge at a and
falling edge at b).

■ The function x can be equivalently written as

x(t) = u(t−a)−u(t−b)

(i.e., the difference of two time-shifted unit-step functions).

■ Unlike the original expression for x, this latter expression for x does not
involve multiple cases.

■ In effect, by using unit-step functions, we have collapsed a formula
involving multiple cases into a single expression.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 81

Representing Functions Using Unit-Step Functions

■ The idea from the previous slide can be extended to handle any function
that is defined in a piecewise manner (i.e., via an expression involving
multiple cases).

■ That is, by using unit-step functions, we can always collapse a formula
involving multiple cases into a single expression.

■ Often, simplifying a formula in this way can be quite beneficial.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 82

Rewriting Multi-case Formulas in Terms of a Single Case

■ Consider the function x expressed in terms of a formula with n cases
corresponding to the intervals R1,R2, . . . ,Rn as given by

x(t) =

x1(t) t ∈ R1

x2(t) t ∈ R2
...

xn(t) t ∈ Rn.

■ To collapse the n cases in the above formula into a single case, we
proceed as follows.

■ For i ∈ [1 . .n], define the weighting function wi as

wi(t) =
{

1 t ∈ Ri

0 otherwise.
■ For example, if Ri corresponds to the interval ai ≤ t < bi, we choose

wi(t) = u(t−ai)−u(t−bi).

■ Given the above definition of the functions wi, x(t) can be written as
x(t) = w1(t)x1(t)+w2(t)x2(t)+ . . .+wn(t)xn(t).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 83

Section 3.4

Continuous-Time (CT) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 84

CT Systems
■ A system with input x and output y can be described by the equation

y =Hx,

where H denotes an operator (i.e., transformation).

■ Note that the operator H maps a function to a function (not a number to
a number).

■ Alternatively, we can express the above relationship using the notation

x H−→ y.

■ If clear from the context, the operator H is often omitted, yielding the
abbreviated notation

x→ y.

■ Note that the symbols “→” and “=” have very different meanings.

■ The symbol “→” should be read as “produces” (not as “equals”).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 85

Block Diagram Representations

■ Often, a system defined by the operator H and having the input x and
output y is represented in the form of a block diagram as shown below.

System
H

x
Input Output

y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 86

Interconnection of Systems
■ Two basic ways in which systems can be interconnected are shown below.

H1 H2
yx

Series

H1

H2

+
yx

Parallel
■ A series (or cascade) connection ties the output of one system to the input

of the other.
■ The overall series-connected system is described by the equation

y =H2H1x.

■ A parallel connection ties the inputs of both systems together and sums
their outputs.

■ The overall parallel-connected system is described by the equation

y =H1x+H2x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 87

Section 3.5

Properties of (CT) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 88

Memory

■ A system H is said to be memoryless if, for every real constant t0, Hx(t0)
does not depend on x(t) for some t ̸= t0.

■ In other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

■ A system that is not memoryless is said to have memory.

■ Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 89

Memory (Continued)

−∞ t0 ∞
t

Consider the calculation of the
output Hx at t0.

If the system H is memoryless,
the output Hx at t0

can depend on the input x
only at t0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 90

Causality

■ A system H is said to be causal if, for every real constant t0, Hx(t0) does
not depend on x(t) for some t > t0.

■ In other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

■ If the independent variable t represents time, a system must be causal in
order to be physically realizable.

■ Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

■ A memoryless system is always causal, although the converse is not
necessarily true.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 91

Causality (Continued)

t0

Consider the calculation of the
output Hx at t0.

−∞
t

∞

t ≤ t0

If the system H is causal,
the output Hx at t0

can depend on the input x
only at points t ≤ t0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 92

Invertibility
■ The inverse of a system H (if it exists) is another system H−1 such that,

for every function x,

H−1Hx = x
(i.e., the system formed by the cascade interconnection of H followed by
H−1 is a system whose input and output are equal).

■ A system is said to be invertible if it has a corresponding inverse system
(i.e., its inverse exists).

■ Equivalently, a system is invertible if its input can always be uniquely
determined from its output.

■ An invertible system will always produce distinct outputs from any two
distinct inputs (i.e., x1 ̸= x2⇒Hx1 ̸=Hx2).

■ To show that a system is invertible, we simply find the inverse system.
■ To show that a system is not invertible, we find two distinct inputs that

result in identical outputs (i.e., x1 ̸= x2 and Hx1 =Hx2).
■ In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 93

Invertibility (Continued)

■ A system H−1 being the inverse of H means that the following two
systems are equivalent (i.e., H−1H is an identity):

x y
H−1H

System 1: y =H−1Hx

x y

System 2: y = x

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 94

Bounded-Input Bounded-Output (BIBO) Stability

■ A system H is said to be bounded-input bounded-output (BIBO)
stable if, for every bounded function x, Hx is bounded (i.e., |x(t)|< ∞ for
all t implies that |Hx(t)|< ∞ for all t).

■ In other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

■ To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

■ To show that a system is not BIBO stable, we only need to find a single
bounded input that leads to an unbounded output.

■ In practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input is finite everywhere (in its domain), the output
will also be finite everywhere.

■ Usually, a system that is not BIBO stable will have serious safety issues.
■ For example, a portable music player with a battery input of 3.7 volts and

headset output of ∞ volts would result in one vaporized human (and likely
a big lawsuit as well).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 95

Time Invariance (TI)

■ A system H is said to be time invariant (TI) (or shift invariant (SI)) if,
for every function x and every real constant t0, the following condition
holds:

Hx(t− t0) =Hx′(t) for all t, where x′(t) = x(t− t0)

(i.e., H commutes with time shifts).

■ In other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

■ A system that is not time invariant is said to be time varying.

■ In simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

■ Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 96

Time Invariance (Continued)

■ Let St0 denote an operator that applies a time shift of t0 to a function (i.e.,
St0x(t) = x(t− t0)).

■ A system H is time invariant if and only if the following two systems are
equivalent (i.e., H commutes with St0):

HSt0

x y

System 1: y =HSt0 x[
y(t) =Hx′(t)

x′(t) = St0 x(t) = x(t− t0)

]

x y
St0H

System 2: y = St0Hx[
y(t) =Hx(t− t0)

]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 97

Additivity, Homogeneity, and Linearity
■ A system H is said to be additive if, for all functions x1 and x2, the

following condition holds:

H(x1 + x2) =Hx1 +Hx2

(i.e., H commutes with addition).
■ A system H is said to be homogeneous if, for every function x and every

complex constant a, the following condition holds:

H(ax) = aHx
(i.e., H commutes with scalar multiplication).

■ A system that is both additive and homogeneous is said to be linear.
■ In other words, a system H is linear, if for all functions x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H(a1x1 +a2x2) = a1Hx1 +a2Hx2

(i.e., H commutes with linear combinations).
■ The linearity property is also referred to as the superposition property.
■ Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 98

Additivity, Homogeneity, and Linearity (Continued 1)

■ The system H is additive if and only if the following two systems are
equivalent (i.e., H commutes with addition):

+ H

x2

x1 y

System 1: y =H(x1 + x2)

+H

H

yx1

x2

System 2: y =Hx1 +Hx2

■ The system H is homogeneous if and only if the following two systems
are equivalent (i.e., H commutes with scalar multiplication):

Ha
x y

System 1: y =H(ax)

aH
x y

System 2: y = aHx

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 99

Additivity, Homogeneity, and Linearity (Continued 2)

■ The system H is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

+ H
y

a1

a2

x1

x2

System 1: y =H(a1x1 +a2x2)

+a1

a2

x1

x2

y
H

H

System 2: y = a1Hx1 +a2Hx2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 100

Eigenfunctions of Systems

■ A function x is said to be an eigenfunction of the system H with the
eigenvalue λ if

Hx = λx,

where λ is a complex constant.

■ In other words, the system H acts as an ideal amplifier for each of its
eigenfunctions x, where the amplifier gain is given by the corresponding
eigenvalue λ.

■ Different systems have different eigenfunctions.

■ Many of the mathematical tools developed for the study of CT systems
have eigenfunctions as their basis.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 101

Part 4

Continuous-Time Linear Time-Invariant (LTI) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 102

Why Linear Time-Invariant (LTI) Systems?

■ In engineering, linear time-invariant (LTI) systems play a very important
role.

■ Very powerful mathematical tools have been developed for analyzing LTI
systems.

■ LTI systems are much easier to analyze than systems that are not LTI.

■ In practice, systems that are not LTI can be well approximated using LTI
models.

■ So, even when dealing with systems that are not LTI, LTI systems still play
an important role.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 103

Section 4.1

Convolution

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 104

CT Convolution

■ The (CT) convolution of the functions x and h, denoted x∗h, is defined
as the function

x∗h(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ.

■ The convolution result x∗h evaluated at the point t is simply a weighted
average of the function x, where the weighting is given by h time reversed
and shifted by t.

■ Herein, the asterisk symbol (i.e., “∗”) will always be used to denote
convolution, not multiplication.

■ As we shall see, convolution is used extensively in systems theory.

■ In particular, convolution has a special significance in the context of LTI
systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 105

Practical Convolution Computation

■ To compute the convolution

x∗h(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ,

we proceed as follows:
1 Plot x(τ) and h(t− τ) as a function of τ.
2 Initially, consider an arbitrarily large negative value for t. This will result in

h(t− τ) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗h(t).
4 Increase t gradually until the expression for x∗h(t) changes form. Record

the interval over which the expression for x∗h(t) was valid.
5 Repeat steps 3 and 4 until t is an arbitrarily large positive value. This

corresponds to h(t− τ) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗h(t) for all t.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 106

Properties of Convolution

■ The convolution operation is commutative. That is, for any two functions x
and h,

x∗h = h∗ x.

■ The convolution operation is associative. That is, for any functions x, h1,
and h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

■ The convolution operation is distributive with respect to addition. That is,
for any functions x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 107

Representation of Functions Using Impulses

■ For any function x,

x∗δ(t) =
∫ ∞

−∞
x(τ)δ(t− τ)dτ = x(t).

■ Thus, any function x can be written in terms of an expression involving δ.

■ Moreover, δ is the convolutional identity. That is, for any function x,

x∗δ = x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 108

Periodic Convolution

■ The convolution of two periodic functions is usually not well defined.

■ This motivates an alternative notion of convolution for periodic functions
known as periodic convolution.

■ The periodic convolution of the T -periodic functions x and h, denoted
x⊛h, is defined as

x⊛h(t) =
∫

T
x(τ)h(t− τ)dτ,

where
∫

T denotes integration over an interval of length T .

■ The periodic convolution and (linear) convolution of the T -periodic
functions x and h are related as follows:

x⊛h(t) = x0 ∗h(t) where x(t) =
∞

∑
k=−∞

x0(t− kT)

(i.e., x0(t) equals x(t) over a single period of x and is zero elsewhere).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 109

Section 4.2

Convolution and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 110

Impulse Response

■ The response h of a system H to the input δ is called the impulse
response of the system (i.e., h =Hδ).

■ For any LTI system with input x, output y, and impulse response h, the
following relationship holds:

y = x∗h.

■ In other words, a LTI system simply computes a convolution.

■ Furthermore, a LTI system is completely characterized by its impulse
response.

■ That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.

■ Since the impulse response of a LTI system is an extremely useful
quantity, we often want to determine this quantity in a practical setting.

■ Unfortunately, in practice, the impulse response of a system cannot be
determined directly from the definition of the impulse response.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 111

Step Response

■ The response s of a system H to the input u is called the step response of
the system (i.e., s =Hu).

■ The impulse response h and step response s of a LTI system are related
as

h(t) =
ds(t)

dt
.

■ Therefore, the impulse response of a system can be determined from its
step response by differentiation.

■ The step response provides a practical means for determining the impulse
response of a system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 112

Block Diagram Representation of LTI Systems

■ Often, it is convenient to represent a (CT) LTI system in block diagram
form.

■ Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

■ That is, we represent a system with input x, output y, and impulse
response h, as shown below.

h
x y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 113

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with impulse responses h1
and h2 is the LTI system with impulse response h1 ∗h2. That is, we have
the equivalence shown below.

h1 h2 ≡ x y
h1 ∗h2

yx

■ The parallel interconnection of the LTI systems with impulse responses
h1 and h2 is the LTI system with impulse response h1 +h2. That is, we
have the equivalence shown below.

h1 +h2
yx

h1

h2

≡
+

x y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 114

Section 4.3

Properties of LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 115

Memory

■ A LTI system with impulse response h is memoryless if and only if

h(t) = 0 for all t ̸= 0.

■ That is, a LTI system is memoryless if and only if its impulse response h is
of the form

h(t) = Kδ(t),

where K is a complex constant.

■ Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

■ For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 116

Causality

■ A LTI system with impulse response h is causal if and only if

h(t) = 0 for all t < 0

(i.e., h is a causal function).

■ It is due to the above relationship that we call a function x, satisfying

x(t) = 0 for all t < 0,

a causal function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 117

Invertibility

■ The inverse of a LTI system, if such a system exists, is a LTI system.

■ Let h and hinv denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h∗hinv = δ.

■ Consequently, a LTI system with impulse response h is invertible if and
only if there exists a function hinv such that

h∗hinv = δ.

■ Except in simple cases, the above condition is often quite difficult to test.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 118

BIBO Stability

■ A LTI system with impulse response h is BIBO stable if and only if∫ ∞

−∞
|h(t)|dt < ∞

(i.e., h is absolutely integrable).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 119

Eigenfunctions of LTI Systems

■ As it turns out, every complex exponential is an eigenfunction of all LTI
systems.

■ For a LTI system H with impulse response h,

H{est}(t) = H(s)est ,

where s is a complex constant and

H(s) =
∫ ∞

−∞
h(t)e−stdt.

■ That is, est is an eigenfunction of a LTI system and H(s) is the
corresponding eigenvalue.

■ We refer to H as the system function (or transfer function) of the
system H.

■ From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(s).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 120

Representations of Functions Using Eigenfunctions

■ Consider a LTI system with input x, output y, and system function H.

■ Suppose that the input x can be expressed as the linear combination of
complex exponentials

x(t) = ∑
k

akeskt ,

where the ak and sk are complex constants.

■ Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(t) = ∑
k

akH(sk)eskt .

■ Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as a linear
combination of the same complex exponentials.

■ The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 121

Part 5

Continuous-Time Fourier Series (CTFS)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 122

Introduction

■ The (CT) Fourier series is a representation for periodic functions.

■ With a Fourier series, a function is represented as a linear combination
of complex sinusoids.

■ The use of complex sinusoids is desirable due to their numerous attractive
properties.

■ For example, complex sinusoids are continuous and differentiable. They
are also easy to integrate and differentiate.

■ Perhaps, most importantly, complex sinusoids are eigenfunctions of LTI
systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 123

Section 5.1

Fourier Series

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 124

Harmonically-Related Complex Sinusoids

■ A set of complex sinusoids is said to be harmonically related if there
exists some constant ω0 such that the fundamental frequency of each
complex sinusoid is an integer multiple of ω0.

■ Consider the set of harmonically-related complex sinusoids given by

φk(t) = e jkω0t for all integer k.

■ The fundamental frequency of the kth complex sinusoid φk is kω0, an
integer multiple of ω0.

■ Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of ω0, a linear combination of
these complex sinusoids must be periodic.

■ More specifically, a linear combination of these complex sinusoids is
periodic with period T = 2π

ω0
.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 125

CT Fourier Series

■ A periodic (complex-valued) function x with fundamental period T and
fundamental frequency ω0 =

2π
T can be represented as a linear

combination of harmonically-related complex sinusoids as

x(t) =
∞

∑
k=−∞

cke jkω0t .

■ Such a representation is known as (the complex exponential form of) a
(CT) Fourier series, and the ck are called Fourier series coefficients.

■ The above formula for x is often referred to as the Fourier series
synthesis equation.

■ The terms in the summation for k = K and k =−K are called the Kth
harmonic components, and have the fundamental frequency Kω0.

■ To denote that a function x has the Fourier series coefficient sequence ck,
we write

x(t) CTFS←→ ck.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 126

CT Fourier Series (Continued)

■ The periodic function x with fundamental period T and fundamental
frequency ω0 =

2π
T has the Fourier series coefficients ck given by

ck =
1
T

∫
T

x(t)e− jkω0tdt,

where
∫

T denotes integration over an arbitrary interval of length T (i.e.,
one period of x).

■ The above equation for ck is often referred to as the Fourier series
analysis equation.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 127

Section 5.2

Convergence Properties of Fourier Series

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 128

Remarks on Equality of Functions

■ The equality of functions can be defined in more than one way.
■ Two functions x and y are said to be equal in the pointwise sense if

x(t) = y(t) for all t (i.e., x and y are equal at every point).
■ Two functions x and y are said to be equal in the mean-squared error

(MSE) sense if
∫ |x(t)− y(t)|2 dt = 0 (i.e., the energy in x− y is zero).

■ Pointwise equality is a stronger condition than MSE equality (i.e.,
pointwise equality implies MSE equality but the converse is not true).

■ Consider the functions

x1(t) = 1 for all t, x2(t) = 1 for all t, and

x3(t) =

{
2 t = 0
1 otherwise.

■ The functions x1 and x2 are equal in both the pointwise sense and MSE
sense.

■ The functions x1 and x3 are equal in the MSE sense, but not in the
pointwise sense.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 129

Convergence of Fourier Series

■ Since a Fourier series can have an infinite number of (nonzero) terms,
and an infinite sum may or may not converge, we need to consider the
issue of convergence.

■ That is, when we claim that a periodic function x is equal to the Fourier
series ∑∞

k=−∞ cke jkω0t , is this claim actually correct?

■ Consider a periodic function x that we wish to represent with the Fourier
series

∞

∑
k=−∞

cke jkω0t .

■ Let xN denote the Fourier series truncated after the Nth harmonic
components as given by

xN(t) =
N

∑
k=−N

cke jkω0t .

■ Here, we are interested in whether limN→∞ xN is equal (in some sense)
to x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 130

Convergence of Fourier Series (Continued)

■ Again, let xN denote the Fourier series for the periodic function x truncated
after the Nth harmonic components as given by

xN(t) =
N

∑
k=−N

cke jkω0t .

■ If limN→∞ xN(t) = x(t) for all t (i.e., limN→∞ xN is equal to x in the
pointwise sense), the Fourier series is said to converge pointwise to x.

■ If convergence is pointwise and the rate of convergence is the same
everywhere, the convergence is said to be uniform.

■ If limN→∞
1
T

∫
T |xN(t)− x(t)|2 dt = 0 (i.e., limN→∞ xN is equal to x in the

MSE sense), the Fourier series is said to converge to x in the MSE sense.

■ Pointwise convergence is a stronger condition than MSE convergence
(i.e., pointwise convergence implies MSE convergence, but the converse
is not true).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 131

Convergence of Fourier Series: Continuous Case

■ If a periodic function x is continuous and its Fourier series coefficients ck
are absolutely summable (i.e., ∑∞

k=−∞ |ck|< ∞), then the Fourier series
representation of x converges uniformly (i.e., pointwise at the same rate
everywhere).

■ Since, in practice, we often encounter functions with discontinuities (e.g.,
a square wave), the above result is of somewhat limited value.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 132

Convergence of Fourier Series: Finite-Energy Case

■ If a periodic function x has finite energy in a single period (i.e.,∫
T |x(t)|2 dt < ∞), the Fourier series converges in the MSE sense.

■ Since, in situations of practical interest, the finite-energy condition in the
above theorem is typically satisfied, the theorem is usually applicable.

■ It is important to note, however, that MSE convergence (i.e., E = 0) does
not necessarily imply pointwise convergence (i.e., x̃(t) = x(t) for all t).

■ Thus, the above convergence theorem does not provide much useful
information regarding the value of x̃(t) for specific values of t.

■ Consequently, the above theorem is typically most useful for simply
determining if the Fourier series converges.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 133

Dirichlet Conditions

■ The Dirichlet conditions for the periodic function x are as follows:
1 over a single period, x is absolutely integrable (i.e.,

∫
T |x(t)|dt < ∞);

2 over a single period, x has a finite number of maxima and minima (i.e., x is
of bounded variation); and

3 over any finite interval, x has a finite number of discontinuities, each of
which is finite.

■ Examples of functions violating the Dirichlet conditions are shown below.

10
t

t−1

x(t)

· · ·· · · · · ·

1 2

· · ·

t

sin
(
2πt−1

)

x(t)

1
4

1
2

1

−1 0 1

· · · · · ·

· · · · · ·
t

x(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 134

Convergence of Fourier Series: Dirichlet Case

■ If a periodic function x satisfies the Dirichlet conditions, then:
1 the Fourier series converges pointwise everywhere to x, except at the

points of discontinuity of x; and
2 at each point ta of discontinuity of x, the Fourier series x̃ converges to

x̃(ta) = 1
2

[
x(t−a)+ x(t+a)

]
,

where x(t−a) and x(t+a) denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.

■ Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier series at every point,
this result is often very useful in practice.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 135

Gibbs Phenomenon

■ In practice, we frequently encounter functions with discontinuities.

■ When a function x has discontinuities, the Fourier series representation of
x does not converge uniformly (i.e., at the same rate everywhere).

■ The rate of convergence is much slower at points in the vicinity of a
discontinuity.

■ Furthermore, in the vicinity of a discontinuity, the truncated Fourier series
xN exhibits ripples, where the peak amplitude of the ripples does not seem
to decrease with increasing N.

■ As it turns out, as N increases, the ripples get compressed towards
discontinuity, but, for any finite N, the peak amplitude of the ripples
remains approximately constant.

■ This behavior is known as Gibbs phenomenon.

■ The above behavior is one of the weaknesses of Fourier series (i.e.,
Fourier series converge very slowly near discontinuities).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 136

Gibbs Phenomenon: Periodic Square Wave Example

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Fourier series truncated after the
3rd harmonic components

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Fourier series truncated after the
7th harmonic components

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Fourier series truncated after the
11th harmonic components

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Fourier series truncated after the
101st harmonic components

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 137

Section 5.3

Properties of Fourier Series

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 138

Properties of (CT) Fourier Series

x(t) CTFS←→ ak and y(t) CTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(t)+βy(t) αak +βbk

Translation x(t− t0) e− jk(2π/T)t0ak

Modulation e jM(2π/T)tx(t) ak−M

Reflection x(−t) a−k

Conjugation x∗(t) a∗−k
Periodic Convolution x⊛ y(t) Takbk

Multiplication x(t)y(t) ∑∞
n=−∞ anbk−n

Property

Parseval’s Relation 1
T

∫
T |x(t)|2 dt = ∑∞

k=−∞ |ak|2
Even Symmetry x is even⇔ a is even
Odd Symmetry x is odd⇔ a is odd
Real / Conjugate Symmetry x is real⇔ a is conjugate symmetric

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 139

Linearity

■ Let x and y be two periodic functions with the same period. If x(t) CTFS←→ ak
and y(t) CTFS←→ bk, then

αx(t)+βy(t) CTFS←→ αak +βbk,

where α and β are complex constants.

■ That is, a linear combination of functions produces the same linear
combination of their Fourier series coefficients.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 140

Time Shifting (Translation)

■ Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

x(t− t0)
CTFS←→ e− jkω0t0ck = e− jk(2π/T)t0ck,

where t0 is a real constant.

■ In other words, time shifting a periodic function changes the argument (but
not magnitude) of its Fourier series coefficients.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 141

Frequency Shifting (Modulation)

■ Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

e jM(2π/T)tx(t) = e jMω0tx(t) CTFS←→ ck−M,

where M is an integer constant.

■ In other words, multiplying a periodic function by e jMω0t shifts the
Fourier-series coefficient sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 142

Time Reversal (Reflection)

■ Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

x(−t) CTFS←→ c−k.

■ That is, time reversal of a function results in a time reversal of its Fourier
series coefficients.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 143

Conjugation

■ For a T -periodic function x with Fourier series coefficient sequence c, the
following property holds:

x∗(t) CTFS←→ c∗−k

■ In other words, conjugating a function has the effect of time reversing and
conjugating the Fourier series coefficient sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 144

Periodic Convolution

■ Let x and y be two periodic functions with the same period T . If
x(t) CTFS←→ ak and y(t) CTFS←→ bk, then

x⊛ y(t) CTFS←→ Takbk.

■ In other words, periodic convolution of two functions corresponds to the
multiplication (up to a scale factor) of their Fourier-series coefficient
sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 145

Multiplication

■ Let x and y be two periodic functions with the same period. If x(t) CTFS←→ ak
and y(t) CTFS←→ bk, then

x(t)y(t) CTFS←→
∞

∑
n=−∞

anbk−n

■ As we shall see later, the above summation is the DT convolution of a
and b.

■ In other words, the multiplication of two periodic functions corresponds to
the DT convolution of their corresponding Fourier-series coefficient
sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 146

Parseval’s Relation

■ A function x and its Fourier series coefficient sequence a satisfy the
following relationship:

1
T

∫
T
|x(t)|2 dt =

∞

∑
k=−∞

|ak|2 .

■ The above relationship is simply stating that the amount of energy in x
(i.e., 1

T

∫
T |x(t)|2 dt) and the amount of energy in the Fourier series

coefficient sequence a (i.e., ∑∞
k=−∞ |ak|2) are equal.

■ In other words, the transformation between a function and its Fourier
series coefficient sequence preserves energy.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 147

Even and Odd Symmetry

■ For a periodic function x with Fourier series coefficient sequence c, the
following properties hold:

x is even⇔ c is even; and

x is odd⇔ c is odd.

■ In other words, the even/odd symmetry properties of x and c always
match.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 148

Real Functions

■ A function x is real if and only if its Fourier series coefficient sequence c
satisfies

ck = c∗−k for all k

(i.e., c is conjugate symmetric).

■ Thus, for a real-valued function, the negative-indexed Fourier series
coefficients are redundant, as they are completely determined by the
nonnegative-indexed coefficients.

■ From properties of complex numbers, one can show that ck = c∗−k is
equivalent to

|ck|= |c−k| and argck =−argc−k

(i.e., |ck| is even and argck is odd).

■ Note that x being real does not necessarily imply that c is real.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 149

Trigonometric Forms of a Fourier Series

■ Consider the periodic function x with the Fourier series coefficients ck.

■ If x is real, then its Fourier series can be rewritten in two other forms,
known as the combined trigonometric and trigonometric forms.

■ The combined trigonometric form of a Fourier series has the
appearance

x(t) = c0 +2
∞

∑
k=1
|ck|cos(kω0t +θk),

where θk = argck.

■ The trigonometric form of a Fourier series has the appearance

x(t) = c0 +
∞

∑
k=1

[αk cos(kω0t)+βk sin(kω0t)] ,

where αk = 2Reck and βk =−2Imck.

■ Note that the trigonometric forms contain only real quantities.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 150

Other Properties of Fourier Series

■ For a T -periodic function x with Fourier-series coefficient sequence c, the
following properties hold:

1 c0 is the average value of x over a single period T ;
2 x is real and even⇔ c is real and even; and
3 x is real and odd⇔ c is purely imaginary and odd.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 151

Section 5.4

Fourier Series and Frequency Spectra

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 152

A New Perspective on Functions: The Frequency Domain

■ The Fourier series provides us with an entirely new way to view functions.

■ Instead of viewing a function as having information distributed with respect
to time (i.e., a function whose domain is time), we view a function as
having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

■ This so called frequency-domain perspective is of fundamental
importance in engineering.

■ Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

■ The Fourier series coefficients of a function x provide a means to quantify
how much information x has at different frequencies.

■ The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 153

Motivating Example

■ Consider the real 1-periodic function x having the Fourier series
representation

x(t) =− j
10 e− j14πt − 2 j

10 e− j10πt − 4 j
10 e− j6πt − 13 j

10 e− j2πt

+ 13 j
10 e j2πt + 4 j

10 e j6πt + 2 j
10 e j10πt + j

10 e j14πt .

■ A plot of x is shown below.

−1 − 1
2

1
2

1

−1

− 1
2

1
2

1

t

x(t)

■ The terms that make the most dominant contribution to the overall sum
are the ones with the largest magnitude coefficients.

■ To illustrate this, we consider the problem of determining the best
approximation of x that keeps only 4 of the 8 terms in the Fourier series.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 154

Motivating Example (Continued)

−1 − 1
2

1
2

1

−1

− 1
2

1
2

1

t

approximation
x(t)

Approximation using the 4 terms with the
largest magnitude coefficients

−1 − 1
2

1
2

1

−1

− 1
2

1
2

1

t

approximation
x(t)

Approximation using the 4 terms with the
smallest magnitude nonzero coefficients

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 155

Fourier Series and Frequency Spectra

■ To gain further insight into the role played by the Fourier series coefficients
ck in the context of the frequency spectrum of the function x, it is helpful to
write the Fourier series with the ck expressed in polar form as follows:

x(t) =
∞

∑
k=−∞

cke jkω0t =
∞

∑
k=−∞

|ck|e j(kω0t+argck).

■ Clearly, the kth term in the summation corresponds to a complex sinusoid
with fundamental frequency kω0 that has been amplitude scaled by a
factor of |ck| and time shifted by an amount that depends on argck.

■ For a given k, the larger |ck| is, the larger is the amplitude of its
corresponding complex sinusoid e jkω0t , and therefore the larger the
contribution the kth term (which is associated with frequency kω0) will
make to the overall summation.

■ In this way, we can use |ck| as a measure of how much information a
function x has at the frequency kω0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 156

Fourier Series and Frequency Spectra (Continued)

■ The Fourier series coefficients ck are referred to as the frequency
spectrum of x.

■ The magnitudes |ck| of the Fourier series coefficients are referred to as
the magnitude spectrum of x.

■ The arguments argck of the Fourier series coefficients are referred to as
the phase spectrum of x.

■ Normally, the spectrum of a function is plotted against frequency kω0
instead of k.

■ Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

■ Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as line
spectra.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 157

Frequency Spectra of Real Functions

■ Recall that, for a real function x, the Fourier series coefficient sequence c
satisfies

ck = c∗−k

(i.e., c is conjugate symmetric), which is equivalent to

|ck|= |c−k| and argck =−argc−k.

■ Since |ck|= |c−k|, the magnitude spectrum of a real function is always
even.

■ Similarly, since argck =−argc−k, the phase spectrum of a real function is
always odd.

■ Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

■ In the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 158

Section 5.5

Fourier Series and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 159

Frequency Response

■ Recall that a LTI system H with impulse response h is such that
H{est}(t) = HL(s)est , where HL(s) =

∫ ∞
−∞ h(t)e−stdt. (That is, complex

exponentials are eigenfunctions of LTI systems.)

■ Since a complex sinusoid is a special case of a complex exponential, we
can reuse the above result for the special case of complex sinusoids.

■ For a LTI system H with impulse response h,

H{e jωt}(t) = H(ω)e jωt ,

where ω is a real constant and

H(ω) =
∫ ∞

−∞
h(t)e− jωtdt.

■ That is, e jωt is an eigenfunction of a LTI system and H(ω) is the
corresponding eigenvalue.

■ We refer to H as the frequency response of the system H.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 160

Fourier Series and LTI Systems

■ Consider a LTI system with input x, output y, and frequency response H.

■ Suppose that the T -periodic input x is expressed as the Fourier series

x(t) =
∞

∑
k=−∞

cke jkω0t , where ω0 =
2π
T .

■ Using our knowledge about the eigenfunctions of LTI systems, we can
conclude

y(t) =
∞

∑
k=−∞

ckH(kω0)e jkω0t .

■ Thus, if the input x to a LTI system is a Fourier series, the output y is also
a Fourier series. More specifically, if x(t) CTFS←→ ck then y(t) CTFS←→ H(kω0)ck.

■ The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 161

Filtering

■ In many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

■ This process of modifying the frequency spectrum of a function is called
filtering.

■ A system that performs a filtering operation is called a filter.

■ Many types of filters exist.

■ Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

■ Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 162

Ideal Lowpass Filter

■ An ideal lowpass filter eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response of the form

H(ω) =

{
1 |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.

■ A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

PassbandStopband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 163

Ideal Highpass Filter

■ An ideal highpass filter eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response of the form

H(ω) =

{
1 |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.
■ A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

· · · · · ·

StopbandPassband Passband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 164

Ideal Bandpass Filter

■ An ideal bandpass filter eliminates all frequency components with a
frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response of the form

H(ω) =

{
1 ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.
■ A plot of this frequency response is given below.

ω

1

H(ω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 165

Part 6

Continuous-Time Fourier Transform (CTFT)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 166

Motivation for the Fourier Transform

■ The (CT) Fourier series provide an extremely useful representation for
periodic functions.

■ Often, however, we need to deal with functions that are not periodic.

■ A more general tool than the Fourier series is needed in this case.

■ The (CT) Fourier transform can be used to represent both periodic and
aperiodic functions.

■ Since the Fourier transform is essentially derived from Fourier series
through a limiting process, the Fourier transform has many similarities with
Fourier series.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 167

Section 6.1

Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 168

Development of the Fourier Transform [Aperiodic Case]

■ The (CT) Fourier series is an extremely useful function representation.

■ Unfortunately, this function representation can only be used for periodic
functions, since a Fourier series is inherently periodic.

■ Many functions are not periodic, however.

■ Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can be
applied to aperiodic functions.

■ By viewing an aperiodic function as the limiting case of a T -periodic
function where T → ∞, we can use the Fourier series to develop a
function representation that can be used for aperiodic functions, known as
the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 169

Development of the Fourier Transform [Aperiodic Case] (Continued)

■ Recall that the Fourier series representation of a T -periodic function x is
given by

x(t) =
∞

∑
k=−∞

(
1
T

∫ T/2

−T/2
x(τ)e− jk(2π/T)τdτ

)

︸ ︷︷ ︸
ck

e jk(2π/T)t .

■ In the above representation, if we take the limit as T → ∞, we obtain

x(t) = 1
2π

∫ ∞

−∞

(∫ ∞

−∞
x(τ)e− jωτdτ

)

︸ ︷︷ ︸
X(ω)

e jωtdω

(i.e., as T → ∞, the outer summation becomes an integral, 1
T becomes

1
2π dω, and

(2π
T

)
k becomes ω).

■ This representation for aperiodic functions is known as the Fourier
transform representation.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 170

Generalized Fourier Transform

■ The classical Fourier transform for aperiodic functions does not exist (i.e.,∫ ∞
−∞ x(t)e− jωtdt fails to converge) for some functions of great practical

interest, such as:
2 a nonzero constant function;
2 a periodic function (e.g., a real or complex sinusoid);
2 the unit-step function (i.e., u); and
2 the signum function (i.e., sgn).

■ Fortunately, the Fourier transform can be extended to handle such
functions, resulting in what is known as the generalized Fourier
transform.

■ For our purposes, we can think of the classical and generalized Fourier
transforms as being defined by the same formulas.

■ Therefore, in what follows, we will not typically make a distinction between
the classical and generalized Fourier transforms.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 171

CT Fourier Transform (CTFT)

■ The (CT) Fourier transform of the function x, denoted Fx or X , is given
by

Fx(ω) = X(ω) =
∫ ∞

−∞
x(t)e− jωtdt.

■ The preceding equation is sometimes referred to as Fourier transform
analysis equation (or forward Fourier transform equation).

■ The inverse Fourier transform of X , denoted F−1X or x, is given by

F−1X(t) = x(t) = 1
2π

∫ ∞

−∞
X(ω)e jωtdω.

■ The preceding equation is sometimes referred to as the Fourier
transform synthesis equation (or inverse Fourier transform equation).

■ As a matter of notation, to denote that a function x has the Fourier
transform X , we write x(t) CTFT←→ X(ω).

■ A function x and its Fourier transform X constitute what is called a
Fourier transform pair.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 172

Remarks on Operator Notation

■ For a function x, the Fourier transform of x is denoted using operator
notation as Fx.

■ The Fourier transform of x evaluated at ω is denoted Fx(ω).
■ Note that Fx is a function, whereas Fx(ω) is a number.

■ Similarly, for a function X , the inverse Fourier transform of X is denoted
using operator notation as F−1X .

■ The inverse Fourier transform of X evaluated at t is denoted F−1X(t).
■ Note that F−1X is a function, whereas F−1X(t) is a number.

■ With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

■ Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 173

Remarks on Dot Notation

■ Often, we would like to write an expression for the Fourier transform of a
function without explicitly naming the function.

■ For example, consider writing an expression for the Fourier transform of
the function v(t) = x(5t−3) but without using the name “v”.

■ It would be incorrect to write “Fx(5t−3)” as this is the function Fx
evaluated at 5t−3, which is not the meaning that we wish to convey.

■ Also, strictly speaking, it would be incorrect to write “F{x(5t−3)}” as the
operand of the Fourier transform operator must be a function, and
x(5t−3) is a number (i.e., the function x evaluated at 5t−3).

■ Using dot notation, we can write the following strictly-correct expression
for the desired Fourier transform: Fx(5 ·−3).

■ In many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 174

Remarks on Notational Conventions

■ Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.

■ To avoid ambiguous notation, the following conventions are followed:
1 in the expression for the operand of a Fourier transform operator, the

independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “t” is treated as if it
were a “·”)

2 in the expression for the operand of the inverse Fourier transform operator,
the independent variable is assumed to be the variable named “ω” unless
otherwise indicated (i.e., in terms of dot notation, each “ω” is treated as if it
were a “·”).

■ For example, with these conventions:
2 “F{cos(t− τ)}” denotes the function that is the Fourier transform of the

function v(t) = cos(t− τ) (not the Fourier transform of the function
v(τ) = cos(t− τ)).

2 “F−1{δ(3ω−λ)}” denotes the function that is the inverse Fourier transform
of the function V (ω) = δ(3ω−λ) (not the inverse Fourier transform of the
function V (λ) = δ(3ω−λ)).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 175

Section 6.2

Convergence Properties of the Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 176

Convergence of the Fourier Transform

■ Consider an arbitrary function x.

■ The function x has the Fourier transform representation x̃ given by

x̃(t) = 1
2π

∫ ∞

−∞
X(ω)e jωtdω, where X(ω) =

∫ ∞

−∞
x(t)e− jωtdt.

■ Now, we need to concern ourselves with the convergence properties of
this representation.

■ In other words, we want to know when x̃ is a valid representation of x.

■ Since the Fourier transform is essentially derived from Fourier series, the
convergence properties of the Fourier transform are closely related to the
convergence properties of Fourier series.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 177

Convergence of the Fourier Transform: Continuous Case

■ If a function x is continuous and absolutely integrable (i.e.,∫ ∞
−∞ |x(t)|dt < ∞) and the Fourier transform X of x is absolutely integrable

(i.e.,
∫ ∞
−∞ |X(ω)|dω < ∞), then the Fourier transform representation of x

converges pointwise (i.e., x(t) = 1
2π

∫ ∞
−∞
[∫ ∞
−∞ x(t)e− jωtdt

]
e jωtdω for all t).

■ Since, in practice, we often encounter functions with discontinuities (e.g.,
a rectangular pulse), the above result is sometimes of limited value.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 178

Convergence of the Fourier Transform: Finite-Energy Case

■ If a function x is of finite energy (i.e.,
∫ ∞
−∞ |x(t)|2 dt < ∞), then its Fourier

transform representation converges in the MSE sense.

■ In other words, if x is of finite energy, then the energy E in the difference
function x̃− x is zero; that is,

E =
∫ ∞

−∞
|x̃(t)− x(t)|2 dt = 0.

■ Since, in situations of practical interest, the finite-energy condition in the
above theorem is often satisfied, the theorem is frequently applicable.

■ It is important to note, however, that the condition E = 0 does not
necessarily imply x̃(t) = x(t) for all t.

■ Thus, the above convergence result does not provide much useful
information regarding the value of x̃(t) at specific values of t.

■ Consequently, the above theorem is typically most useful for simply
determining if the Fourier transform representation converges.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 179

Dirichlet Conditions
■ The Dirichlet conditions for the function x are as follows:

1 the function x is absolutely integrable (i.e.,
∫ ∞
−∞ |x(t)|dt < ∞);

2 on any finite interval, x has a finite number of maxima and minima (i.e., x is
of bounded variation); and

3 on any finite interval, x has a finite number of discontinuities and each
discontinuity is itself finite.

■ Examples of functions violating the Dirichlet conditions are shown below.

0.5 1

10

· · ·
t

t−1u(t)

−1.25 −1 −0.75 −0.5 −0.25 0.25 0.5 0.75 1 1.25

−1

1

· · ·
t

sin(2π/t) rect(t/2)

0.25 0.5 0.75 1

0.25

0.5

0.75

1

· · ·
t

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 180

Convergence of the Fourier Transform: Dirichlet Case

■ If a function x satisfies the Dirichlet conditions, then:
1 the Fourier transform representation x̃ converges pointwise everywhere to

x, except at the points of discontinuity of x; and
2 at each point ta of discontinuity of x, the Fourier transform representation x̃

converges to

x̃(ta) = 1
2

[
x(t−a)+ x(t+a)

]
,

where x(t−a) and x(t+a) denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.

■ Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier transform
representation at every point, this result is often very useful in practice.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 181

Section 6.3

Properties of the Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 182

Properties of the (CT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(t)+a2x2(t) a1X1(ω)+a2X2(ω)
Time-Domain Shifting x(t− t0) e− jωt0X(ω)
Frequency-Domain Shifting e jω0tx(t) X(ω−ω0)

Time/Frequency-Domain Scaling x(at) 1
|a|X

(ω
a

)

Conjugation x∗(t) X∗(−ω)
Duality X(t) 2πx(−ω)
Time-Domain Convolution x1 ∗ x2(t) X1(ω)X2(ω)
Time-Domain Multiplication x1(t)x2(t) 1

2π X1 ∗X2(ω)
Time-Domain Differentiation d

dt x(t) jωX(ω)
Frequency-Domain Differentiation tx(t) j d

dω X(ω)
Time-Domain Integration

∫ t
−∞ x(τ)dτ 1

jω X(ω)+πX(0)δ(ω)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 183

Properties of the (CT) Fourier Transform (Continued)

Property

Parseval’s Relation
∫ ∞
−∞ |x(t)|2 dt = 1

2π
∫ ∞
−∞ |X(ω)|2 dω

Even Symmetry x is even⇔ X is even

Odd Symmetry x is odd⇔ X is odd

Real / Conjugate Symmetry x is real⇔ X is conjugate symmetric

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 184

(CT) Fourier Transform Pairs

Pair x(t) X(ω)
1 δ(t) 1

2 u(t) πδ(ω)+ 1
jω

3 1 2πδ(ω)
4 sgn(t) 2

jω

5 e jω0t 2πδ(ω−ω0)

6 cos(ω0t) π[δ(ω−ω0)+δ(ω+ω0)]

7 sin(ω0t) π
j [δ(ω−ω0)−δ(ω+ω0)]

8 rect(t/T) |T |sinc(T ω/2)

9 sinc(Bt) π
|B| rect

(ω
2B

)

10 e−atu(t), Re{a}> 0 1
a+ jω

11 tn−1e−atu(t), Re{a}> 0 (n−1)!
(a+ jω)n

12 tri(t/T) |T |
2 sinc2(T ω/4)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 185

Linearity

■ If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

a1x1(t)+a2x2(t)
CTFT←→ a1X1(ω)+a2X2(ω),

where a1 and a2 are arbitrary complex constants.

■ This is known as the linearity property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 186

Time-Domain Shifting (Translation)

■ If x(t) CTFT←→ X(ω), then

x(t− t0)
CTFT←→ e− jωt0X(ω),

where t0 is an arbitrary real constant.

■ This is known as the translation (or time-domain shifting) property of
the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 187

Frequency-Domain Shifting (Modulation)

■ If x(t) CTFT←→ X(ω), then

e jω0tx(t) CTFT←→ X(ω−ω0),

where ω0 is an arbitrary real constant.

■ This is known as the modulation (or frequency-domain shifting)
property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 188

Time- and Frequency-Domain Scaling (Dilation)

■ If x(t) CTFT←→ X(ω), then

x(at) CTFT←→ 1
|a|X

(ω
a

)
,

where a is an arbitrary nonzero real constant.

■ This is known as the dilation (or time/frequency-domain scaling)
property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 189

Conjugation

■ If x(t) CTFT←→ X(ω), then
x∗(t) CTFT←→ X∗(−ω).

■ This is known as the conjugation property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 190

Duality

■ If x(t) CTFT←→ X(ω), then
X(t) CTFT←→ 2πx(−ω)

■ This is known as the duality property of the Fourier transform.

■ This property follows from the high degree of symmetry in the forward and
inverse Fourier transform equations, which are respectively given by

X(λ) =
∫ ∞

−∞
x(θ)e− jθλdθ and x(λ) = 1

2π

∫ ∞

−∞
X(θ)e jθλdθ.

■ That is, the forward and inverse Fourier transform equations are identical
except for a factor of 2π and different sign in the parameter for the
exponential function.

■ Although the relationship x(t) CTFT←→ X(ω) only directly provides us with the
Fourier transform of x(t), the duality property allows us to indirectly infer
the Fourier transform of X(t). Consequently, the duality property can be
used to effectively double the number of Fourier transform pairs that we
know.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 191

Time-Domain Convolution

■ If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1 ∗ x2(t)
CTFT←→ X1(ω)X2(ω).

■ This is known as the convolution (or time-domain convolution)
property of the Fourier transform.

■ In other words, a convolution in the time domain becomes a multiplication
in the frequency domain.

■ This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 192

Time-Domain Multiplication

■ If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1(t)x2(t)
CTFT←→ 1

2π X1 ∗X2(ω) = 1
2π

∫ ∞

−∞
X1(θ)X2(ω−θ)dθ.

■ This is known as the (time-domain) multiplication (or
frequency-domain convolution) property of the Fourier transform.

■ In other words, multiplication in the time domain becomes convolution in
the frequency domain (up to a scale factor of 2π).

■ Do not forget the factor of 1
2π in the above formula!

■ This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 193

Time-Domain Differentiation

■ If x(t) CTFT←→ X(ω), then

dx(t)
dt

CTFT←→ jωX(ω).

■ This is known as the (time-domain) differentiation property of the
Fourier transform.

■ Differentiation in the time domain becomes multiplication by jω in the
frequency domain.

■ Of course, by repeated application of the above property, we have that(d
dt

)n
x(t) CTFT←→ (jω)nX(ω).

■ The above suggests that the Fourier transform might be a useful tool
when working with differential (or integro-differential) equations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 194

Frequency-Domain Differentiation

■ If x(t) CTFT←→ X(ω), then

tx(t) CTFT←→ j
d

dω
X(ω).

■ This is known as the frequency-domain differentiation property of the
Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 195

Time-Domain Integration

■ If x(t) CTFT←→ X(ω), then∫ t

−∞
x(τ)dτ CTFT←→ 1

jω
X(ω)+πX(0)δ(ω).

■ This is known as the (time-domain) integration property of the Fourier
transform.

■ Whereas differentiation in the time domain corresponds to multiplication
by jω in the frequency domain, integration in the time domain is
associated with division by jω in the frequency domain.

■ Since integration in the time domain becomes division by jω in the
frequency domain, integration can be easier to handle in the frequency
domain.

■ The above property suggests that the Fourier transform might be a useful
tool when working with integral (or integro-differential) equations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 196

Parseval’s Relation

■ Recall that the energy of a function x is given by
∫ ∞
−∞ |x(t)|2 dt.

■ If x(t) CTFT←→ X(ω), then∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(ω)|2 dω

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

■ This relationship is known as Parseval’s relation.

■ Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 197

Even/Odd Symmetry

■ For a function x with Fourier transform X , the following assertions hold:

x is even⇔ X is even; and

x is odd⇔ X is odd.

■ In other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 198

Real Functions

■ A function x is real if and only if its Fourier transform X satisfies

X(ω) = X∗(−ω) for all ω

(i.e., X is conjugate symmetric).

■ Thus, for a real-valued function, the portion of the graph of X(ω) for ω < 0
is completely redundant, as it is determined by symmetry.

■ From properties of complex numbers, one can show that X(ω) = X∗(−ω)
is equivalent to

|X(ω)|= |X(−ω)| and argX(ω) =−argX(−ω)

(i.e., |X(ω)| is even and argX(ω) is odd).

■ Note that x being real does not necessarily imply that X is real.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 199

More Fourier Transforms

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 200

Section 6.4

Fourier Transform of Periodic Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 201

Fourier Transform of Periodic Functions

■ The Fourier transform can be generalized to also handle periodic
functions.

■ Consider a periodic function x with period T and frequency ω0 =
2π
T .

■ Define the function xT as

xT (t) =

{
x(t) −T

2 ≤ t < T
2

0 otherwise.

(i.e., xT (t) is equal to x(t) over a single period and zero elsewhere).
■ Let a denote the Fourier series coefficient sequence of x.
■ Let X and XT denote the Fourier transforms of x and xT , respectively.
■ The following relationships can be shown to hold:

X(ω) =
∞

∑
k=−∞

ω0XT (kω0)δ(ω− kω0),

ak =
1
T XT (kω0), and X(ω) =

∞

∑
k=−∞

2πakδ(ω− kω0).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 202

Fourier Transform of Periodic Functions (Continued)

■ The Fourier transform X of a periodic function is a series of impulses that
occur at integer multiples of the fundamental frequency ω0 (i.e.,
X(ω) = ∑∞

k=−∞ 2πakδ(ω− kω0)).

■ Due to the preceding fact, the Fourier transform of a periodic function can
only be nonzero at integer multiples of the fundamental frequency.

■ The Fourier series coefficient sequence a is produced by sampling XT at
integer multiples of the fundamental frequency ω0 and scaling the
resulting sequence by 1

T (i.e., ak =
1
T XT (kω0)).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 203

Section 6.5

Fourier Transform and Frequency Spectra of Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 204

The Frequency-Domain Perspective on Functions

■ Like Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on functions.

■ That is, instead of viewing a function as having information distributed with
respect to time (i.e., a function whose domain is time), we view a function
as having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

■ The Fourier transform of a function x provides a means to quantify how
much information x has at different frequencies.

■ The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 205

Fourier Transform and Frequency Spectra

■ To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X(ω) expressed in polar form as
follows:

x(t) = 1
2π

∫ ∞

−∞
X(ω)e jωtdω = 1

2π

∫ ∞

−∞
|X(ω)|e j[ωt+argX(ω)]dω.

■ In effect, the quantity |X(ω)| is a weight that determines how much the
complex sinusoid at frequency ω contributes to the integration result x.

■ The quantity argX(ω) determines how the complex sinusoid at frequency
ω is shifted related to complex sinusoids at other frequencies.

■ Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
areas of rectangles, as shown on the next slide. [Recall that∫ ∞
−∞ f (x)dx = lim∆x→0 ∑∞

k=−∞ ∆x f (k∆x).]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 206

Fourier Transform and Frequency Spectra (Continued 1)

■ Expressing the integral (from the previous slide) as the limit of a sum, we
obtain

x(t) = lim
∆ω→0

1
2π

∞

∑
k=−∞

∆ω |X(ω)|e j[ωt+argX(ω)],

where ω = k∆ω.

■ In the above equation, the kth term in the summation corresponds to a
complex sinusoid with fundamental frequency ω = k∆ω that has had its
amplitude scaled by a factor of |X(ω)| and has been time shifted by an
amount that depends on argX(ω).

■ For a given ω = k∆ω (which is associated with the kth term in the
summation), the larger |X(ω)| is, the larger the amplitude of its
corresponding complex sinusoid e jωt will be, and therefore the larger the
contribution the kth term will make to the overall summation.

■ In this way, we can use |X(ω)| as a measure of how much information a
function x has at the frequency ω.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 207

Fourier Transform and Frequency Spectra (Continued 2)

■ The Fourier transform X of the function x is referred to as the frequency
spectrum of x.

■ The magnitude |X(ω)| of the Fourier transform X is referred to as the
magnitude spectrum of x.

■ The argument argX(ω) of the Fourier transform X is referred to as the
phase spectrum of x.

■ Since the Fourier transform is a function of a real variable, a function can
potentially have information at any real frequency.

■ Since the Fourier transform X of a periodic function x with fundamental
frequency ω0 and the Fourier series coefficient sequence a is given by
X(ω) = ∑∞

k=−∞ 2πakδ(ω− kω0), the Fourier transform and Fourier series
give consistent results for the frequency spectrum of a periodic function.

■ Since the frequency spectrum is complex (in the general case), it is
usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 208

Frequency Spectra of Real Functions

■ Recall that, for a real function x, the Fourier transform X of x satisfies

X(ω) = X∗(−ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(ω)|= |X(−ω)| and argX(ω) =−argX(−ω).

■ Since |X(ω)|= |X(−ω)|, the magnitude spectrum of a real function is
always even.

■ Similarly, since argX(ω) =−argX(−ω), the phase spectrum of a real
function is always odd.

■ Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

■ In the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 209

Bandwidth

■ A function with the Fourier transform X is said to be bandlimited if, for
some (finite) nonnegative real constant B, the following condition holds:

X(ω) = 0 for all ω satisfying |ω|> B.
■ The bandwidth B of a function with the Fourier transform X is defined as

B = ω1−ω0, where X(ω) = 0 for all ω ̸∈ [ω0,ω1].

■ In the case of real-valued functions, however, this definition of bandwidth
is usually amended to consider only nonnegative frequencies.

■ The real-valued function x1 and complex-valued function x2 with the
respective Fourier transforms X1 and X2 shown below each have
bandwidth B (where only nonnegative frequencies are considered in the case of x1).

−B B

1

ω

X1(ω)

−B
2

B
2

1

ω

X2(ω)

■ One can show that a function cannot be both time limited and
bandlimited.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 210

Energy-Density Spectra

■ By Parseval’s relation, the energy E in a function x with Fourier transform
X is given by

E = 1
2π

∫ ∞

−∞
Ex(ω)dω,

where

Ex(ω) = |X(ω)|2 .

■ We refer to Ex as the energy-density spectrum of the function x.

■ The function Ex indicates how the energy in x is distributed with respect to
frequency.

■ For example, the energy contributed by frequencies in the range [ω1,ω2]
is given by

1
2π

∫ ω2

ω1

Ex(ω)dω.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 211

Section 6.6

Fourier Transform and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 212

Frequency Response of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

■ Since y(t) = x∗h(t), we have that

Y (ω) = X(ω)H(ω).

■ The function H is called the frequency response of the system.

■ A LTI system is completely characterized by its frequency response H.

■ The above equation provides an alternative way of viewing the behavior of
a LTI system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
functions.

■ The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 213

Frequency Response of LTI Systems (Continued 1)

■ In the general case, the frequency response H is a complex-valued
function.

■ Often, we represent H(ω) in terms of its magnitude |H(ω)| and argument
argH(ω).

■ The quantity |H(ω)| is called the magnitude response of the system.

■ The quantity argH(ω) is called the phase response of the system.

■ Since Y (ω) = X(ω)H(ω), we trivially have that

|Y (ω)|= |X(ω)| |H(ω)| and argY (ω) = argX(ω)+ argH(ω).

■ The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

■ The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 214

Frequency Response of LTI Systems (Continued 2)

■ Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

|H(ω)|= |H(−ω)| and argH(ω) =−argH(−ω)

(i.e., the magnitude response |H(ω)| is even and the phase response
argH(ω) is odd).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 215

Unwrapped Phase

■ For many types of analysis, restricting the range of a phase function to an
interval of length 2π (such as (−π,π]), often unnecessarily introduces
discontinuities into the function.

■ This motivates the notion of unwrapped phase.

■ The unwrapped phase is simply the phase defined in such a way so as
not to restrict the phase to an interval of length 2π and to keep the phase
function continuous to the greatest extent possible.

■ For example, the function H(ω) = e jπω has the unwrapped phase
Θ(ω) = πω.

−4 −2 2 4

−3π
−2π
−π

π
2π
3π

ω

ArgH(ω)

Phase

−4 −2 2 4

−3π
−2π
−π

π
2π
3π

ω

Θ(ω) = πω

Unwrapped Phase

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 216

Interpretation of Magnitude and Phase Response

■ Recall that a LTI system H with frequency response H is such that

H
{

e jωt}(t) = H(ω)e jωt .

■ Expressing H(ω) in polar form, we have

H{e jωt}(t) = |H(ω)|e j argH(ω)e jωt

= |H(ω)|e j[ωt+argH(ω)]

= |H(ω)|e jω(t+arg[H(ω)]/ω).

■ Thus, the response of the system to the function e jωt is produced by
applying two transformations to this function:

2 (amplitude) scaling by |H(ω)|; and
2 translating by − argH(ω)

ω .

■ Therefore, the magnitude response determines how different complex
sinusoids are scaled (in amplitude) by the system.

■ Similarly, the phase response determines how different complex sinusoids
are translated (i.e., delayed/advanced) by the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 217

Magnitude Distortion

■ Recall that a LTI system H with frequency response H is such that

H{e jωt}(t) = |H(ω)|e jω(t+arg[H(ω)]/ω).

■ If |H(ω)| is a constant (for all ω), every complex sinusoid is scaled by the
same amount when passing through the system.

■ A system for which |H(ω)|= 1 (for all ω) is said to be allpass.

■ In the case of an allpass system, the magnitude spectra of the system’s
input and output are identical.

■ If |H(ω)| is not a constant, different complex sinusoids are scaled by
different amounts, resulting in what is known as magnitude distortion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 218

Phase Distortion

■ Recall that a LTI system H with frequency response H is such that

H{e jωt}(t) = |H(ω)|e jω(t+arg[H(ω)]/ω).

■ The preceding equation can be rewritten as

H{e jωt}(t) = |H(ω)|e jω[t−τp(ω)] where τp(ω) =− argH(ω)
ω .

■ The function τp is known as the phase delay of the system.

■ If τp(ω) = td (where td is a constant), the system shifts all complex
sinusoids by the same amount td.

■ Since τp(ω) = td is equivalent to the (unwrapped) phase response being
of the form argH(ω) =−tdω (which is a linear function with a zero
constant term), a system with a constant phase delay is said to have
linear phase.

■ In the case that τp(ω) = 0, the system is said to have zero phase.

■ If τp(ω) is not a constant, different complex sinusoids are shifted by
different amounts, resulting in what is known as phase distortion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 219

Distortionless Transmission

■ Consider a LTI system H with input x and output y given by

y(t) = x(t− t0),

where t0 is a real constant.
■ That is, the output of the system is simply the input delayed by t0.
■ This type of behavior is the ideal for which we strive in real-world

communication systems (i.e., the received signal y equals a delayed
version of the transmitted signal x).

■ Taking the Fourier transform of the preceding equation, we have

Y (ω) = e− jωt0X(ω).

■ Thus, the system has the frequency response H given by

H(ω) = e− jωt0 .

■ Since the phase delay of the system is τp(ω) =−
(−ωt0

ω
)
= t0, the phase

delay is constant and the system has linear phase.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 220

Magnitude and Phase Distortion in Audio

■ The relative importance of the magnitude spectrum and phase spectrum
is highly dependent on the particular application of interest.

■ Consider the case of the human auditory system (i.e., human hearing).

■ The human auditory system tends to be quite sensitive to changes in the
magnitude spectrum of an audio signal.

■ That is, a significant change in the magnitude spectrum of an audio signal
is very likely to lead to a noticeable difference in the perceived sound.

■ On the other hand, the human auditory system tends to be much less
sensitive to changes in the phase spectrum of an audio signal.

■ In other words, changes to the phase spectrum of an audio signal are
often only barely perceptible or not perceptible at all.

■ For the above reasons, in applications involving the human auditory
system, magnitude distortion often tends to be more of a concern than
phase distortion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 221

Magnitude and Phase Distortion in Images

■ Consider the case of the human visual system.

■ The human visual system tends to be quite sensitive to changes in the
phase spectrum of an image.

■ That is, a significant change in the phase spectrum of an image is likely to
lead to a very substantial difference in how the image is perceived.

■ The phase spectrum of an image tends to capture information about the
location of the edges in the image, and edges are play a crucial role in
how humans perceive images.

■ On the other hand, the human visual system tends to be somewhat less
sensitive to changes in the magnitude spectrum of an image.

■ For the above reasons, phase distortion is usually deemed highly
undesirable in systems that process images, when the image data is to be
consumed by humans.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 222

Example: Magnitude and Phase Distortion in Images (1)

Image A Image B

Magnitude Spectrum from Image B and
Phase Spectrum from Image A

Magnitude Spectrum from Image A and
Phase Spectrum from Image B

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 223

Example: Magnitude and Phase Distortion in Images (2)

Image A Image B (White Noise)

Magnitude Spectrum from Image B and
Phase Spectrum from Image A

Magnitude Spectrum from Image A and
Phase Spectrum from Image B

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 224

Block Diagram Representations of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

■ Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

H
X Y

■ Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 225

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with frequency response H1H2. That is, we
have the equivalence shown below.

H1 H2 ≡ X Y
H1H2

YX

■ The parallel interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with the frequency response H1 +H2. That
is, we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 226

LTI Systems and Differential Equations

■ Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

■ Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bk
(d

dt

)k
y(t) =

M

∑
k=0

ak
(d

dt

)k
x(t),

where the ak and bk are complex constants and M ≤ N.

■ Let h denote the impulse response of the system, and let X , Y , and H
denote the Fourier transforms of x, y, and h, respectively.

■ One can show that H is given by

H(ω) =
Y (ω)
X(ω)

=
∑M

k=0 ak jkωk

∑N
k=0 bk jkωk

.

■ Observe that, for a system of the form considered above, the frequency
response is a rational function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 227

Section 6.7

Application: Filtering

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 228

Filtering

■ In many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

■ This process of modifying the frequency spectrum of a function is called
filtering.

■ A system that performs a filtering operation is called a filter.

■ Many types of filters exist.

■ Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

■ Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 229

Ideal Lowpass Filter

■ An ideal lowpass filter eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(ω) =

{
1 |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.
■ A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

PassbandStopband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 230

Ideal Highpass Filter

■ An ideal highpass filter eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(ω) =

{
1 |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.
■ A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

· · · · · ·

StopbandPassband Passband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 231

Ideal Bandpass Filter

■ An ideal bandpass filter eliminates all frequency components with a
frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(ω) =

{
1 ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.
■ A plot of this frequency response is given below.

ω

1

H(ω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 232

Section 6.8

Application: Equalization

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 233

Equalization

■ Often, we find ourselves faced with a situation where we have a system
with a particular frequency response that is undesirable for the application
at hand.

■ As a result, we would like to change the frequency response of the system
to be something more desirable.

■ This process of modifying the frequency response in this way is referred to
as equalization. [Essentially, equalization is just a filtering operation.]

■ Equalization is used in many applications.

■ In real-world communication systems, equalization is used to eliminate or
minimize the distortion introduced when a signal is sent over a (nonideal)
communication channel.

■ In audio applications, equalization can be employed to emphasize or
de-emphasize certain ranges of frequencies. For example, equalization
can be used to boost the bass (i.e., emphasize the low frequencies) in the
audio output of a stereo.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 234

Equalization (Continued)
OutputInput

horig

Original System

horig
y

heq
x

New System with Equalization

■ Let Horig denote the frequency response of original system (i.e., without
equalization).

■ Let Hd denote the desired frequency response.
■ Let Heq denote the frequency response of the equalizer.
■ The new system with equalization has frequency response

Hnew(ω) = Heq(ω)Horig(ω).

■ By choosing Heq(ω) = Hd(ω)/Horig(ω), the new system with equalization
will have the frequency response

Hnew(ω) = [Hd(ω)/Horig(ω)]Horig(ω) = Hd(ω).

■ In effect, by using an equalizer, we can obtain a new system with the
frequency response that we desire.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 235

Section 6.9

Application: Circuit Analysis

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 236

Electronic Circuits

■ An electronic circuit is a network of one or more interconnected circuit
elements.

■ The three most basic types of circuit elements are:
1 resistors;
2 inductors; and
3 capacitors.

■ Two fundamental quantities of interest in electronic circuits are current and
voltage.

■ Current is the rate at which electric charge flows through some part of a
circuit, such as a circuit element, and is measured in units of amperes (A).

■ Voltage is the difference in electric potential between two points in a
circuit, such as across a circuit element, and is measured in units of
volts (V).

■ Voltage is essentially a force that makes electric charge (or current) flow.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 237

Resistors

■ A resistor is a circuit element that opposes the flow of current.

■ A resistor is characterized by an equation of the form

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R v(t)
)
,

where R is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the resistor as a function of time.

■ As a matter of terminology, the quantity R is known as the resistance of
the resistor.

■ Resistance is measured in units of ohms (Ω).

■ In circuit diagrams, a resistor is denoted by the symbol shown below.

i(t) R

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 238

Inductors

■ An inductor is a circuit element that converts an electric current into a
magnetic field and vice versa.

■ An inductor uses the energy stored in a magnetic field in order to oppose
changes in current (through the inductor).

■ An inductor is characterized by an equation of the form

v(t) = L d
dt i(t) (or equivalently, i(t) = 1

L

∫ t

−∞
v(τ)dτ),

where L is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the inductor as a function of time.

■ As a matter of terminology, the quantity L is known as the inductance of
the inductor.

■ Inductance is measured in units of henrys (H).
■ In circuit diagrams, an inductor is denoted by the symbol shown below.

i(t)
L

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 239

Capacitors

■ A capacitor is a circuit element that stores electric charge.

■ A capacitor uses the energy stored in an electric field in order to oppose
changes in voltage (across the capacitor).

■ A capacitor is characterized by an equation of the form

v(t) = 1
C

∫ t

−∞
i(τ)dτ (or equivalently, i(t) =C d

dt v(t)),

where C is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the capacitor as a function of time.

■ As a matter of terminology, the quantity C is known as the capacitance of
the capacitor.

■ Capacitance is measured in units of farads (F).

■ In circuit diagrams, a capacitor is denoted by the symbol shown below.

i(t)
C

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 240

Circuit Analysis with the Fourier Transform

■ The Fourier transform is a very useful tool for circuit analysis.

■ The utility of the Fourier transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Fourier domain than in the time domain.

■ Let v and i denote the voltage across and current through a circuit
element, and let V and I denote the Fourier transforms of v and i,
respectively.

■ In the frequency domain, the equations characterizing a resistor, an
inductor, and a capacitor respectively become:

V (ω) = RI(ω) (or equivalently, I(ω) = 1
RV (ω));

V (ω) = jωLI(ω) (or equivalently, I(ω) = 1
jωLV (ω)); and

V (ω) = 1
jωC I(ω) (or equivalently, I(ω) = jωCV (ω)).

■ Note the absence of differentiation and integration in the above equations
for an inductor and a capacitor.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 241

Section 6.10

Application: Amplitude Modulation (AM)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 242

Motivation for Amplitude Modulation (AM)
■ In communication systems, we often need to transmit a signal using a

frequency range that is different from that of the original signal.
■ For example, voice/audio signals typically have information in the range of

0 to 22 kHz.
■ Often, it is not practical to transmit such a signal using its original

frequency range.
■ Two potential problems with such an approach are:

1 interference; and
2 constraints on antenna length.

■ Since many signals are broadcast over the airwaves, we need to ensure
that no two transmitters use the same frequency bands in order to avoid
interference.

■ Also, in the case of transmission via electromagnetic waves (e.g., radio
waves), the length of antenna required becomes impractically large for the
transmission of relatively low frequency signals.

■ For the preceding reasons, we often need to change the frequency range
associated with a signal before transmission.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 243

Trivial Amplitude Modulation (AM) System

×

c1(t) = e jωct

yx

Transmitter

×

c2(t) = e− jωct

x̂y

Receiver

■ The transmitter is characterized by

y(t) = e jωctx(t) ⇐⇒ Y (ω) = X(ω−ωc).

■ The receiver is characterized by

x̂(t) = e− jωcty(t) ⇐⇒ X̂(ω) = Y (ω+ωc).

■ Clearly, x̂(t) = e jωcte− jωctx(t) = x(t).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 244

Trivial Amplitude Modulation (AM) System: Example

ωb−ωb
ω

1

X(ω)

Transmitter Input
ωc

C1(ω)

2π

ω

C2(ω)

ω−ωc

2π

Y (ω)

ωc +ωbωc−ωbωb ωc

1

ω

Transmitter Output

ωb−ωb
ω

1

X̂(ω)

Receiver Output

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 245

Double-Sideband Suppressed-Carrier (DSB-SC) AM

×

c(t) = cos(ωct)

yx

Transmitter

×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0
π sinc(ωc0t)

Receiver

■ Let X = Fx, Y = Fy, and X̂ = Fx̂.

■ Suppose that X(ω) = 0 for all ω ̸∈ [−ωb,ωb].

■ The transmitter is characterized by

Y (ω) = 1
2 [X(ω+ωc)+X(ω−ωc)] .

■ The receiver is characterized by

X̂(ω) = [Y (ω+ωc)+Y (ω−ωc)] rect
(

ω
2ωc0

)
.

■ If ωb < ωc0 < 2ωc−ωb, we have X̂(ω) = X(ω) (implying x̂(t) = x(t)).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 246

DSB-SC AM: Transmitter

×

c(t) = cos(ωct)

yx

y(t) = cos(ωct)x(t)

X = Fx, Y = Fy

Y (ω) = F{cos(ωct)x(t)}(ω)
= F

{ 1
2

(
e jωct + e− jωct)x(t)

}
(ω)

= 1
2

[
F{e jωctx(t)}(ω)+F{e− jωctx(t)}(ω)

]

= 1
2 [X(ω−ωc)+X(ω+ωc)]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 247

DSB-SC AM: Receiver

×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0
π sinc(ωc0t)

v(t) = cos(ωct)y(t), h(t) = 2ωc0
π sinc(ωc0t), x̂(t) = v∗h(t)

Y = Fy, V = Fv, H = Fh, X̂ = Fx̂

V (ω) = F{cos(ωct)y(t)}(ω)
= F

{ 1
2

(
e jωct + e− jωct)y(t)

}
(ω)

= 1
2

[
F
{

e jωcty(t)
}
(ω)+F

{
e− jωcty(t)

}
(ω)
]

= 1
2 [Y (ω−ωc)+Y (ω+ωc)]

H(ω) = F
{

2ωc0
π sinc(ωc0t)

}
(ω)

= 2rect
(

ω
2ωc0

)

X̂(ω) = H(ω)V (ω)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 248

DSB-SC AM: Complete System

×

c(t) = cos(ωct)

yx
×

c(t) = cos(ωct)

h
x̂vy

h(t) = 2ωc0
π sinc(ωc0t)

Y (ω) = 1
2 [X(ω−ωc)+X(ω+ωc)]

V (ω) = 1
2 [Y (ω−ωc)+Y (ω+ωc)]

= 1
2

[1
2 [X([ω−ωc]−ωc)+X([ω−ωc]+ωc)]+

1
2 [X([ω+ωc]−ωc)+X([ω+ωc]+ωc)]

]

= 1
2 X(ω)+ 1

4 X(ω−2ωc)+
1
4 X(ω+2ωc)

X̂(ω) = H(ω)V (ω)

= H(ω)
[1

2 X(ω)+ 1
4 X(ω−2ωc)+

1
4 X(ω+2ωc)

]

= 1
2 H(ω)X(ω)+ 1

4 H(ω)X(ω−2ωc)+
1
4 H(ω)X(ω+2ωc)

= 1
2 [2X(ω)]+ 1

4 (0)+
1
4 (0)

= X(ω)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 249

DSB-SC AM: Example

ωb

X(ω)

1

−ωb
ω

Transmitter Input
ωc−ωc

ω

C(ω)

ππ

ωc0−ωc0
ω

2

H(ω)

−ωc −ωb −ωc −ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

Transmitter Output
V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb −2ωc +ωb

2ωc2ωc −ωb 2ωc +ωb

1
2

1
4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

Receiver Output

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 250

Single-Sideband Suppressed-Carrier (SSB-SC) AM

× g
q

c(t) = cos(ωct)

yx
g(t) = δ(t)− ωc

π sinc(ωct)

Transmitter

×

c(t) = cos(ωct)

h
x̂vy

h(t) = 4ωc0
π sinc(ωc0t)

Receiver

■ The basic analysis of the SSB-SC AM system is similar to the DSB-SC
AM system.

■ SSB-SC AM requires half as much bandwidth for the transmitted signal as
DSB-SC AM.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 251

SSB-SC AM: Example

ωb

X(ω)

1

−ωb
ω ωc−ωc

ω

C(ω)

ππ

ωc−ωc
ω

G(ω)

· · · 1 · · ·

ωc0−ωc0
ω

4

H(ω)

−ωc −ωb −ωc −ωc +ωb

Q(ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

−ωc −ωb −ωc −ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb −2ωc +ωb

2ωc2ωc −ωb 2ωc +ωb

1
2

1
4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 252

Section 6.11

Application: Sampling and Interpolation

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 253

Sampling and Interpolation

■ Often, we want to be able to transform a continuous-time signal (i.e., a
function) into a discrete-time signal (i.e., a sequence) and vice versa.

■ This is accomplished through processes known as sampling and
interpolation.

■ Sampling, which is performed by a continuous-time to discrete-time
(C/D) converter shown below, transforms a function x to a sequence y.

x C/D
Converter

y

■ Interpolation, which is performed by a discrete-time to
continuous-time (D/C) converter shown below, transforms a sequence y
to a function x.

y
Converter

D/C x

■ Note that, unless very special conditions are met, the sampling process
loses information (i.e., is not invertible).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 254

Periodic Sampling
■ Although sampling can be performed in many different ways, the most

commonly used scheme is periodic sampling.

■ With this scheme, a sequence y of samples is obtained from a function x
according to the relation

y(n) = x(T n) for all integer n,

where T is a (strictly) positive real constant.

■ As a matter of terminology, we refer to T as the sampling period, and
ωs =

2π
T as the (angular) sampling frequency.

■ An example of periodic sampling is shown below, where the function x has
been sampled with sampling period T = 10, yielding the sequence y.

100 20 30 50 60 70
t

x(t)

40

1

2

3

4

Function to Be Sampled
10 2 3 4 5 6 7

n

y(n)

2

3

4

1

Sequence Produced by Sampling

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 255

Invertibility of Sampling
■ Unless constraints are placed on the functions being sampled, the

sampling process is not invertible.
■ In other words, in the absence of any constraints, a function cannot be

uniquely determined from a sequence of its equally-spaced samples.
■ Consider, for example, the functions x1 and x2 given by

x1(t) = 0 and x2(t) = sin(2πt).
■ Sampling x1 and x2 with the sampling period T = 1 yields the respective

sequences

y1(n) = x1(T n) = x1(n) = 0 and

y2(n) = x2(T n) = sin(2πn) = 0.
■ So, although x1 and x2 are distinct, y1 and y2 are identical.
■ Given the sequence y where y = y1 = y2, it is impossible to determine

which function was sampled to produce y.
■ Only by imposing a carefully chosen set of constraints on the functions

being sampled can we ensure that a function can be exactly recovered
from only its samples.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 256

Model of Sampling

■ An impulse train is a function of the form v(t) = ∑∞
k=−∞ ckδ(t− kT),

where ck and T are real constants.

■ For the purposes of analysis, sampling with sampling period T and
frequency ωs =

2π
T can be modelled as shown below.

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT)

■ The sampling of a function x to produce a sequence y consists of the
following two steps (in order):

1 Multiply the function x to be sampled by a periodic impulse train p, yielding
the impulse train s(t) = ∑∞

n=−∞ x(nT)δ(t−nT).
2 Convert the impulse train s to a sequence y by forming y from the weights of

successive impulses in s so that y(n) = x(nT).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 257

Model of Sampling: Various Signals

0 T 2T 3T
t

x(t)

2

3

4

1

Input Function

0 T 2T 3T

1 1 1 1

p(t)

t

· · · · · ·

Periodic Impulse Train

0 T 2T 3T
t

s(t)

2

3

4

1

x(T)

x(0)

x(2T)
x(3T)

Impulse-Sampled Function
(Continuous-Time)

0 1 2 3
n

y(n)

2

3

4

1

x(T)

x(3T)x(2T)

x(0)

Output Sequence (Discrete-Time)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 258

Model of Sampling: Invertibility of Sampling Revisited

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT)

■ Since sampling is not invertible and our model of sampling consists of only
two steps, at least one of these two steps must not be invertible.

■ Recall the two steps in our model of sampling are as follows (in order):

1 x −→ s(t) = x(t)p(t) =
∞

∑
n=−∞

x(nT)δ(t−nT); and

2 s(t) =
∞

∑
n=−∞

x(nT)δ(t−nT) −→ y(n) = x(nT).

■ Step 1 cannot be undone (unless we somehow restrict which functions x
can be sampled).

■ Step 2 is always invertible.

■ Therefore, the fact that sampling is not invertible is entirely due to step 1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 259

Model of Sampling: Characterization

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT)

■ In the time domain, the impulse-sampled function s is given by

s(t) = x(t)p(t) where p(t) =
∞

∑
k=−∞

δ(t− kT).

■ In the Fourier domain, the preceding equation becomes

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs) (where ωs =
2π
T).

■ Thus, the spectrum of the impulse-sampled function s is a scaled sum of
an infinite number of shifted copies of the spectrum of the original
function x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 260

Sampling: Fourier Series for a Periodic Impulse Train

p(t) =
∞

∑
k=−∞

δ(t− kT), ωs =
2π
T

p(t) =
∞

∑
k=−∞

cke jkωst

ck =
1
T

∫ T/2

−T/2
p(t)e− jkωstdt

= 1
T

∫ T/2

−T/2
δ(t)e− jkωstdt

= 1
T

∫ ∞

−∞
δ(t)e− jkωstdt

= 1
T

= ωs
2π

p(t) = ωs
2π

∞

∑
k=−∞

e jkωst

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 261

Sampling: Multiplication by a Periodic Impulse Train

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT)

s(t) = p(t)x(t), p(t) =
∞

∑
k=−∞

δ(t− kT), ωs =
2π
T

p(t) = ωs
2π

∞

∑
k=−∞

e jkωst

s(t) = ωs
2π

∞

∑
k=−∞

e jkωstx(t)

X = Fx, S = Fs

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 262

Model of Sampling: Aliasing

■ Consider frequency spectrum S of the impulse-sampled function s given by

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs).

■ The function S is a scaled sum of an infinite number of shifted copies of X .

■ Two distinct behaviors can result in this summation, depending on ωs and
the bandwidth of x.

■ In particular, the nonzero portions of the different shifted copies of X can
either:

1 overlap; or
2 not overlap.

■ In the case where overlap occurs, the various shifted copies of X add
together in such a way that the original shape of X is lost. This
phenomenon is known as aliasing.

■ When aliasing occurs, the original function x cannot be recovered from its
samples in y.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 263

Model of Sampling: Aliasing (Continued)

0−ωm ωm
ω

X(ω)

1
Spectrum of Input
Function
(Bandwidth ωm)

ωm

S(ω)

−ωm−ωs ωsωs−ωm ωs +ωm−ωs +ωm−ωs−ωm 0

1
T

ω

· · · · · ·

Spectrum of Impulse-
Sampled Function:
No Aliasing Case
(ωs > 2ωm)

ωm

S(ω)

ωs−ωm ωs

0

1
T

· · · · · ·

ω

Spectrum of Impulse-
Sampled Function:
Aliasing Case
(ωs ≤ 2ωm)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 264

Model of Interpolation

■ For the purposes of analysis, interpolation can be modelled as shown
below.

impulse train
sequence to
convert fromy x̂s

h

ideal D/C converter

h(t) = sinc
(π

T t
)

■ The reconstruction of a function x from its sequence y of samples (i.e.,
bandlimited interpolation) consists of the following two steps (in order):

1 Convert the sequence y to the impulse train s by using the samples in y as
the weights of successive impulses in s so that s(t) = ∑∞

n=−∞ y(n)δ(t−T n).
2 Apply the lowpass filter with impulse response h to s to produce x̂ so that

x̂(t) = s∗h(t) = ∑∞
n=−∞ y(n)sinc

[π
T (t−T n)

]
.

■ The lowpass filter is used to eliminate the extra copies of the
originally-sampled function’s spectrum present in the spectrum of s.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 265

Sampling Theorem

■ Sampling Theorem. Let x be a function with Fourier transform X , and
suppose that |X(ω)|= 0 for all ω satisfying |ω|> ωM (i.e., x is
bandlimited to frequencies [−ωM,ωM]). Then, x is uniquely determined by
its samples y(n) = x(T n) for all integer n, if

ωs > 2ωM,

where ωs =
2π
T . The preceding inequality is known as the Nyquist

condition. If this condition is satisfied, we have that

x(t) =
∞

∑
n=−∞

y(n)sinc
[π

T (t−T n)
]
,

or equivalently (i.e., rewritten in terms of ωs instead of T),

x(t) =
∞

∑
n=−∞

y(n)sinc
(ωs

2 t−πn
)
.

■ We call ωs
2 the Nyquist frequency and 2ωM the Nyquist rate.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 266

Part 7

Laplace Transform (LT)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 267

Motivation Behind the Laplace Transform

■ Another important mathematical tool in the study of signals and systems
is known as the Laplace transform.

■ The Laplace transform can be viewed as a generalization of the
(classical) Fourier transform.

■ Due to its more general nature, the Laplace transform has a number of
advantages over the (classical) Fourier transform.

■ First, the Laplace transform representation exists for some functions that
do not have a Fourier transform representation. So, we can handle
some functions with the Laplace transform that cannot be handled with
the Fourier transform.

■ Second, since the Laplace transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 268

Motivation Behind the Laplace Transform (Continued)

■ Earlier, we saw that complex exponentials are eigenfunctions of LTI
systems.

■ In particular, for a LTI system H with impulse response h, we have that

H{est}(t) = H(s)est where H(s) =
∫ ∞

−∞
h(t)e−stdt.

■ Previously, we referred to H as the system function.

■ As it turns out, H is the Laplace transform of h.

■ Since the Laplace transform has already appeared earlier in the context of
LTI systems, it is clearly a useful tool.

■ Furthermore, as we will see, the Laplace transform has many additional
uses.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 269

Section 7.1

Laplace Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 270

(Bilateral) Laplace Transform
■ The (bilateral) Laplace transform of the function x, denoted Lx or X , is

defined as

Lx(s) = X(s) =
∫ ∞

−∞
x(t)e−stdt.

■ The inverse Laplace transform of X , denoted L−1X or x, is then given
by

L−1X(t) = x(t) =
1

2π j

∫ σ+ j∞

σ− j∞
X(s)estds,

where Re(s) = σ is in the ROC of X . (Note that this is a contour
integration, since s is complex.)

■ We refer to x and X as a Laplace transform pair and denote this
relationship as

x(t) LT←→ X(s).

■ In practice, we do not usually compute the inverse Laplace transform by
directly using the formula from above. Instead, we resort to other means
(to be discussed later).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 271

Bilateral and Unilateral Laplace Transforms

■ Two different versions of the Laplace transform are commonly used:
1 the bilateral (or two-sided) Laplace transform; and
2 the unilateral (or one-sided) Laplace transform.

■ The unilateral Laplace transform is most frequently used to solve systems
of linear differential equations with nonzero initial conditions.

■ As it turns out, the only difference between the definitions of the bilateral
and unilateral Laplace transforms is in the lower limit of integration.

■ In the bilateral case, the lower limit is −∞, whereas in the unilateral case,
the lower limit is 0 (i.e.,

∫ ∞
−∞ x(t)e−stdt versus

∫ ∞
0− x(t)e−stdt).

■ For the most part, we will focus our attention primarily on the bilateral
Laplace transform.

■ We will, however, briefly introduce the unilateral Laplace transform as a
tool for solving differential equations.

■ Unless otherwise noted, all subsequent references to the Laplace
transform should be understood to mean bilateral Laplace transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 272

Remarks on Operator Notation

■ For a function x, the Laplace transform of x is denoted using operator
notation as Lx.

■ The Laplace transform of x evaluated at s is denoted Lx(s).
■ Note that Lx is a function, whereas Lx(s) is a number.

■ Similarly, for a function X , the inverse Laplace transform of X is denoted
using operator notation as L−1X .

■ The inverse Laplace transform of X evaluated at t is denoted L−1X(t).
■ Note that L−1X is a function, whereas L−1X(t) is a number.

■ With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

■ Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 273

Remarks on Dot Notation

■ Often, we would like to write an expression for the Laplace transform of a
function without explicitly naming the function.

■ For example, consider writing an expression for the Laplace transform of
the function v(t) = x(5t−3) but without using the name “v”.

■ It would be incorrect to write “Lx(5t−3)” as this is the function Lx
evaluated at 5t−3, which is not the meaning that we wish to convey.

■ Also, strictly speaking, it would be incorrect to write “L{x(5t−3)}” as the
operand of the Laplace transform operator must be a function, and
x(5t−3) is a number (i.e., the function x evaluated at 5t−3).

■ Using dot notation, we can write the following strictly-correct expression
for the desired Laplace transform: L{x(5 ·−3)}.

■ In many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 274

Remarks on Notational Conventions

■ Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.

■ To avoid ambiguous notation, the following conventions are followed:
1 in the expression for the operand of a Laplace transform operator, the

independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “t” is treated as if it
were a “·”)

2 in the expression for the operand of the inverse Laplace transform operator,
the independent variable is assumed to be the variable named “s” unless
otherwise indicated (i.e., in terms of dot notation, each “s” is treated as if it
were a “·”).

■ For example, with these conventions:
2 “L{(t− τ)u(t− τ)}” denotes the function that is the Laplace transform of

the function v(t) = (t− τ)u(t− τ) (not the Laplace transform of the function
v(τ) = (t− τ)u(t− τ)).

2 “L−1{ 1
s2−λ}” denotes the function that is the inverse Laplace transform of

the function V (s) = { 1
s2−λ} (not the inverse Laplace transform of the

function V (λ) = { 1
s2−λ}).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 275

Relationship Between Laplace and Fourier Transforms

■ Let X and XF denote the Laplace and (CT) Fourier transforms of x,
respectively.

■ The function X evaluated at jω (where ω is real) yields XF(ω). That is,

X(jω) = XF(ω).

■ Due to the preceding relationship, the Fourier transform of x is sometimes
written as X(jω).

■ The function X evaluated at an arbitrary complex value s = σ+ jω (where
σ = Re(s) and ω = Im(s)) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(σ+ jω) = X ′F(ω),

where X ′F is the (CT) Fourier transform of x′(t) = e−σtx(t).
■ So, in general, the Laplace transform of x is the Fourier transform of an

exponentially-weighted version of x.
■ Due to this weighting, the Laplace transform of a function may exist when

the Fourier transform of the same function does not.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 276

Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 277

Section 7.2

Region of Convergence (ROC)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 278

Left-Half Plane (LHP)

■ The set R of all complex numbers s satisfying

Re(s)< a

for some real constant a is said to be a left-half plane (LHP).
■ Some examples of LHPs are shown below.

Im{s}

Re{s}

a < 0

a

Im{s}

Re{s}

a > 0

a

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 279

Right-Half Plane (RHP)

■ The set R of all complex numbers s satisfying

Re(s)> a

for some real constant a is said to be a right-half plane (RHP).
■ Some examples of RHPs are shown below.

Re{s}

Im{s}

a

a < 0 Im{s}

a
Re{s}

a > 0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 280

Intersection of Sets

■ For two sets A and B, the intersection of A and B, denoted A∩B, is the
set of all points that are in both A and B.

■ An illustrative example of set intersection is shown below.

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R1

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R2

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R1∩R2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 281

Adding a Scalar to a Set

■ For a set S and a scalar constant a, S+a denotes the set given by

S+a = {z+a : z ∈ S}

(i.e., S+a is the set formed by adding a to each element of S).

■ Effectively, adding a scalar to a set applies a translation (i.e., shift) to the
region associated with the set.

■ An illustrative example is given below.

2

1

2

−1

−2

Im

−2−3 3
Re−1 1

R

1

1

2

−1

−2

Im

−2−3 3
Re−1 2

R+1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 282

Multiplying a Set by a Scalar
■ For a set S and a scalar constant a, aS denotes the set given by

aS = {az : z ∈ S}
(i.e., aS is the set formed by multiplying each element of S by a).

■ Multiplying z by a affects z by: scaling by |a| and rotating about the origin
by arga.

■ So, effectively, multiplying a set by a scalar applies a scaling and/or
rotation to the region associated with the set.

■ An illustrative example is given below.

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

R

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

2R

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

−2R
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 283

Region of Convergence (ROC)

■ As we saw earlier, for a function x, the complete specification of its
Laplace transform X requires not only an algebraic expression for X , but
also the ROC associated with X .

■ Two very different functions can have the same algebraic expressions
for X .

■ On the slides that follow, we will examine a number of key properties of
the ROC of the Laplace transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 284

ROC Property 1: General Form

■ The ROC of a Laplace transform consists of strips parallel to the
imaginary axis in the complex plane.

■ That is, if a point s0 is in the ROC, then the vertical line through s0 (i.e.,
Re(s) = Re(s0)) is also in the ROC.

■ Some examples of sets that would be either valid or invalid as ROCs are
shown below.

Re

Im

Valid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 285

ROC Property 2: Rational Laplace Transforms

■ If a Laplace transform X is a rational function, the ROC of X does not
contain any poles and is bounded by poles or extends to infinity.

■ Some examples of sets that would be either valid or invalid as ROCs of
rational Laplace transforms are shown below.

Re

Im

Valid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 286

ROC Property 3: Finite-Duration Functions

■ If a function x is finite duration and its Laplace transform X converges for
at least one point, then X converges for all points in the complex plane
(i.e., the ROC is the entire complex plane).

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if x is finite duration, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 287

ROC Property 4: Right-Sided Functions

■ If a function x is right sided and the (vertical) line Re(s) = σ0 is in the
ROC of the Laplace transform X = Lx, then all values of s for which
Re(s)> σ0 must also be in the ROC (i.e., the ROC includes a RHP
containing Re(s) = σ0).

■ Thus, if x is right sided but not left sided, the ROC of X is a RHP.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if x is right sided but not left sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 288

ROC Property 5: Left-Sided Functions

■ If a function x is left sided and the (vertical) line Re(s) = σ0 is in the ROC
of the Laplace transform X = Lx, then all values of s for which Re(s)< σ0
must also be in the ROC (i.e., the ROC includes a LHP containing
Re(s) = σ0).

■ Thus, if x is left sided but not right sided, the ROC of X is a LHP.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if x is left sided but not right sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 289

ROC Property 6: Two-Sided Functions

■ If a function x is two sided and the (vertical) line Re(s) = σ0 is in the ROC
of the Laplace transform X = Lx, then the ROC will consist of a strip in
the complex plane that includes the line Re(s) = σ0.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if x is two sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 290

ROC Property 7: More on Rational Laplace Transforms

■ If the Laplace transform X of a function x is rational (with at least one
pole), then:

1 If x is right sided, the ROC of X is to the right of the rightmost pole of X
(i.e., the RHP to the right of the rightmost pole).

2 If x is left sided, the ROC of X is to the left of the leftmost pole of X (i.e., the
LHP to the left of the leftmost pole).

■ This property is implied by properties 1, 2, 4, and 5.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if X is rational and x is left/right sided, are given below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 291

General Form of the ROC

■ To summarize the results of properties 3, 4, 5, and 6, if the Laplace
transform X of the function x exists, the ROC of X depends on the left-
and right-sidedness of x as follows:

x
left sided right sided ROC of X

no no strip
no yes RHP
yes no LHP
yes yes everywhere

■ Thus, we can infer that, if X exists, its ROC can only be of the form of a
LHP, a RHP, a vertical strip, or the entire complex plane.

■ For example, the sets shown below would not be valid as ROCs.

Re

Im

Invalid

Re

Im

Invalid
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 292

Section 7.3

Properties of the Laplace Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 293

Properties of the Laplace Transform

Property Time Domain Laplace Domain ROC

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s) At least R1∩R2

Time-Domain Shifting x(t− t0) e−st0X(s) R

Laplace-Domain Shifting es0tx(t) X(s− s0) R+Re(s0)

Time/Laplace-Domain Scaling x(at) 1
|a|X

(s
a

)
aR

Conjugation x∗(t) X∗(s∗) R

Time-Domain Convolution x1 ∗ x2(t) X1(s)X2(s) At least R1∩R2

Time-Domain Differentiation d
dt x(t) sX(s) At least R

Laplace-Domain Differentiation −tx(t) d
ds X(s) R

Time-Domain Integration
∫ t
−∞ x(τ)dτ 1

s X(s) At least R∩{Re(s)> 0}

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 294

Laplace Transform Pairs

Pair x(t) X(s) ROC

1 δ(t) 1 All s

2 u(t) 1
s Re(s)> 0

3 −u(−t) 1
s Re(s)< 0

4 tnu(t) n!
sn+1 Re(s)> 0

5 −tnu(−t) n!
sn+1 Re(s)< 0

6 e−atu(t) 1
s+a Re(s)>−a

7 −e−atu(−t) 1
s+a Re(s)<−a

8 tne−atu(t) n!
(s+a)n+1 Re(s)>−a

9 −tne−atu(−t) n!
(s+a)n+1 Re(s)<−a

10 cos(ω0t)u(t) s
s2+ω2

0
Re(s)> 0

11 sin(ω0t)u(t) ω0
s2+ω2

0
Re(s)> 0

12 e−at cos(ω0t)u(t) s+a
(s+a)2+ω2

0
Re(s)>−a

13 e−at sin(ω0t)u(t) ω0
(s+a)2+ω2

0
Re(s)>−a

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 295

Linearity

■ If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

a1x1(t)+a2x2(t)
LT←→ a1X1(s)+a2X2(s) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

■ This is known as the linearity property of the Laplace transform.

■ The ROC R always contains R1∩R2 but can be larger (in the case that
pole-zero cancellation occurs).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 296

Time-Domain Shifting

■ If x(t) LT←→ X(s) with ROC R, then

x(t− t0)
LT←→ e−st0X(s) with ROC R,

where t0 is an arbitrary real constant.

■ This is known as the time-domain shifting property of the Laplace
transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 297

Laplace-Domain Shifting

■ If x(t) LT←→ X(s) with ROC R, then

es0tx(t) LT←→ X(s− s0) with ROC R′ = R+Re(s0),

where s0 is an arbitrary complex constant.

■ This is known as the Laplace-domain shifting property of the Laplace
transform.

■ As illustrated below, the ROC R is shifted right by Re(s0).
Im

σmin σmax
Re

R

Re

Im

σmin +Re(s0) σmax +Re(s0)

R′ = R+Re(s0)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 298

Time-Domain/Laplace-Domain Scaling

■ If x(t) LT←→ X(s) with ROC R, then

x(at) LT←→ 1
|a|X

(s
a

)
with ROC R′ = aR,

where a is a nonzero real constant.

■ This is known as the (time-domain/Laplace-domain) scaling property
of the Laplace transform.

■ As illustrated below, the ROC R is scaled and possibly flipped left to right.
Im

σmin σmax
Re

R

Im

Re
aσmaxaσmin

R′ = aR, a > 0

Im

Re
aσmax aσmin

R′ = aR, a < 0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 299

Conjugation

■ If x(t) LT←→ X(s) with ROC R, then

x∗(t) LT←→ X∗(s∗) with ROC R.

■ This is known as the conjugation property of the Laplace transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 300

Time-Domain Convolution

■ If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

x1 ∗ x2(t)
LT←→ X1(s)X2(s) with ROC R containing R1∩R2.

■ This is known as the time-domain convolution property of the Laplace
transform.

■ The ROC R always contains R1∩R2 but can be larger than this
intersection (if pole-zero cancellation occurs).

■ Convolution in the time domain becomes multiplication in the Laplace
domain.

■ Consequently, it is often much easier to work with LTI systems in the
Laplace domain, rather than the time domain.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 301

Time-Domain Differentiation

■ If x(t) LT←→ X(s) with ROC R, then

dx(t)
dt

LT←→ sX(s) with ROC R′ containing R.

■ This is known as the time-domain differentiation property of the
Laplace transform.

■ The ROC R′ always contains R but can be larger than R (if pole-zero
cancellation occurs).

■ Differentiation in the time domain becomes multiplication by s in the
Laplace domain.

■ Consequently, it can often be much easier to work with differential
equations in the Laplace domain, rather than the time domain.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 302

Laplace-Domain Differentiation

■ If x(t) LT←→ X(s) with ROC R, then

−tx(t) LT←→ dX(s)
ds

with ROC R.

■ This is known as the Laplace-domain differentiation property of the
Laplace transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 303

Time-Domain Integration

■ If x(t) LT←→ X(s) with ROC R, then∫ t

−∞
x(τ)dτ LT←→ 1

s
X(s) with ROC R′ containing R∩{Re(s)> 0}.

■ This is known as the time-domain integration property of the Laplace
transform.

■ The ROC R′ always contains at least R∩{Re(s)> 0} but can be larger (if
pole-zero cancellation occurs).

■ Integration in the time domain becomes division by s in the Laplace
domain.

■ Consequently, it is often much easier to work with integral equations in the
Laplace domain, rather than the time domain.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 304

Initial Value Theorem

■ For a function x with Laplace transform X , if x is causal and contains no
impulses or higher order singularities at the origin, then

x(0+) = lim
s→∞

sX(s),

where x(0+) denotes the limit of x(t) as t approaches zero from positive
values of t.

■ This result is known as the initial value theorem.

■ In situations where X is known but x is not, the initial value theorem
eliminates the need to explicitly find x by an inverse Laplace transform
calculation in order to evaluate x(0+).

■ In practice, the values of functions at the origin are frequently of interest,
as such values often convey information about the initial state of systems.

■ The initial value theorem can sometimes also be helpful in checking for
errors in Laplace transform calculations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 305

Final Value Theorem

■ For a function x with Laplace transform X , if x is causal and x(t) has a
finite limit as t→ ∞, then

lim
t→∞

x(t) = lim
s→0

sX(s).

■ This result is known as the final value theorem.

■ In situations where X is known but x is not, the final value theorem
eliminates the need to explicitly find x by an inverse Laplace transform
calculation in order to evaluate limt→∞ x(t).

■ In practice, the values of functions at infinity are frequently of interest, as
such values often convey information about the steady-state behavior of
systems.

■ The final value theorem can sometimes also be helpful in checking for
errors in Laplace transform calculations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 306

More Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 307

Section 7.4

Determination of Inverse Laplace Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 308

Finding Inverse Laplace Transform

■ Recall that the inverse Laplace transform x of X is given by

x(t) =
1

2π j

∫ σ+ j∞

σ− j∞
X(s)estds,

where Re(s) = σ is in the ROC of X .

■ Unfortunately, the above contour integration can often be quite tedious to
compute.

■ Consequently, we do not usually compute the inverse Laplace transform
directly using the above equation.

■ For rational functions, the inverse Laplace transform can be more easily
computed using partial fraction expansions.

■ Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse Laplace transforms
can typically be found in tables.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 309

Section 7.5

Laplace Transform and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 310

System Function of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h. Let
X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

■ Since y(t) = x∗h(t), the system is characterized in the Laplace domain by

Y (s) = X(s)H(s).

■ As a matter of terminology, we refer to H as the system function (or
transfer function) of the system (i.e., the system function is the Laplace
transform of the impulse response).

■ A LTI system is completely characterized by its system function H.

■ When viewed in the Laplace domain, a LTI system forms its output by
multiplying its input with its system function.

■ If the ROC of H includes the imaginary axis, then H(jω) is the frequency
response of the LTI system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 311

Block Diagram Representations of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

■ Often, it is convenient to represent such a system in block diagram form in
the Laplace domain as shown below.

H
X Y

■ Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 312

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with system functions H1
and H2 is the LTI system with system function H1H2. That is, we have the
equivalence shown below.

H1 H2 ≡ X Y
H1H2

YX

■ The parallel interconnection of the LTI systems with system functions H1
and H2 is the LTI system with the system function H1 +H2. That is, we
have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 313

Causality

■ If a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.

■ Theorem. The ROC associated with the system function of a causal LTI
system is a RHP or the entire complex plane.

■ In general, the converse of the above theorem is not necessarily true.
That is, if the ROC of the system function is a RHP or the entire complex
plane, it is not necessarily true that the system is causal.

■ If the system function is rational, however, we have that the converse
does hold, as indicated by the theorem below.

■ Theorem. For a LTI system with a rational system function H, causality
of the system is equivalent to the ROC of H being the RHP to the right
of the rightmost pole or, if H has no poles, the entire complex plane.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 314

BIBO Stability

■ Whether or not a system is BIBO stable depends on the ROC of its
system function.

■ Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function H contains the imaginary axis (i.e., Re(s) = 0).

■ Theorem. A causal LTI system with a (proper) rational system function H
is BIBO stable if and only if all of the poles of H lie in the left half of the
plane (i.e., all of the poles have negative real parts).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 315

Invertibility

■ A LTI system H with system function H is invertible if and only if there
exists another LTI system with system function Hinv such that

H(s)Hinv(s) = 1,

in which case Hinv is the system function of H−1 and

Hinv(s) =
1

H(s)
.

■ Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

■ In practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 316

LTI Systems and Differential Equations

■ Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

■ Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bk
(d

dt

)k
y(t) =

M

∑
k=0

ak
(d

dt

)k
x(t),

where the ak and bk are complex constants and M ≤ N.

■ Let h denote the impulse response of the system, and let X , Y , and H
denote the Laplace transforms of x, y, and h, respectively.

■ One can show that H is given by

H(s) =
Y (s)
X(s)

=
∑M

k=0 aksk

∑N
k=0 bksk

.

■ Observe that, for a system of the form considered above, the system
function is always rational.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 317

Section 7.6

Application: Circuit Analysis

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 318

Electronic Circuits

■ An electronic circuit is a network of one or more interconnected circuit
elements.

■ The three most basic types of circuit elements are:
1 resistors;
2 inductors; and
3 capacitors.

■ Two fundamental quantities of interest in electronic circuits are current and
voltage.

■ Current is the rate at which electric charge flows through some part of a
circuit, such as a circuit element, and is measured in units of amperes (A).

■ Voltage is the difference in electric potential between two points in a
circuit, such as across a circuit element, and is measured in units of
volts (V).

■ Voltage is essentially a force that makes electric charge (or current) flow.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 319

Resistors

■ A resistor is a circuit element that opposes the flow of current.

■ A resistor is characterized by an equation of the form

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R v(t)
)
,

where R is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the resistor as a function of time.

■ As a matter of terminology, the quantity R is known as the resistance of
the resistor.

■ Resistance is measured in units of ohms (Ω).

■ In circuit diagrams, a resistor is denoted by the symbol shown below.

i(t) R

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 320

Inductors

■ An inductor is a circuit element that converts an electric current into a
magnetic field and vice versa.

■ An inductor uses the energy stored in a magnetic field in order to oppose
changes in current (through the inductor).

■ An inductor is characterized by an equation of the form

v(t) = L d
dt i(t) (or equivalently, i(t) = 1

L

∫ t

−∞
v(τ)dτ),

where L is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the inductor as a function of time.

■ As a matter of terminology, the quantity L is known as the inductance of
the inductor.

■ Inductance is measured in units of henrys (H).
■ In circuit diagrams, an inductor is denoted by the symbol shown below.

i(t)
L

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 321

Capacitors

■ A capacitor is a circuit element that stores electric charge.

■ A capacitor uses the energy stored in an electric field in order to oppose
changes in voltage (across the capacitor).

■ A capacitor is characterized by an equation of the form

v(t) = 1
C

∫ t

−∞
i(τ)dτ (or equivalently, i(t) =C d

dt v(t)),

where C is a nonnegative real constant, and v and i respectively denote
the voltage across and current through the capacitor as a function of time.

■ As a matter of terminology, the quantity C is known as the capacitance of
the capacitor.

■ Capacitance is measured in units of farads (F).

■ In circuit diagrams, a capacitor is denoted by the symbol shown below.

i(t)
C

+ −
v(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 322

Circuit Analysis with the Laplace Transform

■ The Laplace transform is a very useful tool for circuit analysis.

■ The utility of the Laplace transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Laplace domain than in the time domain.

■ Let v and i denote the voltage across and current through a circuit
element, and let V and I denote the Laplace transforms of v and i,
respectively.

■ In the Laplace domain, the equations characterizing a resistor, an
inductor, and a capacitor respectively become:

V (s) = RI(s) (or equivalently, I(s) = 1
RV (s));

V (s) = sLI(s) (or equivalently, I(s) = 1
sLV (s)); and

V (s) = 1
sC I(s) (or equivalently, I(s) = sCV (s)).

■ Note the absence of differentiation and integration in the above equations
for an inductor and a capacitor.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 323

Section 7.7

Application: Design and Analysis of Control Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 324

Control Systems

■ A control system manages the behavior of one or more other systems with
some specific goal.

■ Typically, the goal is to force one or more physical quantities to assume
particular desired values, where such quantities might include: positions,
velocities, accelerations, forces, torques, temperatures, or pressures.

■ The desired values of the quantities being controlled are collectively
viewed as the input of the control system.

■ The actual values of the quantities being controlled are collectively viewed
as the output of the control system.

■ A control system whose behavior is not influenced by the actual values of
the quantities being controlled is called an open loop (or non-feedback)
system.

■ A control system whose behavior is influenced by the actual values of the
quantities being controlled is called a closed loop (or feedback) system.

■ An example of a simple control system would be a thermostat system,
which controls the temperature in a room or building.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 325

Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

■ input: desired value of the quantity to be controlled

■ output: actual value of the quantity to be controlled

■ error: difference between the desired and actual values

■ plant: system to be controlled

■ sensor: device used to measure the actual output

■ controller: device that monitors the error and changes the input of the
plant with the goal of forcing the error to zero

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 326

Stability Analysis of Feedback Systems

■ Often, we want to ensure that a system is BIBO stable.

■ The BIBO stability property is more easily characterized in the Laplace
domain than in the time domain.

■ Therefore, the Laplace domain is extremely useful for the stability analysis
of systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 327

Stabilization Example: Unstable Plant

■ causal LTI plant:

P
X Y

P(s) = 10
s−1

■ ROC of P:

1 Re

Im

■ system is not BIBO stable

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 328

Stabilization Example: Using Pole-Zero Cancellation

■ system formed by series interconnection of plant and causal LTI
compensator:

W P
X Y

P(s) = 10
s−1 , W (s) = s−1

10(s+1)

■ system function H of overall system:

H(s) =W (s)P(s) =
(

s−1
10(s+1)

)(10
s−1

)
= 1

s+1

■ ROC of H:

−1 Re

Im

■ overall system is BIBO stable

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 329

Stabilization Example: Using Feedback (1)
■ feedback system (with causal LTI compensator and sensor):

C

Q

P+
X R Y

−

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

■ system function H of feedback system:

H(s) = C(s)P(s)
1+C(s)P(s)Q(s) =

10β
s−(1−10β)

■ ROC of H:

1−10β
Re

Im

■ feedback system is BIBO stable if and only if 1−10β < 0 or equivalently
β > 1

10

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 330

Stabilization Example: Using Feedback (2)

C

Q

P+
X R Y

−

R(s) = X(s)−Q(s)Y (s)

Y (s) =C(s)P(s)R(s)

Y (s) =C(s)P(s)R(s)

=C(s)P(s)[X(s)−Q(s)Y (s)]

=C(s)P(s)X(s)−C(s)P(s)Q(s)Y (s)

[1+C(s)P(s)Q(s)]Y (s) =C(s)P(s)X(s)

H(s) =
Y (s)
X(s)

=
C(s)P(s)

1+C(s)P(s)Q(s)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 331

Stabilization Example: Using Feedback (3)

P(s) = 10
s−1 , C(s) = β, Q(s) = 1

H(s) =
C(s)P(s)

1+C(s)P(s)Q(s)

=
β(10

s−1)

1+β(10
s−1)(1)

=
10β

s−1+10β

=
10β

s− (1−10β)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 332

Remarks on Stabilization Via Pole-Zero Cancellation

■ Pole-zero cancellation is not achievable in practice, and therefore it cannot
be used to stabilize real-world systems.

■ The theoretical models used to represent real-world systems are only
approximations due to many factors, including the following:

2 Determining the system function of a system involves measurement, which
always has some error.

2 A system cannot be built with such precision that it will have exactly some
prescribed system function.

2 The system function of most systems will vary at least slightly with changes
in the physical environment.

2 Although a LTI model is used to represent a system, the likely reality is that
the system is not exactly LTI, which introduces error.

■ Due to approximation error, the effective poles and zeros of the system
function will only be approximately where they are expected to be.

■ Since pole-zero cancellation requires that a pole and zero be placed at
exactly the same location, any error will prevent this cancellation from
being achieved.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 333

Section 7.8

Unilateral Laplace Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 334

Unilateral Laplace Transform

■ The unilateral Laplace transform of the function x, denoted Lux or X , is
defined as

Lux(s) = X(s) =
∫ ∞

0−
x(t)e−stdt.

■ The unilateral Laplace transform is related to the bilateral Laplace
transform as follows:

Lux(s) =
∫ ∞

0−
x(t)e−stdt =

∫ ∞

−∞
x(t)u(t)e−stdt = L{xu}(s).

■ In other words, the unilateral Laplace transform of the function x is simply
the bilateral Laplace transform of the function xu.

■ Since Lux = L{xu} and xu is always a right-sided function, the ROC
associated with Lux is always either a RHP or the entire complex plane.

■ For this reason, we often do not explicitly indicate the ROC when
working with the unilateral Laplace transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 335

Inversion of the Unilateral Laplace Transform

■ With the unilateral Laplace transform, the same inverse transform
equation is used as in the bilateral case.

■ The unilateral Laplace transform is only invertible for causal functions.

■ In particular, we have

L−1
u {Lux}(t) = L−1

u {L{xu}}(t)
= L−1{L{xu}}(t)
= x(t)u(t)

=

{
x(t) t ≥ 0
0 t < 0.

■ For a noncausal function x, we can only recover x(t) for t ≥ 0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 336

Unilateral Versus Bilateral Laplace Transform

■ Due to the close relationship between the unilateral and bilateral Laplace
transforms, these two transforms have some similarities in their properties.

■ Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.

■ In the unilateral case, we have that:
1 the time-domain convolution property has the additional requirement that

the functions being convolved must be causal;
2 the time/Laplace-domain scaling property has the additional constraint that

the scaling factor must be positive;
3 the time-domain differentiation property has an extra term in the expression

for Lu{Dx}(t), where D denotes the derivative operator (namely, −x(0−));
4 the time-domain integration property has a different lower limit in the

time-domain integral (namely, 0− instead of −∞); and
5 the time-domain shifting property does not hold (except in special

circumstances).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 337

Properties of the Unilateral Laplace Transform

Property Time Domain Laplace Domain

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s)

Laplace-Domain Shifting es0tx(t) X(s− s0)

Time/Laplace-Domain Scaling x(at), a > 0 1
a X
(s

a

)

Conjugation x∗(t) X∗(s∗)

Time-Domain Convolution x1 ∗ x2(t), x1 and x2 are causal X1(s)X2(s)

Time-Domain Differentiation d
dt x(t) sX(s)− x(0−)

Laplace-Domain Differentiation −tx(t) d
ds X(s)

Time-Domain Integration
∫ t

0− x(τ)dτ 1
s X(s)

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 338

Unilateral Laplace Transform Pairs

Pair x(t), t ≥ 0 X(s)

1 δ(t) 1

2 1 1
s

3 tn n!
sn+1

4 e−at 1
s+a

5 tne−at n!
(s+a)n+1

6 cos(ω0t) s
s2+ω2

0

7 sin(ω0t) ω0
s2+ω2

0

8 e−at cos(ω0t) s+a
(s+a)2+ω2

0

9 e−at sin(ω0t) ω0
(s+a)2+ω2

0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 339

Solving Differential Equations [Using the Unilateral Laplace Transform]

■ Many systems of interest in engineering applications can be characterized
by constant-coefficient linear differential equations.

■ One common use of the unilateral Laplace transform is in solving
constant-coefficient linear differential equations with nonzero initial
conditions.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 340

Part 8

Discrete-Time (DT) Signals and Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 341

Section 8.1

Independent- and Dependent-Variable Transformations

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 342

Time Shifting (Translation)

■ Time shifting (also called translation) maps the input sequence x to the
output sequence y as given by

y(n) = x(n−b),

where b is an integer.

■ Such a transformation shifts the sequence (to the left or right) along the
time axis.

■ If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

■ If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 343

Time Shifting (Translation): Example

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n−1)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n+1)

3

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 344

Time Reversal (Reflection)

■ Time reversal (also known as reflection) maps the input sequence x to
the output sequence y as given by

y(n) = x(−n).

■ Geometrically, the output sequence y is a reflection of the input sequence
x about the (vertical) line n = 0.

−2−3 2 3

1

−1 10

2

x(n)

3

n −2−3 2 3

1

−1 10

2

x(−n)

3

n

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 345

Downsampling

■ Downsampling maps the input sequence x to the output sequence y as
given by

y(n) = (↓ a)x(n) = x(an),

where a is a strictly positive integer.

■ The output sequence y is produced from the input sequence x by keeping
only every ath sample of x.

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

(↓ 2)x(n)

3

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 346

Upsampling

■ Upsampling maps the input sequence x to the output sequence y as
given by

y(n) = (↑ a)x(n) =

{
x(n/a) n/a is an integer

0 otherwise,

where a is a strictly positive integer.

■ The output sequence y is produced from the input sequence x by inserting
a−1 zeros between all of the samples of x.

−2−3 2 3

1

−1 10

2

4−4
n−5 5

x(n)

3

−2−3 2 3

1

−1 10

2

4−4
n−5 5

(↑ 2)x(n)

3

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 347

Combined Independent-Variable Transformations

■ Consider a transformation that maps the input sequence x to the output
sequence y as given by

y(n) = x(an−b),

where a and b are integers and a ̸= 0.
■ Such a transformation is a combination of time shifting, downsampling,

and time reversal operations.
■ Time reversal commutes with downsampling.
■ Time shifting does not commute with time reversal or downsampling.
■ The above transformation is equivalent to:

1 first, time shifting x by b;
2 then, downsampling the result by |a| and, if a < 0, time reversing as well.

■ If b
a is an integer, the above transformation is also equivalent to:
1 first, downsampling x by |a| and, if a < 0, time reversing;
2 then, time shifting the result by b

a .

■ Note that the time shift is not by the same amount in both cases.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 348

Section 8.2

Properties of Sequences

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 349

Symmetry and Addition/Multiplication

■ Sums involving even and odd sequences have the following properties:
2 The sum of two even sequences is even.
2 The sum of two odd sequences is odd.
2 The sum of an even sequence and odd sequence is neither even nor odd,

provided that neither of the sequences is identically zero.

■ That is, the sum of sequences with the same type of symmetry also has
the same type of symmetry.

■ Products involving even and odd sequences have the following
properties:

2 The product of two even sequences is even.
2 The product of two odd sequences is even.
2 The product of an even sequence and an odd sequence is odd.

■ That is, the product of sequences with the same type of symmetry is even,
while the product of sequences with opposite types of symmetry is odd.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 350

Decomposition of a Sequence into Even and Odd Parts

■ Every sequence x has a unique representation of the form

x(n) = xe(n)+ xo(n),

where the sequences xe and xo are even and odd, respectively.

■ In particular, the sequences xe and xo are given by

xe(n) = 1
2 [x(n)+ x(−n)] and xo(n) = 1

2 [x(n)− x(−n)] .

■ The sequences xe and xo are called the even part and odd part of x,
respectively.

■ For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 351

Sum of Periodic Sequences

■ The least common multiple of two (strictly positive) integers a and b,
denoted lcm(a,b), is the smallest positive integer that is divisible by both
a and b.

■ The quantity lcm(a,b) can be easily determined from a prime factorization
of the integers a and b by taking the product of the highest power for each
prime factor appearing in these factorizations. Example:

lcm(20,6) = lcm(22 ·51,21 ·31) = 22 ·31 ·51 = 60;

lcm(54,24) = lcm(21 ·33,23 ·31) = 23 ·33 = 216; and

lcm(24,90) = lcm(23 ·31,21 ·32 ·51) = 23 ·32 ·51 = 360.

■ Sum of periodic sequences. For any two periodic sequences x1 and x2
with fundamental periods N1 and N2, respectively, the sum x1 + x2 is
periodic with period lcm(N1,N2).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 352

Right-Sided Sequences
■ A sequence x is said to be right sided if, for some (finite) integer constant

n0, the following condition holds:

x(n) = 0 for all n < n0

(i.e., x is only potentially nonzero to the right of n0).
■ An example of a right-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

■ A sequence x is said to be causal if

x(n) = 0 for all n < 0.

■ A causal sequence is a special case of a right-sided sequence.
■ A causal sequence is not to be confused with a causal system. In these

two contexts, the word “causal” has very different meanings.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 353

Left-Sided Sequences
■ A sequence x is said to be left sided if, for some (finite) integer constant

n0, the following condition holds:

x(n) = 0 for all n > n0

(i.e., x is only potentially nonzero to the left of n0).
■ An example of a left-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

■ A sequence x is said to be anticausal if

x(n) = 0 for all n > 0.

■ An anticausal sequence is a special case of a left-sided sequence.
■ An anticausal sequence is not to be confused with an anticausal system.

In these two contexts, the word “anticausal” has very different meanings.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 354

Finite-Duration and Two-Sided Sequences
■ A sequence that is both left sided and right sided is said to be finite

duration (or time limited).
■ An example of a finite-duration sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

■ A sequence that is neither left sided nor right sided is said to be two
sided.

■ An example of a two-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · · · · ·

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 355

Bounded Sequences

■ A sequence x is said to be bounded if there exists some (finite) positive
real constant A such that

|x(n)| ≤ A for all n

(i.e., x(n) is finite for all n).

■ Examples of bounded sequences include any constant sequence.

■ Examples of unbounded sequences include any nonconstant polynomial
sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 356

Energy of a Sequence

■ The energy E contained in the sequence x is given by

E =
∞

∑
k=−∞

|x(k)|2 .

■ A signal with finite energy is said to be an energy signal.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 357

Section 8.3

Elementary Sequences

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 358

Real Sinusoidal Sequences
■ A real sinusoidal sequence is a sequence of the form

x(n) = Acos(Ωn+θ),

where A, Ω, and θ are real constants.
■ A real sinusoid is periodic if and only if Ω

2π is a rational number, in which
case the fundamental period is the smallest integer of the form 2πk

|Ω| where
k is a (strictly) positive integer.

■ For all integer k, xk(n) = Acos([Ω+2πk]n+θ) is the same sequence.
■ An example of a periodic real sinusoid with fundamental period 12 is

shown plotted below.
x(n) = cos

(π
6 n
)

1

−1

12−12

· · ·· · ·
n

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 359

Oscillation Rate of Real Sinusoidal Sequences

■ Unlike their continuous-time counterparts, real sinusoidal sequences have
an upper bound on the rate at which they can oscillate.

■ Since xk(n) = Acos([Ω+2πk]n+θ) is the same sequence for all integer
k, we consider only 0≤Ω < 2π without loss of generality.

■ Consider the set of real sinusoidal sequences of the form

x(n) = Acos(Ωn+θ),

where 0≤Ω < 2π.

■ The rate of oscillation of x is least (i.e., x is constant) when Ω = 0.

■ The rate of oscillation of x is greatest when Ω = π.

■ As Ω increases from 0 to π, the rate of oscillation of x increases.

■ As Ω increases from π to 2π, the rate of oscillation of x decreases.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 360

Effect of Increasing Frequency on Oscillation Rate

−16 16

−1

1

n

cos(0n) = cos
(0π

8 n
)

−16 16

−1

1

n

cos
(π

8 n
)

−16 16

−1

1

n

cos
(π

2 n
)
= cos

(4π
8 n
)

−16 16

−1

1

n

cos(πn) = cos
(8π

8 n
)

−16 16

−1

1

n

cos
(15π

8 n
)

−16 16

−1

1

n

cos(2πn) = cos
(16π

8 n
)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 361

Complex Exponential Sequences

■ A complex exponential sequence is a sequence of the form

x(n) = can,

where c and a are complex constants.

■ Such a sequence can also be equivalently expressed in the form

x(n) = cebn,

where b is a complex constant chosen as b = lna. (This this form is more
similar to that presented for CT complex exponentials).

■ A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of the parameters c and a.

■ For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 362

Real Exponential Sequences

■ A real exponential sequence is a special case of a complex exponential

x(n) = can,

where c and a are restricted to be real numbers.

■ A real exponential can exhibit one of several distinct modes of behavior,
depending on the magnitude and sign of a.

■ If |a|> 1, the magnitude of x(n) increases exponentially as n increases
(i.e., a growing exponential).

■ If |a|< 1, the magnitude of x(n) decreases exponentially as n increases
(i.e., a decaying exponential).

■ If |a|= 1, the magnitude of x(n) is a constant, independent of n.

■ If a > 0, x(n) has the same sign for all n.

■ If a < 0, x(n) alternates in sign as n increases/decreases.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 363

Real Exponential Sequences (Continued 1)

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|> 1, a > 0 [a = 5
4 ; c = 1]

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|< 1, a > 0 [a = 4
5 ; c = 1]

−2−3 2 3

1

−1 10
n

4−4

x(n)

· · · · · ·

|a|= 1, a > 0 [a = 1; c = 1]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 364

Real Exponential Sequences (Continued 2)

−2 2

1

2

n
4−4

x(n)

3

1

2

3

−3 −1

· · ·
· · ·

1 3

|a|> 1, a < 0 [a =− 5
4 ; c = 1]

−2 2

1

2

n
4−4

x(n)

3

1

2

3

· · ·

· · ·
−3 1 3−1

|a|< 1, a < 0 [a =− 4
5 ; c = 1]

−2 2

1

n
4−4

x(n)

−1

1 3

· · ·· · ·
−3 −1

|a|= 1, a < 0 [a =−1; c = 1]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 365

Complex Sinusoidal Sequences

■ A complex sinusoidal sequence is a special case of a complex exponential
x(n) = can, where c and a are complex and |a|= 1 (i.e., a is of the form
e jΩ where Ω is real).

■ That is, a complex sinusoidal sequence is a sequence of the form

x(n) = ce jΩn,

where c is complex and Ω is real.
■ Using Euler’s relation, we can rewrite x(n) as

x(n) = |c|cos(Ωn+ argc)︸ ︷︷ ︸
Re{x(n)}

+ j |c|sin(Ωn+ argc)︸ ︷︷ ︸
Im{x(n)}

.

■ Thus, Re{x} and Im{x} are real sinusoids.

■ A complex sinusoid is periodic if and only if Ω
2π is a rational number, in

which case the fundamental period is the smallest integer of the form 2πk
|Ω|

where k is a (strictly) positive integer.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 366

Complex Sinusoidal Sequences (Continued)

■ For x(n) = e j(2π/7)n, the graphs of Re{x} and Im{x} are shown below.

Re{e j(2π/7)n}= cos
(2π

7 n
)

1

−1

7−7
n

· · · · · ·

Im{e j(2π/7)n}= sin
(2π

7 n
)

1

−1

7−7
n

· · · · · ·

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 367

Oscillation Rate of Complex Sinusoidal Sequences

■ Unlike their continuous-time counterparts, complex sinusoidal sequences
have an upper bound on the rate at which they can oscillate.

■ Since xk(n) = ce j(Ω+2πk)n is the same sequence for all integer k, we
consider only 0≤Ω < 2π without loss of generality.

■ Consider the set of complex sinusoidal sequences of the form

x(n) = ce jΩn,

where 0≤Ω < 2π.

■ The rate of oscillation of x is least (i.e., x is constant) when Ω = 0.

■ The rate of oscillation of x is greatest when Ω = π.

■ As Ω increases from 0 to π, the rate of oscillation of x increases.

■ As Ω increases from π to 2π, the rate of oscillation of x decreases.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 368

General Complex Exponential Sequences

■ In the most general case of a complex exponential sequence x(n) = can,
c and a are both complex.

■ Letting c = |c|e jθ and a = |a|e jΩ where θ and Ω are real, and using
Euler’s relation, we can rewrite x(n) as

x(n) = |c| |a|n cos(Ωn+θ)︸ ︷︷ ︸
Re{x(n)}

+ j |c| |a|n sin(Ωn+θ)︸ ︷︷ ︸
Im{x(n)}

.

■ Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

■ One of several distinct modes of behavior is exhibited by x, depending on
the value of a.

■ If |a|= 1, Re{x} and Im{x} are real sinusoids.
■ If |a|> 1, Re{x} and Im{x} are each the product of a real sinusoid and

a growing real exponential.
■ If |a|< 1, Re{x} and Im{x} are each the product of a real sinusoid and

a decaying real exponential.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 369

General Complex Exponential Sequences (Continued)

■ The various modes of behavior for Re{x} and Im{x} are illustrated
below.

|a|> 1 |a|< 1

|a|= 1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 370

Relationship Between Complex Exponentials and Real
Sinusoids

■ From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

ce jΩn = ccos(Ωn)+ jcsin(Ωn).

■ Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

ccos(Ωn+θ) =
c
2

[
e j(Ωn+θ)+ e− j(Ωn+θ)

]
and

csin(Ωn+θ) =
c

2 j

[
e j(Ωn+θ)− e− j(Ωn+θ)

]
.

■ Note that, above, we are simply restating results from the (appendix)
material on complex analysis.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 371

Unit-Step Sequence

■ The unit-step sequence, denoted u, is defined as

u(n) =

{
1 n≥ 0
0 otherwise.

■ A plot of this sequence is shown below.

−2−3 2 3

1

n−1

u(n)

1

· · ·
0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 372

Unit Rectangular Pulses

■ A unit rectangular pulse is a sequence of the form

p(n) =

{
1 a≤ n < b
0 otherwise

where a and b are integer constants satisfying a < b.

■ Such a sequence can be expressed in terms of the unit-step sequence as

p(n) = u(n−a)−u(n−b).

■ The graph of a unit rectangular pulse has the general form shown below.

a−2a−3 a+2 a+3a−1 a+1a

· · ·
n

1

p(n)

b+2b+1bb−1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 373

Unit-Impulse Sequence
■ The unit-impulse sequence (also known as the delta sequence), denoted

δ, is defined as

δ(n) =

{
1 n = 0
0 otherwise.

■ The first-order difference of u is δ. That is,

δ(n) = u(n)−u(n−1).

■ The running sum of δ is u. That is,

u(n) =
n

∑
k=−∞

δ(k).

■ A plot of δ is shown below.

−2−3 2 3

1

n−1

δ(n)

10

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 374

Properties of the Unit-Impulse Sequence

■ For any sequence x and any integer constant n0, the following identity
holds:

x(n)δ(n−n0) = x(n0)δ(n−n0).

■ For any sequence x and any integer constant n0, the following identity
holds:

∞

∑
n=−∞

x(n)δ(n−n0) = x(n0).

■ Trivially, the sequence δ is also even.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 375

Representing Rectangular Pulses (Using Unit-Step Sequences)

■ For integer constants a and b where a < b, consider a sequence x of the
form

x(n) =

{
1 a≤ n < b
0 otherwise

(i.e., x is a rectangular pulse of height one that is nonzero from a to b−1
inclusive).

■ The sequence x can be equivalently written as

x(n) = u(n−a)−u(n−b)

(i.e., the difference of two time-shifted unit-step sequences).

■ Unlike the original expression for x, this latter expression for x does not
involve multiple cases.

■ In effect, by using unit-step sequences, we have collapsed a formula
involving multiple cases into a single expression.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 376

Representing Sequences Using Unit-Step Sequences

■ The idea from the previous slide can be extended to handle any sequence
that is defined in a piecewise manner (i.e., via an expression involving
multiple cases).

■ That is, by using unit-step sequences, we can always collapse a formula
involving multiple cases into a single expression.

■ Often, simplifying a formula in this way can be quite beneficial.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 377

Section 8.4

Discrete-Time (DT) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 378

DT Systems

■ A system with input x and output y can be described by the equation

y =Hx,

where H denotes an operator (i.e., transformation).

■ Note that the operator H maps a sequence to a sequence (not a number
to a number).

■ Alternatively, we can express the above relationship using the notation

x H−→ y.

■ If clear from the context, the operator H is often omitted, yielding the
abbreviated notation

x→ y.

■ Note that the symbols “→” and “=” have very different meanings.

■ The symbol “→” should be read as “produces” (not as “equals”).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 379

Block Diagram Representations

■ Often, a system defined by the operator H and having the input x and
output y is represented in the form of a block diagram as shown below.

System
H

x
Input Output

y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 380

Interconnection of Systems
■ Two basic ways in which systems can be interconnected are shown below.

H1 H2
yx

Series
H2

H1 +
x y

Parallel
■ A series (or cascade) connection ties the output of one system to the input

of the other.
■ The overall series-connected system is described by the equation

y =H2H1x.

■ A parallel connection ties the inputs of both systems together and sums
their outputs.

■ The overall parallel-connected system is described by the equation

y =H1x+H2x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 381

Section 8.5

Properties of (DT) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 382

Memory

■ A system H is said to be memoryless if, for every integer constant n0,
Hx(n0) does not depend on x(n) for some n ̸= n0.

■ In other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

■ A system that is not memoryless is said to have memory.

■ Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 383

Memory (Continued)

−∞ n0 ∞
n

Consider the calculation of the
output Hx at n0.

If the system H is memoryless,
the output Hx at n0

can depend on the input x
only at n0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 384

Causality

■ A system H is said to be causal if, for every integer constant n0, Hx(n0)
does not depend on x(n) for some n > n0.

■ In other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

■ If the independent variable n represents time, a system must be causal in
order to be physically realizable.

■ Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

■ A memoryless system is always causal, although the converse is not
necessarily true.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 385

Causality (Continued)

n0

Consider the calculation of the
output Hx at n0.

−∞
n

∞

n≤ n0

If the system H is causal,
the output Hx at n0

can depend on the input x
only at points n≤ n0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 386

Invertibility
■ The inverse of a system H is another system H−1 such that, for every

sequence x,

H−1Hx = x

(i.e., the system formed by the cascade interconnection of H followed by
H−1 is a system whose input and output are equal).

■ A system is said to be invertible if it has a corresponding inverse system
(i.e., its inverse exists).

■ Equivalently, a system is invertible if its input x can always be uniquely
determined from its output y.

■ An invertible system will always produce distinct outputs from any two
distinct inputs.

■ To show that a system is invertible, we simply find the inverse system.
■ To show that a system is not invertible, we find two distinct inputs that

result in identical outputs.
■ In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 387

Invertibility (Continued)

■ A system H−1 being the inverse of H means that the following two
systems are equivalent (i.e., H−1H is an identity):

x y
H−1H

System 1: y =H−1Hx

x y

System 2: y = x

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 388

Bounded-Input Bounded-Output (BIBO) Stability

■ A system H is BIBO stable if, for every bounded sequence x, Hx is
bounded (i.e., |x(n)|< ∞ for all n implies that |Hx(n)|< ∞ for all n).

■ In other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

■ To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

■ To show that a system is not BIBO stable, we need only find a single
bounded input that leads to an unbounded output.

■ In practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input remains finite for all time, the output will also
remain finite for all time.

■ Usually, a system that is not BIBO stable will have serious safety issues.

■ For example, a portable music player with a battery input of 3.7 volts and
headset output of ∞ volts would result in one vaporized human (and likely
a big lawsuit as well).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 389

Time Invariance (TI)

■ A system H is said to be time invariant (TI) (or shift invariant (SI)) if,
for every sequence x and every integer n0, the following condition holds:

Hx(n−n0) =Hx′(n) for all n, where x′(n) = x(n−n0)

(i.e., H commutes with time shifts).

■ In other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

■ A system that is not time invariant is said to be time varying.

■ In simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

■ Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 390

Time Invariance (Continued)

■ Let Sn0 denote an operator that applies a time shift of n0 to a sequence
(i.e., Sn0x(n) = x(n−n0)).

■ A system H is time invariant if and only if the following two systems are
equivalent (i.e., H commutes with Sn0):

HSn0

x y

System 1: y =HSn0 x[
y(n) =Hx′(n)

x′(n) = Sn0 x(n) = x(n−n0)

]

x y
Sn0H

System 2: y = Sn0Hx[
y(n) =Hx(n−n0)

]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 391

Additivity, Homogeneity, and Linearity
■ A system H is said to be additive if, for all sequences x1 and x2, the

following condition holds:

H(x1 + x2) =Hx1 +Hx2

(i.e., H commutes with sums).
■ A system H is said to be homogeneous if, for every sequence x and every

complex constant a, the following condition holds:

H(ax) = aHx

(i.e., H commutes with multiplication by a constant).
■ A system that is both additive and homogeneous is said to be linear.
■ In other words, a system H is linear, if for all sequences x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H(a1x1 +a2x2) = a1Hx1 +a2Hx2

(i.e., H commutes with linear combinations).
■ The linearity property is also referred to as the superposition property.
■ Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 392

Additivity, Homogeneity, and Linearity (Continued 1)

■ The system H is additive if and only if the following two systems are
equivalent (i.e., H commutes with addition):

+ H

x2

x1 y

System 1: y =H(x1 + x2)

+H

H

yx1

x2

System 2: y =Hx1 +Hx2

■ The system H is homogeneous if and only if the following two systems
are equivalent (i.e., H commutes with scalar multiplication):

Ha
x y

System 1: y =H(ax)

aH
x y

System 2: y = aHx

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 393

Additivity, Homogeneity, and Linearity (Continued 2)

■ The system H is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

+ H
y

a1

a2

x1

x2

System 1: y =H(a1x1 +a2x2)

+a1

a2

x1

x2

y
H

H

System 2: y = a1Hx1 +a2Hx2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 394

Eigensequences of Systems

■ A sequence x is said to be an eigensequence of the system H with the
eigenvalue λ if

Hx = λx,

where λ is a complex constant.

■ In other words, the system H acts as an ideal amplifier for each of its
eigensequences x, where the amplifier gain is given by the corresponding
eigenvalue λ.

■ Different systems have different eigensequences.

■ Many of the mathematical tools developed for the study of DT systems
have eigensequences as their basis.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 395

Part 9

Discrete-Time Linear Time-Invariant (LTI) Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 396

Why Linear Time-Invariant (LTI) Systems?

■ In engineering, linear time-invariant (LTI) systems play a very important
role.

■ Very powerful mathematical tools have been developed for analyzing LTI
systems.

■ LTI systems are much easier to analyze than systems that are not LTI.

■ In practice, systems that are not LTI can be well approximated using LTI
models.

■ So, even when dealing with systems that are not LTI, LTI systems still play
an important role.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 397

Section 9.1

Convolution

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 398

DT Convolution

■ The (DT) convolution of the sequences x and h, denoted x∗h, is defined
as the sequence

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k).

■ The convolution x∗h evaluated at the point n is simply a weighted sum of
elements of x, where the weighting is given by h time reversed and shifted
by n.

■ Herein, the asterisk symbol (i.e., “∗”) will always be used to denote
convolution, not multiplication.

■ As we shall see, convolution is used extensively in the theory of (DT)
systems.

■ In particular, convolution has a special significance in the context of (DT)
LTI systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 399

Practical Convolution Computation

■ To compute the convolution

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k),

we proceed as follows:
1 Plot x(k) and h(n− k) as a function of k.
2 Initially, consider an arbitrarily large negative value for n. This will result in

h(n− k) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗h(n).
4 Increase n gradually until the expression for x∗h(n) changes form. Record

the interval over which the expression for x∗h(n) was valid.
5 Repeat steps 3 and 4 until n is an arbitrarily large positive value. This

corresponds to h(n− k) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗h(n) for all n.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 400

Properties of Convolution

■ The convolution operation is commutative. That is, for any two sequences
x and h,

x∗h = h∗ x.

■ The convolution operation is associative. That is, for any sequences x, h1,
and h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

■ The convolution operation is distributive with respect to addition. That is,
for any sequences x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 401

Representation of Sequences Using Impulses

■ For any sequence x,

x(n) =
∞

∑
k=−∞

x(k)δ(n− k) = x∗δ(n).

■ Thus, any sequence x can be written in terms of an expression involving δ.

■ Moreover, δ is the convolutional identity. That is, for any sequence x,

x∗δ = x.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 402

Circular Convolution

■ The convolution of two periodic sequences is usually not well defined.

■ This motivates an alternative notion of convolution for periodic sequences
known as circular convolution.

■ The circular convolution (also known as the DT periodic convolution) of
the N-periodic sequences x and h, denoted x⊛h, is defined as

x⊛h(n) = ∑
k=⟨N⟩

x(k)h(n− k) =
N−1

∑
k=0

x(k)h(mod(n− k,N)),

where mod(a,b) is the remainder after division when a is divided by b.

■ The circular convolution and (linear) convolution of the N-periodic
sequences x and h are related as follows:

x⊛h(n) = x0 ∗h(n) where x(n) =
∞

∑
k=−∞

x0(n− kN)

(i.e., x0(n) equals x(n) over a single period of x and is zero elsewhere).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 403

Section 9.2

Convolution and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 404

Impulse Response

■ The response h of a system H to the input δ is called the impulse
response of the system (i.e., h =Hδ).

■ For any LTI system with input x, output y, and impulse response h, the
following relationship holds:

y = x∗h.

■ In other words, a LTI system simply computes a convolution.

■ Furthermore, a LTI system is completely characterized by its impulse
response.

■ That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 405

Step Response

■ The response s of a system H to the input u is called the step response of
the system (i.e., s =Hu).

■ The impulse response h and step response s of a system are related as

h(n) = s(n)− s(n−1).

■ Therefore, the impulse response of a system can be determined from its
step response by (first-order) differencing.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 406

Block Diagram of LTI Systems

■ Often, it is convenient to represent a (DT) LTI system in block diagram
form.

■ Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

■ That is, we represent a system with input x, output y, and impulse
response h, as shown below.

h
x y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 407

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with impulse responses h1
and h2 is the LTI system with impulse response h = h1 ∗h2. That is, we
have the equivalences shown below.

h1 h2 ≡ x y
h1 ∗h2

yx

≡h1 h2 h2 h1
yx yx

■ The parallel interconnection of the LTI systems with impulse responses
h1 and h2 is a LTI system with the impulse response h = h1 +h2. That is,
we have the equivalence shown below.

h1 +h2
yx

h1

h2

≡
+

x y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 408

Section 9.3

Properties of LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 409

Memory

■ A LTI system with impulse response h is memoryless if and only if

h(n) = 0 for all n ̸= 0.

■ That is, a LTI system is memoryless if and only if its impulse response h is
of the form

h(n) = Kδ(n),

where K is a complex constant.

■ Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

■ For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 410

Causality

■ A LTI system with impulse response h is causal if and only if

h(n) = 0 for all n < 0

(i.e., h is a causal sequence).

■ It is due to the above relationship that we call a sequence x, satisfying

x(n) = 0 for all n < 0,

a causal sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 411

Invertibility

■ The inverse of a LTI system, if such a system exists, is a LTI system.

■ Let h and hinv denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h∗hinv = δ.

■ Consequently, a LTI system with impulse response h is invertible if and
only if there exists a sequence hinv such that

h∗hinv = δ.

■ Except in simple cases, the above condition is often quite difficult to test.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 412

BIBO Stability

■ A LTI system with impulse response h is BIBO stable if and only if

∞

∑
n=−∞

|h(n)|< ∞

(i.e., h is absolutely summable).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 413

Eigensequences of LTI Systems

■ As it turns out, every complex exponential is an eigensequence of all LTI
systems.

■ For a LTI system H with impulse response h,

H{zn}(n) = H(z)zn,

where z is a complex constant and

H(z) =
∞

∑
n=−∞

h(n)z−n.

■ That is, zn is an eigensequence of a LTI system and H(z) is the
corresponding eigenvalue.

■ We refer to H as the system function (or transfer function) of the
system H.

■ From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(z).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 414

Representation of Sequences Using Eigensequences

■ Consider a LTI system with input x, output y, and system function H.

■ Suppose that the input x can be expressed as the linear combination of
complex exponentials

x(n) = ∑
k

akzn
k ,

where the ak and zk are complex constants.

■ Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(n) = ∑
k

akH(zk)zn
k .

■ Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as linear
combination of the same complex exponentials.

■ The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 415

Part 10

Discrete-Time Fourier Series (DTFS)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 416

Introduction

■ The Fourier series is a representation for periodic sequences.

■ With a Fourier series, a sequence is represented as a linear combination
of complex sinusoids.

■ The use of complex sinusoids is desirable due to their numerous attractive
properties.

■ Perhaps, most importantly, complex sinusoids are eigensequences of (DT)
LTI systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 417

Section 10.1

Fourier Series

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 418

Harmonically-Related Complex Sinusoids

■ A set of periodic complex sinusoids is said to be harmonically related if
there exists some constant 2π

N such that the fundamental frequency of
each complex sinusoid is an integer multiple of 2π

N .

■ Consider the set of harmonically-related complex sinusoids given by

φk(n) = e j(2π/N)kn for all integer k.

■ In the above set {φk}, only N elements are distinct, since

φk = φk+N for all integer k.

■ Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of 2π

N , a linear combination of
these complex sinusoids must be N-periodic.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 419

DT Fourier Series (DTFS)

■ An N-periodic complex-valued sequence x can be represented as a linear
combination of harmonically-related complex sinusoids as

x(n) = ∑
k=⟨N⟩

ake j(2π/N)kn,

where ∑k=⟨N⟩ denotes summation over any N consecutive integers (e.g.,
[0 . .N−1]). (The summation can be taken over any N consecutive
integers, due to the N-periodic nature of x and e j(2π/N)kn.)

■ The above representation of x is known as the (DT) Fourier series and
the ak are called Fourier series coefficients.

■ The above formula for x is often called the Fourier series synthesis
equation.

■ To denote that the sequence x has the Fourier series coefficient sequence
a, we write

x(n) DTFS←→ ak.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 420

DT Fourier Series (DTFS) (Continued)

■ A periodic sequence x with fundamental period N has the Fourier series
coefficient sequence a given by

ak =
1
N ∑

n=⟨N⟩
x(n)e− j(2π/N)kn.

(The summation can be taken over any N consecutive integers due to the
N-periodic nature of x and e− j(2π/N)kn.)

■ The above equation for ak is often referred to as the Fourier series
analysis equation.

■ Due to the N-periodic nature of x and e− j(2π/N)kn, the sequence a is also
N-periodic.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 421

Convergence of Fourier Series

■ Since the analysis and synthesis equations for (DT) Fourier series involve
only finite sums (as opposed to infinite series), convergence is not a
significant issue of concern.

■ If an N-periodic sequence is bounded (i.e., is finite in value), its Fourier
series coefficient sequence will exist and be bounded and the Fourier
series analysis and synthesis equations must converge.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 422

Section 10.2

Properties of Fourier Series

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 423

Properties of (DT) Fourier Series

x(n) DTFS←→ ak and y(n) DTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(n)+βy(n) αak +βbk

Translation x(n−n0) e− jk(2π/N)n0ak

Modulation e j(2π/N)k0nx(n) ak−k0

Reflection x(−n) a−k

Conjugation x∗(n) a∗−k
Duality an

1
N x(−k)

Periodic Convolution x⊛ y(n) Nakbk

Multiplication x(n)y(n) a⊛bk

Property

Parseval’s Relation 1
N ∑n=⟨N⟩ |x(n)|2 = ∑k=⟨N⟩ |ak|2

Even Symmetry x is even⇔ a is even
Odd Symmetry x is odd⇔ a is odd
Real / Conjugate Symmetry x is real⇔ a is conjugate symmetric

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 424

Linearity

■ Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

αx(n)+βy(n) DTFS←→ αak +βbk,

where α and β are complex constants.

■ That is, a linear combination of sequences produces the same linear
combination of their Fourier series coefficients.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 425

Translation (Time Shifting)

■ Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x(n−n0)
DTFS←→ e− jk(2π/N)n0ck,

where n0 is an integer constant.

■ In other words, time shifting a periodic sequence changes the argument
(but not magnitude) of its Fourier series coefficients.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 426

Modulation (Frequency Shifting)

■ Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

e j(2π/N)k0nx(n) DTFS←→ ck−k0 ,

where k0 is an integer constant.

■ That is, multiplying a sequence by a complex sinusoid whose frequency is
an integer multiple of 2π

N results in a translation of the corresponding
Fourier series coefficient sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 427

Reflection (Time Reversal)

■ Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x(−n) DTFS←→ c−k.

■ That is, time reversing a sequence results in a time reversal of the
corresponding Fourier series coefficient sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 428

Conjugation

■ Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x∗(n) DTFS←→ c∗−k.

■ In other words, conjugating a sequence has the effect of time reversing
and conjugating the corresponding Fourier series coefficient sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 429

Duality

■ Let x denote a periodic sequence with period N. If x(n) DTFS←→ a(k), then

a(n) DTFS←→ 1
N x(−k).

■ This is known as the duality property of Fourier series.

■ This property follows from the high degree of symmetry in the analysis
and synthesis Fourier-series equations, which are respectively given by

x(m) = ∑
ℓ=⟨N⟩

a(ℓ)e j(2π/N)ℓm and a(m) = 1
N ∑

ℓ=⟨N⟩
x(ℓ)e− j(2π/N)mℓ.

■ That is, the analysis and synthesis equations are identical except for a
factor of N and different sign in the parameter for the exponential
function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 430

Periodic Convolution

■ Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

x⊛ y(n) DTFS←→ Nakbk.

■ That is, periodic convolution of two sequences multiplies their
corresponding Fourier series coefficient sequences (up to a scale factor).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 431

Multiplication

■ Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

x(n)y(n) DTFS←→ a⊛b(k).

■ That is, multiplying two sequences results in a circular convolution of their
corresponding Fourier series coefficient sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 432

Parseval’s Relation

■ A sequence x and its Fourier series coefficient sequence a satisfy the
following relationship:

1
N ∑

n=⟨N⟩
|x(n)|2 = ∑

k=⟨N⟩
|ak|2 .

■ The above relationship is simply stating that the amount of energy in a
single period of x and the amount of energy in a single period of a are
equal up to a scale factor.

■ In other words, the transformation between a sequence and its Fourier
series coefficient sequence preserves energy (up to a scale factor).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 433

Even/Odd Symmetry

■ For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

x is even⇔ a is even; and

x is odd⇔ a is odd.

■ In other words, the even/odd symmetry properties of x and a always
match.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 434

Real Sequences

■ A sequence x is real if and only if its Fourier series coefficient sequence a
satisfies

ak = a∗−k for all k

(i.e., a is conjugate symmetric).

■ From properties of complex numbers, one can show that ak = a∗−k is
equivalent to

|ak|= |a−k| and argak =−arga−k

(i.e., |ak| is even and argak is odd).

■ Note that x being real does not necessarily imply that a is real.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 435

Trigonometric Form of a Fourier Series

■ Consider the N-periodic sequence x with Fourier series coefficient
sequence a.

■ If x is real, then its Fourier series can be rewritten in trigonometric form as
shown below.

■ The trigonometric form of a Fourier series has the appearance

x(n) =

α0 +
N/2−1

∑
k=1

[
αk cos

(2πkn
N

)
+βk sin

(2πkn
N

)]
+

αN/2 cos(πn) N even

α0 +
(N−1)/2

∑
k=1

[
αk cos

(2πkn
N

)
+βk sin

(2πkn
N

)]
N odd,

where α0 = a0, αN/2 = aN/2, αk = 2Reak, and βk =−2Imak.

■ Note that the above trigonometric form contains only real quantities.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 436

Other Properties of Fourier Series

■ For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

1 a0 is the average value of x over a single period;
2 x is real and even⇔ a is real and even; and
3 x is real and odd⇔ a is purely imaginary and odd.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 437

Section 10.3

Discrete Fourier Transform (DFT)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 438

Prelude to the Discrete Fourier Transform (DFT)

■ Letting a′k = Nak, we can rewrite the Fourier series synthesis and analysis
equations, respectively, as

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn and a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn.

■ Since x and a′ are both N-periodic, each of these sequences is
completely characterized by its N samples over a single period.

■ If we only consider the behavior of x and a′ over a single period, this leads
to the equations

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn for n ∈ [0 . .N−1] and

a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k ∈ [0 . .N−1].

■ As it turns out, the above two equations define what is known as the
discrete Fourier transform (DFT).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 439

Discrete Fourier Transform (DFT)

■ The discrete Fourier transform (DFT) X of the N-element sequence x
is defined as

X(k) =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k ∈ [0 . .N−1].

■ The preceding equation is known as the DFT analysis equation.

■ The inverse DFT x of the N-element sequence X is given by

x(n) = 1
N

N−1

∑
k=0

X(k)e j(2π/N)kn for n ∈ [0 . .N−1].

■ The preceding equation is known as the DFT synthesis equation.

■ The DFT maps a finite-length sequence of N samples to another
finite-length sequence of N samples.

■ The DFT will be considered in more detail later.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 440

Properties of Discrete Fourier Transform (DFT)

Property Time Domain Fourier Domain

Linearity a1x1(n)+a2x2(n) a1X1(k)+a2X2(k)
Translation x(n−n0) e− jk(2π/N)n0X(k)
Modulation e j(2π/N)k0nx(n) X(k− k0)

Reflection x(−n) X(−k)
Conjugation x∗(n) X∗(−k)
Duality X(n) Nx(−k)
Periodic Convolution x1 ⊛ x2(n) X1(k)X2(k)
Multiplication x1(n)x2(n) 1

N X1 ⊛X2(k)

Property

Parseval’s Relation ∑N−1
n=0 |x(n)|2 = 1

N ∑N−1
k=0 |X(k)|2

Even Symmetry x is even⇔ X is even
Odd Symmetry x is odd⇔ X is odd
Real / Conjugate Symmetry x is real⇔ X is conjugate symmetric

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 441

Section 10.4

Fourier Series and Frequency Spectra

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 442

A New Perspective on Sequences: The Frequency Domain

■ The Fourier series provides us with an entirely new way to view
sequences.

■ Instead of viewing a sequence as having information distributed with
respect to time (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

■ This so called frequency-domain perspective is of fundamental
importance in engineering.

■ Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

■ The Fourier series coefficients of a sequence x provide a means to
quantify how much information x has at different frequencies.

■ The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 443

Fourier Series and Frequency Spectra

■ To gain further insight into the role played by the Fourier series
coefficients ak in the context of the frequency spectrum of the N-periodic
sequence x, it is helpful to write the Fourier series with the ak expressed in
polar form as

x(n) =
N−1

∑
k=0

ake j(2π/N)kn =
N−1

∑
k=0
|ak|e j([2π/N]kn+argak).

■ Clearly, the kth term in the summation corresponds to a complex sinusoid
with fundamental frequency 2π

N k that has been amplitude scaled by a
factor of |ak| and time-shifted by an amount that depends on argak.

■ For a given k, the larger |ak| is, the larger is the amplitude of its
corresponding complex sinusoid e j(2π/N)kn, and therefore the larger the
contribution the kth term (which is associated with frequency 2π

N k) will
make to the overall summation.

■ In this way, we can use |ak| as a measure of how much information a
sequence x has at the frequency 2π

N k.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 444

Fourier Series and Frequency Spectra (Continued 1)

■ The Fourier series coefficients ak of the sequence x are referred to as the
frequency spectrum of x.

■ The magnitudes |ak| of the Fourier series coefficients ak are referred to as
the magnitude spectrum of x.

■ The arguments argak of the Fourier series coefficients ak are referred to
as the phase spectrum of x.

■ The frequency spectrum ak of an N-periodic sequence is N-periodic in the
coefficient index k and 2π-periodic in the frequency Ω = 2π

N k.

■ The range of frequencies between −π and π are referred to as the
baseband.

■ Often, the spectrum of a sequence is plotted against frequency Ω = 2π
N k

(over the single 2π period of the baseband) instead of the Fourier series
coefficient index k.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 445

Fourier Series and Frequency Spectra (Continued 2)

■ Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

■ Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as line
spectra.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 446

Frequency Spectra of Real Sequences

■ Let x denote an N-periodic sequence with the corresponding
Fourier-series coefficient sequence c.

■ As we saw earlier:
x is real⇔ c is conjugate symmetric.

■ Furthermore, if x is real, the following assertions hold for ck for
k ∈ [0 . .N−1]:

1 ck = c∗N−k for k ∈ [1 . .N−1];
2 of the N coefficients ck for k ∈ [0 . .N−1], only

⌊N
2

⌋
+1 coefficients are

independent; for example, ck for k ∈
[
0 . .
⌊N

2

⌋]
completely determines ck for

all k ∈ [0 . .N−1];
3 c0 is real; and
4 if N is even, cN/2 is real.

■ Note that approximately half of the coefficients in a single period of c are
redundant if x is real.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 447

Section 10.5

Fourier Series and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 448

Frequency Response

■ Recall that a LTI system H with impulse response h is such that
H{zn}(n) = HZ(z)zn, where HZ(z) = ∑∞

n=−∞ h(n)z−n. (That is, complex
exponentials are eigensequences of LTI systems.)

■ Since a complex sinusoid is a special case of a complex exponential, we
can reuse the above result for the special case of complex sinusoids.

■ For a LTI system H with impulse response h,

H
{

e jΩn}(n) = H(Ω)e jΩn,

where Ω is real and

H(Ω) =
∞

∑
n=−∞

h(n)e− jΩn.

■ That is, e jΩn is an eigensequence of a LTI system and H(Ω) is the
corresponding eigenvalue.

■ The function H is 2π-periodic, since e jΩ is 2π-periodic.
■ We refer to H as the frequency response of the system H.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 449

Fourier Series and LTI Systems

■ Consider a LTI system with input x, output y, and frequency response H.

■ Suppose that the N-periodic input x is expressed as the Fourier series

x(n) =
N−1

∑
k=0

ake jkΩ0n, where Ω0 =
2π
N .

■ Using our knowledge about the eigensequences of LTI systems, we can
conclude

y(n) =
N−1

∑
k=0

akH(kΩ0)e jkΩ0n.

■ Thus, if the input x to a LTI system is a Fourier series, the output y is also a
Fourier series. More specifically, if x(n) DTFS←→ ak then y(n) DTFS←→ H(kΩ0)ak.

■ The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 450

Filtering

■ In many applications, we want to modify the spectrum of a sequence by
either amplifying or attenuating certain frequency components.

■ This process of modifying the frequency spectrum of a sequence is called
filtering.

■ A system that performs a filtering operation is called a filter.

■ Many types of filters exist.

■ Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

■ Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 451

Ideal Lowpass Filter

■ An ideal lowpass filter eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response of the form

H(Ω) =

{
1 |Ω| ≤Ωc

0 Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.

■ A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(Ω)

−Ωc Ωc

Stopband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 452

Ideal Highpass Filter

■ An ideal highpass filter eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response of the form

H(Ω) =

{
1 Ωc < |Ω| ≤ π
0 |Ω| ≤Ωc,

where Ωc is the cutoff frequency.

■ A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π π

Passband Passband

−Ωc Ωc
Ω

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 453

Ideal Bandpass Filter

■ An ideal bandpass filter eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response of the form

H(Ω) =

{
1 Ωc1 ≤ |Ω| ≤Ωc2

0 |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.

■ A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 454

Part 11

Discrete-Time Fourier Transform (DTFT)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 455

Motivation for the Fourier Transform

■ The (DT) Fourier series provide an extremely useful representation for
periodic sequences.

■ Often, however, we need to deal with sequences that are not periodic.

■ A more general tool than the Fourier series is needed in this case.

■ The (DT) Fourier transform can be used to represent both periodic and
aperiodic sequences.

■ Since the (DT) Fourier transform is essentially derived from (DT) Fourier
series through a limiting process, the Fourier transform has many
similarities with Fourier series.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 456

Section 11.1

Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 457

Development of the Fourier Transform [Aperiodic Case]

■ The (DT) Fourier series is an extremely useful signal representation.

■ Unfortunately, this signal representation can only be used for periodic
sequences, since a Fourier series is inherently periodic.

■ Many sequences are not periodic, however.

■ Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can also be
applied to aperiodic sequences.

■ By viewing an aperiodic sequence as the limiting case of an N-periodic
sequence where N→ ∞, we can use the Fourier series to develop a
signal representation that can be used for aperiodic sequences, known as
the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 458

Development of the Fourier Transform [Aperiodic Case] (Continued)

■ Recall that the Fourier series representation of an N-periodic sequence x
is given by

x(n) = ∑
k=⟨N⟩

(
1
N ∑

ℓ=⟨N⟩
x(ℓ)e− j(2π/N)kℓ

)

︸ ︷︷ ︸
ck

e j(2π/N)kn.

■ In the above representation, if we take the limit as N→ ∞, we obtain

x(n) = 1
2π

∫
2π

(
∞

∑
ℓ=−∞

x(ℓ)e− jΩℓ

)

︸ ︷︷ ︸
X(Ω)

e jΩndΩ

(i.e., as N→ ∞, the two finite summations become an integral and infinite
summation, 1

N becomes 1
2π dΩ, and

(2π
N

)
k becomes Ω).

■ This representation for aperiodic sequences is known as the Fourier
transform representation.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 459

Generalized Fourier Transform

■ The classical Fourier transform for aperiodic sequences does not exist
(i.e., ∑∞

n=−∞ x(n)e− jΩn fails to converge) for some sequences of great
practical interest, such as:

2 a nonzero constant sequence;
2 a periodic sequence (e.g., a real or complex sinusoid); and
2 the unit-step sequence (i.e., u).

■ Fortunately, the Fourier transform can be extended to handle such
sequences, resulting in what is known as the generalized Fourier
transform.

■ For our purposes, we can think of the classical and generalized Fourier
transforms as being defined by the same formulas.

■ Therefore, in what follows, we will not typically make a distinction between
the classical and generalized Fourier transforms.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 460

DT Fourier Transform (DTFT)

■ The Fourier transform of the sequence x, denoted Fx or X , is given by

Fx(Ω) = X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

■ The preceding equation is sometimes referred to as Fourier transform
analysis equation (or forward Fourier transform equation).

■ The inverse Fourier transform of X , denoted F−1X or x, is given by

F−1X(n) = x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ.

■ The preceding equation is sometimes referred to as the Fourier
transform synthesis equation (or inverse Fourier transform equation).

■ As a matter of notation, to denote that a sequence x has the Fourier
transform X , we write x(n) DTFT←→ X(Ω).

■ A sequence x and its Fourier transform X constitute what is called a
Fourier transform pair.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 461

Section 11.2

Convergence Properties of the Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 462

Convergence of the Fourier Transform

■ For a sequence x, the Fourier transform analysis equation (i.e.,
X(Ω) = ∑∞

−∞ x(n)e− jΩn) converges uniformly if

∞

∑
k=−∞

|x(k)|< ∞

(i.e., x is absolutely summable).

■ For a sequence x, the Fourier transform analysis equation (i.e.,
X(Ω) = ∑∞

−∞ x(n)e− jΩn) converges in the MSE sense if

∞

∑
k=−∞

|x(k)|2 < ∞

(i.e., x is square summable).

■ For a bounded Fourier transform X , the Fourier transform synthesis
equation (i.e., x(n) = 1

2π
∫

2π X(Ω)e jΩndΩ) will always converge, since the
integration interval is finite.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 463

Section 11.3

Properties of the Fourier Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 464

Properties of the (DT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(n)+a2x2(n) a1X1(Ω)+a2X2(Ω)

Translation x(n−n0) e− jΩn0X(Ω)

Modulation e jΩ0nx(n) X(Ω−Ω0)

Conjugation x∗(n) X∗(−Ω)

Time Reversal x(−n) X(−Ω)

Upsampling (↑M)x(n) X(MΩ)

Downsampling (↓M)x(n) 1
M ∑M−1

k=0 X
(Ω−2πk

M

)

Convolution x1 ∗ x2(n) X1(Ω)X2(Ω)

Multiplication x1(n)x2(n) 1
2π

∫
2π X1(θ)X2(Ω−θ)dθ

Freq.-Domain Diff. nx(n) j d
dΩ X(Ω)

Differencing x(n)− x(n−1)
(
1− e− jΩ)X(Ω)

Accumulation ∑n
k=−∞ x(k) e jΩ

e jΩ−1 X(Ω)+πX(0)∑∞
k=−∞ δ(Ω−2πk)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 465

Properties of the (DT) Fourier Transform (Continued)

Property

Periodicity X(Ω) = X(Ω+2π)
Parseval’s Relation ∑∞

n=−∞ |x(n)|2 = 1
2π

∫
2π |X(Ω)|2 dΩ

Even Symmetry x is even⇔ X is even

Odd Symmetry x is odd⇔ X is odd

Real / Conjugate Symmetry x is real⇔ X is conjugate symmetric

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 466

(DT) Fourier Transform Pairs

Pair x(n) X(Ω)

1 δ(n) 1

2 1 2π∑∞
k=−∞ δ(Ω−2πk)

3 u(n) e jΩ

e jΩ−1 +∑∞
k=−∞ πδ(Ω−2πk)

4 anu(n), |a|< 1 e jΩ

e jΩ−a

5 −anu(−n−1), |a|> 1 e jΩ

e jΩ−a

6 a|n|, |a|< 1 1−a2

1−2acosΩ+a2

7 cos(Ω0n) π∑∞
k=−∞ [δ(Ω−Ω0−2πk)+δ(Ω+Ω0−2πk)]

8 sin(Ω0n) jπ∑∞
k=−∞ [δ(Ω+Ω0−2πk)−δ(Ω−Ω0−2πk)]

9 cos(Ω0n)u(n) e j2Ω−e jΩ cosΩ0
e j2Ω−2e jΩ cosΩ0+1 +

π
2 ∑∞

k=−∞ [δ(Ω−2πk−Ω0)+δ(Ω−2πk+Ω0)]

10 sin(Ω0n)u(n) e jΩ sinΩ0
e j2Ω−2e jΩ cosΩ0+1 +

π
2 j ∑∞

k=−∞ [δ(Ω−2πk−Ω0)−δ(Ω−2πk+Ω0)]

11 B
π sinc(Bn),0 < B < π ∑∞

k=−∞ rect
(Ω−2πk

2B

)

12 u(n)−u(n−M) e− jΩ(M−1)/2
(

sin(MΩ/2)
sin(Ω/2)

)

13 nanu(n), |a|< 1 ae jΩ

(e jΩ−a)2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 467

Periodicity

■ Recall the definition of the Fourier transform X of the sequence x:

X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

■ For all integer k, we have that

X(Ω+2πk) =
∞

∑
n=−∞

x(n)e− j(Ω+2πk)n

=
∞

∑
n=−∞

x(n)e− j(Ωn+2πkn)

=
∞

∑
n=−∞

x(n)e− jΩn

= X(Ω).

■ Thus, the Fourier transform X of the sequence x is always 2π-periodic.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 468

Linearity

■ If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

a1x1(n)+a2x2(n)
DTFT←→ a1X1(Ω)+a2X2(Ω),

where a1 and a2 are arbitrary complex constants.

■ This is known as the linearity property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 469

Translation

■ If x(n) DTFT←→ X(Ω), then

x(n−n0)
DTFT←→ e− jΩn0X(Ω),

where n0 is an arbitrary integer.

■ This is known as the translation (or time-domain shifting) property of
the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 470

Modulation

■ If x(n) DTFT←→ X(Ω), then

e jΩ0nx(n) DTFT←→ X(Ω−Ω0),

where Ω0 is an arbitrary real constant.

■ This is known as the modulation (or frequency-domain shifting)
property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 471

Conjugation

■ If x(n) DTFT←→ X(Ω), then

x∗(n) DTFT←→ X∗(−Ω).

■ This is known as the conjugation property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 472

Time Reversal

■ If x(n) DTFT←→ X(Ω), then

x(−n) DTFT←→ X(−Ω).

■ This is known as the time-reversal property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 473

Upsampling

■ If x(n) DTFT←→ X(Ω), then

(↑M)x(n) DTFT←→ X(MΩ).

■ This is known as the upsampling property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 474

Downsampling

■ If x(n) DTFT←→ X(Ω), then

(↓M)x(n) DTFT←→ 1
M

M−1

∑
k=0

X
(Ω−2πk

M

)
.

■ This is known as the downsampling property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 475

Convolution

■ If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1 ∗ x2(n)
DTFT←→ X1(Ω)X2(Ω).

■ This is known as the convolution (or time-domain convolution)
property of the Fourier transform.

■ In other words, a convolution in the time domain becomes a multiplication
in the frequency domain.

■ This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 476

Multiplication

■ If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1(n)x2(n)
DTFT←→ 1

2π

∫
2π

X1(θ)X2(Ω−θ)dθ.

■ This is known as the multiplication (or time-domain multiplication)
property of the Fourier transform.

■ Do not forget the factor of 1
2π in the above formula!

■ This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 477

Frequency-Domain Differentiation

■ If x(n) DTFT←→ X(Ω), then

nx(n) DTFT←→ j d
dΩ X(Ω).

■ This is known as the frequency-domain differentiation property of the
Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 478

Differencing

■ If x(n) DTFT←→ X(Ω), then

x(n)− x(n−1) DTFT←→
(
1− e− jΩ)X(Ω).

■ This is known as the differencing property of the Fourier transform.

■ Note that this property follows quite trivially from the linearity and
translation properties of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 479

Accumulation

■ If x(n) DTFT←→ X(Ω), then

n

∑
k=−∞

x(k) DTFT←→ e jΩ

e jΩ−1
X(Ω)+πX(0)

∞

∑
k=−∞

δ(Ω−2πk).

■ This is known as the accumulation property of the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 480

Parseval’s Relation

■ If x(n) DTFT←→ X(Ω), then

∞

∑
n=−∞

|x(n)|2 = 1
2π

∫
2π
|X(Ω)|2 dΩ

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

■ This is known as Parseval’s relation.

■ Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 481

Even and Odd Symmetry

■ For a sequence x with Fourier transform X , the following assertions hold:
1 x is even⇔ X is even; and
2 x is odd⇔ X is odd.

■ In other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 482

Real Sequences

■ A sequence x is real if and only if its Fourier transform X satisfies

X(Ω) = X∗(−Ω) for all Ω

(i.e., X is conjugate symmetric).

■ Thus, for a real-valued sequence, the portion of the graph of a Fourier
transform for negative values of frequency Ω is redundant, as it is
completely determined by symmetry.

■ From properties of complex numbers, one can show that
X(Ω) = X∗(−Ω) is equivalent to

|X(Ω)|= |X(−Ω)| and argX(Ω) =−argX(−Ω)

(i.e., |X(Ω)| is even and argX(Ω) is odd).

■ Note that x being real does not necessarily imply that X is real.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 483

Section 11.4

Fourier Transform of Periodic Sequences

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 484

Fourier Transform of Periodic Sequences

■ The Fourier transform can be generalized to also handle periodic
sequences.

■ Consider an N-periodic sequence x.
■ Define the sequence xN as

xN(n) =

{
x(n) 0≤ n < N
0 otherwise.

(i.e., xN(n) is equal to x(n) over a single period and zero elsewhere).
■ Let a denote the Fourier series coefficient sequence of x.
■ Let X and XN denote the Fourier transforms of x and xN , respectively.
■ The following relationships can be shown to hold:

X(Ω) = 2π
N

∞

∑
k=−∞

XN
(2πk

N

)
δ
(
Ω− 2πk

N

)
,

ak =
1
N XN

(2πk
N

)
, and X(Ω) = 2π

∞

∑
k=−∞

akδ
(
Ω− 2πk

N

)
.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 485

Fourier Transform of Periodic Sequences (Continued)

■ The Fourier series coefficient sequence a is produced by sampling XN at
integer multiples of the fundamental frequency 2π

N and scaling the
resulting sequence by 1

N .

■ The Fourier transform of a periodic sequence can only be nonzero at
integer multiples of the fundamental frequency.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 486

Section 11.5

Fourier Transform and Frequency Spectra of Sequences

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 487

Frequency Spectra of Sequences

■ Like Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on sequences.

■ That is, instead of viewing a sequence as having information distributed
with respect to time (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

■ The Fourier transform X of a sequence x provides a means to quantify
how much information x has at different frequencies.

■ The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 488

Fourier Transform and Frequency Spectra

■ To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X(Ω) expressed in polar form as
follows:

x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ = 1
2π

∫
2π
|X(Ω)|e j[Ωn+argX(Ω)]dΩ.

■ In effect, the quantity |X(Ω)| is a weight that determines how much the
complex sinusoid at frequency Ω contributes to the integration result x(n).

■ Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
area of rectangles, as shown on the next slide. [Recall that∫ b

a f (x)dx = limn→∞ ∑n
k=1 f (xk)∆x where ∆x = b−a

n and xk = a+ k∆x.]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 489

Fourier Transform and Frequency Spectra (Continued 1)

■ Expressing the integral (from the previous slide) as the limit of a sum, we
obtain

x(n) = lim
ℓ→∞

1
2π

ℓ

∑
k=1

∆Ω
∣∣X(Ω′)

∣∣e j[Ω′n+argX(Ω′)],

where ∆Ω = 2π
ℓ and Ω′ = k∆Ω.

■ In the above equation, the kth term in the summation corresponds to a
complex sinusoid with fundamental frequency Ω′ = k∆Ω that has had its
amplitude scaled by a factor of |X(Ω′)| and has been time shifted by an
amount that depends on argX(Ω′).

■ For a given Ω′ = k∆Ω (which is associated with the kth term in the
summation), the larger |X(Ω′)| is, the larger the amplitude of its
corresponding complex sinusoid e jΩ′n will be, and therefore the larger the
contribution the kth term will make to the overall summation.

■ In this way, we can use |X(Ω′)| as a measure of how much information a
sequence x has at the frequency Ω′.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 490

Fourier Transform and Frequency Spectra (Continued 2)

■ The Fourier transform X of the sequence x is referred to as the frequency
spectrum of x.

■ The magnitude |X(Ω)| of the Fourier transform X is referred to as the
magnitude spectrum of x.

■ The argument argX(Ω) of the Fourier transform X is referred to as the
phase spectrum of x.

■ Since the Fourier transform is a function of a real variable, a sequence
can potentially have information at any real frequency.

■ Earlier, we saw that for periodic sequences, the Fourier transform can only
be nonzero at integer multiples of the fundamental frequency.

■ So, the Fourier transform and Fourier series give a consistent picture in
terms of frequency spectra.

■ Since the frequency spectrum is complex (in the general case), it is
usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 491

Frequency Spectra of Real Sequences

■ Recall that, for a real sequence x, the Fourier transform X of x satisfies

X(Ω) = X∗(−Ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(Ω)|= |X(−Ω)| and argX(Ω) =−argX(−Ω).

■ Since |X(Ω)|= |X(−Ω)|, the magnitude spectrum of a real sequence is
always even.

■ Similarly, since argX(Ω) =−argX(−Ω), the phase spectrum of a real
sequence is always odd.

■ Due to the symmetry in the frequency spectra of real sequences, we
typically ignore negative frequencies when dealing with such sequences.

■ In the case of sequences that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 492

Bandwidth

■ A sequence x with Fourier transform X satisfying X(Ω) = 0 for all Ω in
(−π,π] except for some interval I is said to be bandlimited to
frequencies in I.

■ The bandwidth of a sequence x with Fourier transform X is the length of
the interval in (−π,π] over which X is nonzero.

■ For example, the sequence x with the Fourier transform X shown below is
bandlimited to frequencies in [−B,B] and has bandwidth B− (−B) = 2B.

−π −B B π

1

Ω

X(Ω)

■ Since x is real in the above example (as X is conjugate symmetric), we
might choose to ignore negative frequencies, in which case x would be
deemed to be bandlimited to frequencies in [0,B] and have bandwidth
B−0 = B.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 493

Energy-Density Spectra

■ By Parseval’s relation, the energy E in a sequence x with Fourier
transform X is given by

E = 1
2π

∫
2π

Ex(Ω)dΩ,

where

Ex(Ω) = |X(Ω)|2 .

■ We refer to Ex as the energy-density spectrum of the sequence x.

■ The function Ex indicates how the energy in x is distributed with respect to
frequency.

■ For example, the energy contributed by frequencies in the range [Ω1,Ω2]
is given by

1
2π

∫ Ω2

Ω1

Ex(Ω)dΩ.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 494

Section 11.6

Fourier Transform and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 495

Frequency Response of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

■ Since y(n) = x∗h(n), we have that

Y (Ω) = X(Ω)H(Ω).

■ The function H is called the frequency response of the system.

■ A LTI system is completely characterized by its frequency response H.

■ The above equation provides an alternative way of viewing the behavior of
a LTI system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
signals.

■ The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 496

Frequency Response of LTI Systems (Continued 1)

■ In the general case, the frequency response H is a complex-valued
function.

■ Often, we represent H(Ω) in terms of its magnitude |H(Ω)| and argument
argH(Ω).

■ The quantity |H(Ω)| is called the magnitude response of the system.

■ The quantity argH(Ω) is called the phase response of the system.

■ Since Y (Ω) = X(Ω)H(Ω), we trivially have that

|Y (Ω)|= |X(Ω)| |H(Ω)| and argY (Ω) = argX(Ω)+ argH(Ω).

■ The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

■ The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 497

Frequency Response of LTI Systems (Continued 2)

■ Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

|H(Ω)|= |H(−Ω)| and argH(Ω) =−argH(−Ω)

(i.e., the magnitude response |H(Ω)| is even and the phase response
argH(Ω) is odd).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 498

Unwrapped Phase

■ For many types of analysis, restricting the range of a phase function to an
interval of length 2π (such as (−π,π]), often unnecessarily introduces
discontinuities into the function.

■ This motivates the notion of unwrapped phase.

■ The unwrapped phase is simply the phase defined in such a way so as
not to restrict the phase to an interval of length 2π and to keep the phase
function continuous to the greatest extent possible.

■ For example, the function H(Ω) = e j3Ω has the unwrapped phase
Θ(Ω) = 3Ω.

−π −π
2

π
2

π

−3π
−2π
−π

π
2π
3π

Ω

ArgH(Ω)

Phase

−π −π
2

π
2

π

−3π
−2π
−π

π
2π
3π

Ω

Θ(Ω) = 3Ω

Unwrapped Phase

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 499

Interpretation of Magnitude and Phase Response

■ Recall that a LTI system H with frequency response H is such that

H
{

e jΩn}(n) = H(Ω)e jΩn.

■ Expressing H(Ω) in polar form, we have

H{e jΩn}(n) = |H(Ω)|e j argH(Ω)e jΩn

= |H(Ω)|e j[Ωn+argH(Ω)]

= |H(Ω)|e jΩ(n+arg[H(Ω)]/Ω).

■ Thus, the response of the system to the sequence e jΩn is produced by
applying two transformations to this sequence:

2 (amplitude) scaling by |H(Ω)|; and
2 translating by − argH(Ω)

Ω (using bandlimited interpolation if − argH(Ω)
Ω ̸∈ Z).

■ Therefore, the magnitude response determines how different complex
sinusoids are scaled (in amplitude) by the system.

■ Similarly, the phase response determines how different complex sinusoids
are translated (i.e., delayed/advanced) by the system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 500

Magnitude Distortion

■ Recall that a LTI system H with frequency response H is such that

H{e jΩn}(n) = |H(Ω)|e jΩ(n+arg[H(Ω)]/Ω).

■ If |H(Ω)| is a constant (for all Ω), every complex sinusoid is scaled by the
same amount when passing through the system.

■ A system for which |H(Ω)|= 1 (for all Ω) is said to be allpass.

■ In the case of an allpass system, the magnitude spectra of the system’s
input and output are identical.

■ If |H(Ω)| is not a constant, different complex sinusoids are scaled by
different amounts, resulting in what is known as magnitude distortion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 501

Phase Distortion

■ Recall that a LTI system H with frequency response H is such that

H{e jΩn}(n) = |H(Ω)|e jΩ(n+arg[H(Ω)]/Ω).

■ The preceding equation can be rewritten as

H{e jΩn}(n) = |H(Ω)|e jΩ[n−τp(Ω)] where τp(Ω) =− argH(Ω)
Ω .

■ The function τp is known as the phase delay of the system.

■ If τp(Ω) = nd (where nd is a constant), the system shifts all complex
sinusoids by the same amount nd.

■ Since τp(Ω) = nd is equivalent to the (unwrapped) phase response being
of the form argH(Ω) =−ndΩ (which is a linear function with a zero
constant term), a system with a constant phase delay is said to have
linear phase.

■ In the case that τp(Ω) = 0, the system is said to have zero phase.

■ If τp(Ω) is not a constant, different complex sinusoids are shifted by
different amounts, resulting in what is known as phase distortion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 502

Distortionless Transmission

■ Consider a LTI system H with input x and output y given by

y(n) = x(n−n0),

where n0 is an integer constant.
■ That is, the output of the system is simply the input delayed by n0.
■ This type of behavior is the ideal for which we strive in real-world

communication systems (i.e., the received signal y equals a delayed
version of the transmitted signal x).

■ Taking the Fourier transform of the preceding equation, we have

Y (Ω) = e− jΩn0X(Ω).

■ Thus, the system has the frequency response H given by

H(Ω) = e− jΩn0 .

■ Since the phase delay of the system is τp(Ω) =−
(
−Ωn0

Ω

)
= n0, the

phase delay is constant and the system has linear phase.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 503

Block Diagram Representations of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

■ Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

H
X Y

■ Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 504

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with frequency response H1H2. That is, we
have the equivalences shown below.

H1 H2 ≡ X Y
H1H2

YX

≡H1 H2 H2 H1
YX YX

■ The parallel interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with the frequency response H1 +H2. That
is, we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 505

LTI Systems and Difference Equations

■ Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

■ Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k).

■ Let h denote the impulse response of the system, and let X , Y , and H
denote the Fourier transforms of x, y, and h, respectively.

■ One can show that H(Ω) is given by

H(Ω) =
Y (Ω)

X(Ω)
=

∑M
k=0 ak(e jΩ)−k

∑N
k=0 bk(e jΩ)−k

=
∑M

k=0 ake− jkΩ

∑N
k=0 bke− jkΩ .

■ Each of the numerator and denominator of H is a polynomial in e− jΩ.

■ Thus, H is a rational function in the variable e− jΩ.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 506

Section 11.7

Fourier Transform Relationships

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 507

Duality Between DTFT and CTFS
■ The DTFT analysis and synthesis equations are, respectively, given by

X(Ω) =
∞

∑
k=−∞

x(k)e− jkΩ and x(n) = 1
2π

∫
2π

X(Ω)e jnΩdΩ.

■ The CTFS synthesis and analysis equations are, respectively, given by

xc(t) =
∞

∑
k=−∞

a(k)e jk(2π/T)t and a(n) = 1
T

∫
T

xc(t)e− jn(2π/T)tdt,

which can be rewritten, respectively, as

xc(t) =
∞

∑
k=−∞

a(−k)e− jk(2π/T)t and a(−n) = 1
T

∫
T

xc(t)e jn(2π/T)tdt.

■ The CTFS synthesis equation with T = 2π corresponds to the DTFT
analysis equation with X = xc, Ω = t, and x(n) = a(−n).

■ The CTFS analysis equation with T = 2π corresponds to the DTFT
synthesis equation with X = xc and x(n) = a(−n).

■ Consequently, the DTFT X of the sequence x can be viewed as a CTFS
representation of the 2π-periodic spectrum X .

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 508

Relationship Between DTFT and CTFT

■ Let x be a bandlimited function and let T denote a sampling period for x
that satisfies the Nyquist condition.

■ Let ỹ be the function obtained by impulse sampling x with sampling period
T . That is,

ỹ(t) =
∞

∑
n=−∞

x(T n)δ(t−T n).

■ Let y denote the sequence obtaining by sampling x with sampling period
T . That is,

y(n) = x(T n).

■ Let Ỹ denote the (CT) Fourier transform of ỹ and let Y denote the (DT)
Fourier transform of y.

■ Then, the following relationship holds:

Y (Ω) = Ỹ
(Ω

T

)
for all Ω ∈ R.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 509

Relationship Between DTFT and DFT

■ Let x be a sequence with (DT) Fourier transform X such that

x(n) = 0 for all n ̸∈ [0 . .M−1].

■ Let X̃ denote the N-point DFT of X . That is,

X̃(k) =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k ∈ [0 . .N−1].

■ Suppose now that N ≥M.

■ Then, the following relationship holds:

X
(2π

N k
)
= X̃(k) for k ∈ [0 . .N−1].

■ In other words, the elements of the sequence X̃ correspond to
uniformly-spaced samples of the function X .

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 510

Spectral Sampling Example

■ Consider the sequence

x(n) = u(n)−u(n−4).

■ The Fourier transform X of x can be shown to be

X(Ω) = e− j(3/2)Ω

[
sin(2Ω)

sin
(1

2 Ω
)
]
.

■ Clearly, x(n) = 0 for all n ̸∈ [0 . .3].
■ Therefore, uniformly-spaced samples of X can be obtained from an

N-point DFT X̃ of x, where N ≥ 4.

■ The subsequent slides show the sampled spectrum obtained by the DFT
for several values of N.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 511

Spectral Sampling Example: N = 4

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

1

2

3

4

|X(Ω)|

Ω = π
2 k

∣∣X̃(k)
∣∣

Magnitude Spectrum

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

−π

−π
2

π
2

πargX(Ω)

Ω = π
2 k

arg X̃(k)

Phase Spectrum

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 512

Spectral Sampling Example: N = 8

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

1

2

3

4

|X(Ω)|

Ω = π
4 k

∣∣X̃(k)
∣∣

Magnitude Spectrum

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

−π

−π
2

π
2

πargX(Ω)

Ω = π
4 k

arg X̃(k)

Phase Spectrum

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 513

Spectral Sampling Example: N = 16

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

1

2

3

4

|X(Ω)|

Ω = π
8 k

∣∣X̃(k)
∣∣

Magnitude Spectrum

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

−π

−π
2

π
2

πargX(Ω)

Ω = π
8 k

arg X̃(k)

Phase Spectrum

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 514

Spectral Sampling Example: N = 64

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

1

2

3

4

|X(Ω)|

Ω = π
32 k

∣∣X̃(k)
∣∣

Magnitude Spectrum

−π − 3π
4 − 2π

4
−π

4
π
4

2π
4

3π
4

π

−π

−π
2

π
2

πargX(Ω)

Ω = π
32 k

arg X̃(k)

Phase Spectrum

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 515

Section 11.8

Application: Filtering

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 516

Filtering

■ In many applications, we want to modify the spectrum of a signal by
either amplifying or attenuating certain frequency components.

■ This process of modifying the frequency spectrum of a signal is called
filtering.

■ A system that performs a filtering operation is called a filter.

■ Many types of filters exist.

■ Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

■ Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 517

Ideal Lowpass Filter

■ An ideal lowpass filter eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(Ω) =

{
1 |Ω| ≤Ωc

0 Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.

■ A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(Ω)

−Ωc Ωc

Stopband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 518

Ideal Highpass Filter

■ An ideal highpass filter eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(Ω) =

{
1 Ωc < |Ω| ≤ π
0 |Ω| ≤Ωc,

where Ωc is the cutoff frequency.

■ A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π π

Passband Passband

−Ωc Ωc
Ω

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 519

Ideal Bandpass Filter

■ An ideal bandpass filter eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

■ Such a filter has a frequency response H of the form

H(Ω) =

{
1 Ωc1 ≤ |Ω| ≤Ωc2

0 |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.

■ A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 520

Part 12

z Transform (ZT)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 521

Motivation Behind the z Transform

■ Another important mathematical tool in the study of signals and systems
is known as the z transform.

■ The z transform can be viewed as a generalization of the (classical)
Fourier transform.

■ Due to its more general nature, the z transform has a number of
advantages over the (classical) Fourier transform.

■ First, the z transform representation exists for some sequences that do
not have a Fourier transform representation. So, we can handle some
sequences with the z transform that cannot be handled with the Fourier
transform.

■ Second, since the z transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 522

Motivation Behind the z Transform (Continued)

■ Earlier, we saw that complex exponentials are eigensequences of LTI
systems.

■ In particular, for a LTI system H with impulse response h, we have that

H{zn}(n) = H(z)zn where H(z) =
∞

∑
n=−∞

h(n)z−n.

■ Previously, we referred to H as the system function.

■ As it turns out, H is the z transform of h.

■ Since the z transform has already appeared earlier in the context of LTI
systems, it is clearly a useful tool.

■ Furthermore, as we will see, the z transform has many additional uses.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 523

Section 12.1

z Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 524

(Bilateral) z Transform

■ The (bilateral) z transform of the sequence x, denoted Zx or X , is
defined as

Zx(z) = X(z) =
∞

∑
n=−∞

x(n)z−n.

■ The inverse z transform of X , denoted Z−1X or x, is then given by

Z−1X(n) = x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the
origin and with radius r such that Γ is in the ROC of X .

■ We refer to x and X as a z transform pair and denote this relationship as

x(n) ZT←→ X(z).

■ In practice, we do not usually compute the inverse z transform by directly
using the formula from above. Instead, we resort to other means (to be
discussed later).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 525

Bilateral and Unilateral z Transform

■ Two different versions of the z transform are commonly used:
1 the bilateral (or two-sided) z transform; and
2 the unilateral (or one-sided) z transform.

■ The unilateral z transform is most frequently used to solve systems of
linear difference equations with nonzero initial conditions.

■ As it turns out, the only difference between the definitions of the bilateral
and unilateral z transforms is in the lower limit of summation.

■ In the bilateral case, the lower limit is −∞, whereas in the unilateral case,
the lower limit is 0.

■ For the most part, we will focus our attention primarily on the bilateral z
transform.

■ We will, however, briefly introduce the unilateral z transform as a tool for
solving difference equations.

■ Unless otherwise noted, all subsequent references to the z transform
should be understood to mean bilateral z transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 526

Relationship Between Z and Fourier Transforms

■ Let X and XF denote the z and (DT) Fourier transforms of x, respectively.
■ The function X(z) evaluated at z = e jΩ (where Ω is real) yields XF(Ω).

That is,

X(e jΩ) = XF(Ω).

■ Due to the preceding relationship, the Fourier transform of x is sometimes
written as X(e jΩ).

■ The function X(z) evaluated at an arbitrary complex value z = re jΩ (where
r = |z| and Ω = argz) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(re jΩ) = X ′F(Ω),

where X ′F is the (DT) Fourier transform of x′(n) = r−nx(n).
■ So, in general, the z transform of x is the Fourier transform of an

exponentially-weighted version of x.
■ Due to this weighting, the z transform of a sequence may exist when the

Fourier transform of the same sequence does not.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 527

z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 528

Section 12.2

Region of Convergence (ROC)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 529

Disk

■ A disk with center 0 and radius r is the set of all complex numbers z
satisfying

|z|< r,

where r is a real constant and r > 0.

Im

Re
r

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 530

Annulus

■ An annulus with center 0, inner radius r0, and outer radius r1 is the set of
all complex numbers z satisfying

r0 < |z|< r1,

where r0 and r1 are real constants and 0 < r0 < r1.

Im

Re

r1

r0

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 531

Circle Exterior

■ The exterior of a circle with center 0 and radius r is the set of all complex
numbers z satisfying

|z|> r,

where r is a real constant and r > 0.

Im

r
Re

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 532

Example: Set Intersection

3/4

includes ∞

Re

Im

R1

5/4

Re

Im

R2

3/4 5/4

Re

Im

R1∩R2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 533

Example: Scalar Multiple of a Set

1 2
Re

Im

R

2 4
Re

Im

2R

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 534

Example: Reciprocal of a Set

3/4

includes ∞

Re

Im

R

4/3

Re

Im

R−1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 535

Region of Convergence (ROC)

■ As we saw earlier, for a sequence x, the complete specification of its z
transform X requires not only an algebraic expression for X , but also the
ROC associated with X .

■ Two very different sequences can have the same algebraic expressions
for X .

■ Now, we examine some of the constraints on the ROC (of the z transform)
for various classes of sequences.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 536

Property 1: General Form

■ The ROC of a z transform consists of concentric circles centered at 0 in
the complex plane.

■ That is, if a point z0 is in the ROC, then the circle centered at 0 passing
through z0 (i.e., |z|= |z0|) is also in the ROC.

■ Some examples of sets that would be either valid or invalid as ROCs are
shown below.

Re

Im

Valid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 537

Property 2: Rational z Transforms

■ If a z transform X is a rational function, then the ROC of X does not
contain any poles and is bounded by poles or extends to infinity.

■ Some examples of sets that would be either valid or invalid as ROCs of
rational z transforms are shown below.

Re

Im

Valid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 538

Property 3: Finite-Duration Sequences

■ If a sequence x is finite duration and its z transform X converges for at
least one point, then X converges for all points the complex plane, except
possibly 0 and/or ∞.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if x is finite duration, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 539

Property 4: Right-Sided Sequences

■ If a sequence x is right sided and the circle |z|= r0 is in the ROC of
X = Zx, then all (finite) values of z for which |z|> r0 will also be in the
ROC of X (i.e., the ROC contains the exterior of a circle centered at 0,
possibly including ∞).

■ Thus, if x is right sided but not left sided, the ROC of X is the exterior of
a circle centered at 0, possibly including ∞.

■ Examples of sets that would be either valid or invalid as ROCs for X , if x is
right sided but not left sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 540

Property 5: Left-Sided Sequences

■ If a sequence x is left sided and the circle |z|= r0 is in the ROC of
X = Zx, then all values of z for which 0 < |z|< r0 will also be in the ROC
of X (i.e., the ROC contains a disk centered at 0, possibly excluding 0).

■ Thus, if x is left sided but not right sided, the ROC of X is a disk centered
at 0, possibly excluding 0.

■ Examples of sets that would be either valid or invalid as ROCs for X , if x is
left sided but not right sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 541

Property 6: Two-Sided Sequences

■ If a sequence x is two sided and the circle |z|= r0 is in the ROC of
X = Zx, then the ROC of X will consist of a ring that contains this circle
(i.e., the ROC is an annulus centered at 0).

■ Examples of sets that would be either valid or invalid as ROCs for X , if x is
two sided, are shown below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 542

Property 7: More on Rational z Transforms

■ If a sequence x has a rational z transform X (with at least one pole), then:
1 If x is right sided, then the ROC of X is the region outside the circle of

radius equal to the largest magnitude of the poles of X (i.e., outside the
outermost pole), possibly including ∞.

2 If x is left sided, then the ROC of X is the region inside the circle of radius
equal to the smallest magnitude of the nonzero poles of X and extending
inward to, and possibly including, 0 (i.e., inside the innermost nonzero
pole).

■ This property is implied by properties 1, 2, 4, and 5.

■ Some examples of sets that would be either valid or invalid as ROCs for
X , if X is rational and x is left/right sided, are given below.

Re

Im

Valid

Re

Im

Invalid

Re

Im

Valid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 543

General Form of the ROC

■ To summarize the results of properties 3, 4, 5, and 6, if the z transform X
of the sequence x exists, the ROC of X depends on the left- and
right-sidedness of x as follows:

x
left sided right sided ROC of X

yes yes everywhere, except possibly 0 and/or ∞
no yes exterior of circle centered at 0, possibly including ∞
yes no disk centered at 0, possibly excluding 0
no no annulus centered at 0

■ Thus, we can infer that, if X exists, the ROC can only be of one of the
forms listed above.

■ For example, the sets shown below would not be valid as ROCs.

Re

Im

Invalid

Re

Im

Invalid

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 544

Section 12.3

Properties of the z Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 545

Properties of the z Transform

Property Time Domain Z Domain ROC

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z) At least R1∩R2

Translation x(n−n0) z−n0X(z) R except possible addition/deletion of 0

Modulation anx(n) X(a−1z) |a|R
Conjugation x∗(n) X∗(z∗) R
Time Reversal x(−n) X(1/z) R−1

Upsampling (↑M)x(n) X(zM) R1/M

Downsampling (↓M)x(n) 1
M ∑M−1

k=0 X
(
e− j2πk/Mz1/M

)
RM

Convolution x1 ∗ x2(n) X1(z)X2(z) At least R1∩R2

Z-Domain Diff. nx(n) −z d
dz X(z) R

Differencing x(n)− x(n−1) (1− z−1)X(z) At least R∩|z|> 0
Accumulation ∑n

k=−∞ x(k) z
z−1 X(z) At least R∩|z|> 1

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 546

z Transform Pairs

Pair x(n) X(z) ROC

1 δ(n) 1 All z

2 u(n) z
z−1 = 1

1−z−1 |z|> 1

3 −u(−n−1) z
z−1 = 1

1−z−1 |z|< 1

4 nu(n) z
(z−1)2 =

z−1

(1−z−1)
2 |z|> 1

5 −nu(−n−1) z
(z−1)2 =

z−1

(1−z−1)
2 |z|< 1

6 anu(n) z
z−a = 1

1−az−1 |z|> |a|
7 −anu(−n−1) z

z−a = 1
1−az−1 |z|< |a|

8 nanu(n) az
(z−a)2 =

az−1

(1−az−1)
2 |z|> |a|

9 −nanu(−n−1) az
(z−a)2 =

az−1

(1−az−1)
2 |z|< |a|

10 (n+1)(n+2)···(n+m−1)
(m−1)! anu(n) zm

(z−a)m = 1
(1−az−1)

m |z|> |a|
11 − (n+1)(n+2)···(n+m−1)

(m−1)! anu(−n−1) zm

(z−a)m = 1
(1−az−1)

m |z|< |a|

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 547

z Transform Pairs (Continued)

Pair x(n) X(z) ROC

12 cos(Ω0n)u(n) z(z−cosΩ0)
z2−2zcosΩ0+1 = 1−(cosΩ0)z−1

1−(2cosΩ0)z−1+z−2 |z|> 1

13 −cos(Ω0n)u(−n−1) z(z−cosΩ0)
z2−2zcosΩ0+1 = 1−(cosΩ0)z−1

1−(2cosΩ0)z−1+z−2 |z|< 1

14 sin(Ω0n)u(n) zsinΩ0
z2−2zcosΩ0+1 = (sinΩ0)z−1

1−(2cosΩ0)z−1+z−2 |z|> 1

15 −sin(Ω0n)u(−n−1) zsinΩ0
z2−2zcosΩ0+1 = (sinΩ0)z−1

1−(2cosΩ0)z−1+z−2 |z|< 1

16 an cos(Ω0n)u(n) z(z−acosΩ0)
z2−2azcosΩ0+a2 =

1−(acosΩ0)z−1

1−(2acosΩ0)z−1+a2z−2 |z|> |a|
17 an sin(Ω0n)u(n) azsinΩ0

z2−2azcosΩ0+a2 =
(asinΩ0)z−1

1−(2acosΩ0)z−1+a2z−2 |z|> |a|
18 u(n)−u(n−M),M > 0 z(1−z−M)

z−1 = 1−z−M

1−z−1 |z|> 0

19 a|n|, |a|< 1 (a−a−1)z
(z−a)(z−a−1)

|a|< |z|<
∣∣a−1

∣∣

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 548

Linearity

■ If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

a1x1(n)+a2x2(n)
ZT←→ a1X1(z)+a2X2(z) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

■ This is known as the linearity property of the z transform.

■ The ROC always contains the intersection but could be larger (in the case
that pole-zero cancellation occurs).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 549

Translation (Time Shifting)

■ If x(n) ZT←→ X(z) with ROC R, then

x(n−n0)
ZT←→ z−n0X(z) with ROC R′,

where n0 is an integer constant and R′ is the same as R except for the
possible addition or deletion of zero or infinity.

■ This is known as the translation (or time-shifting) property of the z
transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 550

Z-Domain Scaling

■ If x(n) ZT←→ X(z) with ROC R, then

anx(n) ZT←→ X(z/a) with ROC |a|R,

where a is a nonzero constant.

■ This is known as the z-domain scaling property of the z transform.

■ As illustrated below, the ROC R is scaled by |a|.
Im

Re
r0 r1

R

Im

Re|a|r0 |a|r1

|a|R
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 551

Time Reversal

■ If x(n) ZT←→ X(z) with ROC R, then

x(−n) ZT←→ X(1/z) with ROC 1/R.

■ This is known as the time-reversal property of the z transform.

■ As illustrated below, the ROC R is reciprocated.

Im

Re
r0 r1

R

Im

Re1
r1

1
r0

1/R

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 552

Upsampling

■ Define (↑M)x(n) as

(↑M)x(n) =

{
x(n/M) n/M is an integer

0 otherwise.

■ If x(n) ZT←→ X(z) with ROC R, then

(↑M)x(n) ZT←→ X(zM) with ROC R1/M.

■ This is known as the upsampling (or time-expansion) property of the z
transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 553

Downsampling

■ If x(n) ZT←→ X(z) with ROC R, then

(↓M)x(n) ZT←→ 1
M

M−1

∑
k=0

X
(

e− j2πk/Mz1/M
)

with ROC RM.

■ This is known as the downsampling property of the z transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 554

Conjugation

■ If x(n) ZT←→ X(z) with ROC R, then

x∗(n) ZT←→ X∗(z∗) with ROC R.

■ This is known as the conjugation property of the z transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 555

Convolution

■ If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

x1 ∗ x2(n)
ZT←→ X1(z)X2(z) with ROC containing R1∩R2.

■ This is known that the convolution (or time-domain convolution)
property of the z transform.

■ The ROC always contains the intersection but can be larger than the
intersection (if pole-zero cancellation occurs).

■ Convolution in the time domain becomes multiplication in the z domain.

■ This can make dealing with LTI systems much easier in the z domain than
in the time domain.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 556

Z-Domain Differentiation

■ If x(n) ZT←→ X(z) with ROC R, then

nx(n) ZT←→−z d
dz X(z) with ROC R.

■ This is known as the z-domain differentiation property of the z
transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 557

Differencing

■ If x(n) ZT←→ X(z) with ROC R, then

x(n)− x(n−1) ZT←→ (1− z−1)X(z) for ROC containing R∩|z|> 0.

■ This is known as the differencing property of the z transform.

■ Differencing in the time domain becomes multiplication by 1− z−1 in the z
domain.

■ This can make dealing with difference equations much easier in the z
domain than in the time domain.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 558

Accumulation

■ If x(n) ZT←→ X(z) with ROC R, then

n

∑
k=−∞

x(k) ZT←→ z
z−1

X(z) for ROC containing R∩|z|> 1.

■ This is known as the accumulation property of the z transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 559

Initial Value Theorem

■ For a sequence x with z transform X , if x is causal, then

x(0) = lim
z→∞

X(z).

■ This result is known as the initial-value theorem.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 560

Final Value Theorem

■ For a sequence x with z transform X , if x is causal and limn→∞ x(n) exists,
then

lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)].

■ This result is known as the final-value theorem.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 561

More z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 562

Section 12.4

Determination of Inverse z Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 563

Finding the Inverse z Transform

■ Recall that the inverse z transform x of X is given by

x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the
origin and with radius r such that Γ is in the ROC of X .

■ Unfortunately, the above contour integration can often be quite tedious to
compute.

■ Consequently, we do not usually compute the inverse z transform directly
using the above equation.

■ For rational functions, the inverse z transform can be more easily
computed using partial fraction expansions.

■ Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse z transforms can
typically be found in tables.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 564

Section 12.5

z Transform and LTI Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 565

System Function of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the z transforms of x, y, and h, respectively.

■ Since y(n) = x∗h(n), the system is characterized in the z domain by

Y (z) = X(z)H(z).

■ As a matter of terminology, we refer to H as the system function (or
transfer function) of the system (i.e., the system function is the z
transform of the impulse response).

■ When viewed in the z domain, a LTI system forms its output by multiplying
its input with its system function.

■ A LTI system is completely characterized by its system function H.

■ If the ROC of H includes the unit circle |z|= 1, then H(e jΩ) is the
frequency response of the LTI system.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 566

Block Diagram Representation of LTI Systems

■ Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the z transforms of x, y, and h, respectively.

■ Often, it is convenient to represent such a system in block diagram form in
the z domain as shown below.

H
X Y

■ Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 567

Interconnection of LTI Systems

■ The series interconnection of the LTI systems with system functions H1
and H2 is the LTI system with system function H = H1H2. That is, we
have the equivalences shown below.

H1 H2 ≡ X Y
H1H2

YX

≡H1 H2 H2 H1
YX YX

■ The parallel interconnection of the LTI systems with impulse responses
H1 and H2 is a LTI system with the system function H = H1 +H2. That is,
we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 568

Causality

■ If a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.

■ Theorem. A LTI system is causal if and only if the ROC of the system
function is:

1 the exterior of a circle, including ∞; or
2 the entire complex plane, including ∞ and possibly excluding 0.

■ Theorem. A LTI system with a rational system function H is causal if and
only if:

1 the ROC of H is the exterior of a (possibly degenerate) circle outside the
outermost pole of H or, if H has no poles, the entire complex plane; and

2 H is proper (i.e., when H(z) is expressed as a ratio of polynomials in z, the
order of the numerator polynomial does not exceed the order of the
denominator polynomial).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 569

BIBO Stability

■ Whether or not a system is BIBO stable depends on the ROC of its
system function.

■ Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function contains the unit circle (i.e., |z|= 1).

■ Theorem. A causal LTI system with a rational system function H is BIBO
stable if and only if all of the poles of H lie inside the unit circle (i.e., each
of the poles has a magnitude less than one).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 570

Invertibility

■ A LTI system H with system function H is invertible if and only if there
exists another LTI system with system function Hinv such that

H(z)Hinv(z) = 1,

in which case Hinv is the system function of H−1 and

Hinv(z) =
1

H(z)
.

■ Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

■ In practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 571

LTI Systems and Difference Equations

■ Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

■ Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k) where M ≤ N.

■ Let h denote the impulse response of the system, and let X , Y , and H
denote the z transforms of x, y, and h, respectively.

■ One can show that H(z) is given by

H(z) =
Y (z)
X(z)

=
∑M

k=0 akz−k

∑N
k=0 bkz−k

.

■ Observe that, for a system of the form considered above, the system
function is always rational.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 572

Section 12.6

Application: Analysis of Control Systems

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 573

Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

■ input: desired value of the quantity to be controlled

■ output: actual value of the quantity to be controlled

■ error: difference between the desired and actual values

■ plant: system to be controlled

■ sensor: device used to measure the actual output

■ controller: device that monitors the error and changes the input of the
plant with the goal of forcing the error to zero

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 574

Stability Analysis of Feedback Control Systems

■ Often, we want to ensure that a system is BIBO stable.

■ The BIBO stability property is more easily characterized in the z domain
than in the time domain.

■ Therefore, the z domain is extremely useful for the stability analysis of
systems.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 575

Section 12.7

Unilateral z Transform

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 576

Unilateral z Transform

■ The unilateral z transform of the sequence x, denoted Zux or X , is
defined as

Zux(z) = X(z) =
∞

∑
n=0

x(n)z−n.

■ The unilateral z transform is related to the bilateral z transform as follows:

Zux(z) =
∞

∑
n=0

x(n)z−n =
∞

∑
n=−∞

x(n)u(n)z−n = Z{xu}(z).

■ In other words, the unilateral z transform of the sequence x is simply the
bilateral z transform of the sequence xu.

■ Since Zux = Z{xu} and xu is always a right-sided sequence, the ROC
associated with Zux is always the exterior of a circle.

■ For this reason, we often do not explicitly indicate the ROC when
working with the unilateral z transform.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 577

Unilateral z Transform (Continued 1)

■ With the unilateral z transform, the same inverse transform equation is
used as in the bilateral case.

■ The unilateral z transform is only invertible for causal sequences. In
particular, we have

Z−1
u {Zu{x}}(n) = Z−1

u {Z{xu}}(n)
= Z−1{Z{xu}}(n)
= x(n)u(n)

=

{
x(n) n≥ 0
0 otherwise.

■ For a noncausal sequence x, we can only recover x(n) for n≥ 0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 578

Unilateral z Transform (Continued 2)

■ Due to the close relationship between the unilateral and bilateral z
transforms, these two transforms have some similarities in their properties.

■ Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 579

Properties of the Unilateral z Transform

Property Time Domain Z Domain

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z)
Time Delay x(n−1) z−1X(z)+ x(−1)
Time Advance x(n+1) zX(z)− zx(0)
Modulation anx(n) X(a−1z)

e jΩ0nx(n) X(e− jΩ0z)
Conjugation x∗(n) X∗(z∗)
Upsampling (↑M)x(n) X(zM)

Downsampling (↓M)x(n) 1
M ∑M−1

k=0 X
(
e− j2πk/Mz1/M

)

Convolution x1 ∗ x2(n), x1 and x2 are causal X1(z)X2(z)
Z-Domain Diff. nx(n) −z d

dz X(z)
Differencing x(n)− x(n−1) (1− z−1)X(z)− x(−1)
Accumulation ∑n

k=0 x(k) 1
1−z−1 X(z)

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 580

Unilateral z Transform Pairs

Pair x(n), n≥ 0 X(z)

1 δ(n) 1

2 1 z
z−1

3 n z
(z−1)2

4 an z
z−a

5 ann az
(z−a)2

6 cos(Ω0n) z(z−cosΩ0)
z2−2(cosΩ0)z+1

7 sin(Ω0n) zsinΩ0
z2−2(cosΩ0)z+1

8 |a|n cos(Ω0n) z(z−|a|cosΩ0)

z2−2|a|(cosΩ0)z+|a|2

9 |a|n sin(Ω0n) z|a|sinΩ0

z2−2|a|(cosΩ0)z+|a|2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 581

Solving Difference Equations [Using the Unilateral z Transform]

■ Many systems of interest in engineering applications can be characterized
by constant-coefficient linear difference equations.

■ One common use of the unilateral z transform is in solving
constant-coefficient linear difference equations with nonzero initial
conditions.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 582

Part 13

Complex Analysis

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 583

Complex Numbers

■ A complex number is a number of the form z = x+ jy where x and y are
real numbers and j is the constant defined by j2 =−1 (i.e., j =

√
−1).

■ The Cartesian form of the complex number z expresses z in the form

z = x+ jy,

where x and y are real numbers. The quantities x and y are called the real
part and imaginary part of z, and are denoted as Rez and Imz,
respectively.

■ The polar form of the complex number z expresses z in the form

z = r(cosθ+ j sinθ) or equivalently z = re jθ,

where r and θ are real numbers and r ≥ 0. The quantities r and θ are
called the magnitude and argument of z, and are denoted as |z| and
argz, respectively. [Note: e jθ = cosθ+ j sinθ.]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 584

Complex Numbers (Continued)

■ Since e jθ = e j(θ+2πk) for all real θ and all integer k, the argument of a
complex number is only uniquely determined to within an additive multiple
of 2π.

■ The principal argument of a complex number z, denoted Argz, is the
particular value θ of argz that satisfies −π < θ≤ π.

■ The principal argument of a complex number (excluding zero) is unique.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 585

Geometric Interpretation of Cartesian and Polar Forms

Im

Re
x

y z

Cartesian form:
z = x+ jy

where x = Rez and y = Imz

Im

Re

z

r

θ

Polar form:
z = r(cosθ+ j sinθ) = re jθ

where r = |z| and θ = argz

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 586

The arctan Function

■ The range of the arctan function is −π/2 (exclusive) to π/2 (exclusive).

■ Consequently, the arctan function always yields an angle in either the first
or fourth quadrant.

Im

Re
arctan(1

1)

(1,1)

−1

1

−1 1

Im

Re

(−1,−1)

π+ arctan(−1
−1) arctan(−1

−1)

1

−1

1−1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 587

The atan2 Function

■ The angle θ that a vector from the origin to the point (x,y) makes with the
positive x axis is given by θ = atan2(y,x), where

atan2(y,x)≜

arctan(y/x) x > 0
π/2 x = 0 and y > 0
−π/2 x = 0 and y < 0
arctan(y/x)+π x < 0 and y≥ 0
arctan(y/x)−π x < 0 and y < 0.

■ The range of the atan2 function is from −π (exclusive) to π (inclusive).
■ For the complex number z expressed in Cartesian form x+ jy,

Argz = atan2(y,x).
■ Although the atan2 function is quite useful for computing the principal

argument (or argument) of a complex number, it is not advisable to
memorize the definition of this function. It is better to simply understand
what this function is doing (namely, intelligently applying the arctan
function).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 588

Conversion Between Cartesian and Polar Form

■ Let z be a complex number with the Cartesian and polar form
representations given respectively by

z = x+ jy and z = re jθ.

■ To convert from polar to Cartesian form, we use the following identities:

x = r cosθ and y = r sinθ.

■ To convert from Cartesian to polar form, we use the following identities:

r =
√

x2 + y2 and θ = atan2(y,x)+2πk,

where k is an arbitrary integer.

■ Since the atan2 function simply amounts to the intelligent application of
the arctan function, instead of memorizing the definition of the atan2
function, one should simply understand how to use the arctan function to
achieve the same result.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 589

Properties of Complex Numbers

■ For complex numbers, addition and multiplication are commutative. That
is, for any two complex numbers z1 and z2,

z1 + z2 = z2 + z1 and

z1z2 = z2z1.

■ For complex numbers, addition and multiplication are associative. That is,
for any three complex numbers z1, z2, and z3,

(z1 + z2)+ z3 = z1 +(z2 + z3) and

(z1z2)z3 = z1(z2z3).

■ For complex numbers, the distributive property holds. That is, for any
three complex numbers z1, z2, and z3,

z1(z2 + z3) = z1z2 + z1z3.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 590

Conjugation

■ The conjugate of the complex number z = x+ jy is denoted as z∗ and
defined as

z∗ = x− jy.

■ Geometrically, the conjugation operation reflects a point in the complex
plane about the real axis.

■ The geometric interpretation of the conjugate is illustrated below.

Im

Re

z = x+ jy

z∗ = x− jy

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 591

Properties of Conjugation

■ For every complex number z, the following identities hold:

|z∗|= |z| ,
argz∗ =−argz,

zz∗ = |z|2 ,
Rez = 1

2(z+ z∗), and

Imz = 1
2 j (z− z∗).

■ For all complex numbers z1 and z2, the following identities hold:

(z1 + z2)
∗ = z∗1 + z∗2,

(z1z2)
∗ = z∗1z∗2, and

(z1/z2)
∗ = z∗1/z∗2.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 592

Addition

■ Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1 + z2 = (x1 + jy1)+(x2 + jy2)

= (x1 + x2)+ j(y1 + y2).

■ That is, to add complex numbers expressed in Cartesian form, we simply
add their real parts and add their imaginary parts.

■ Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1 + z2 = r1e jθ1 + r2e jθ2

= (r1 cosθ1 + jr1 sinθ1)+(r2 cosθ2 + jr2 sinθ2)

= (r1 cosθ1 + r2 cosθ2)+ j(r1 sinθ1 + r2 sinθ2).

■ That is, to add complex numbers expressed in polar form, we first rewrite
them in Cartesian form, and then add their real parts and add their
imaginary parts.

■ For the purposes of addition, it is easier to work with complex numbers
expressed in Cartesian form.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 593

Multiplication

■ Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1z2 = (x1 + jy1)(x2 + jy2)

= x1x2 + jx1y2 + jx2y1− y1y2

= (x1x2− y1y2)+ j(x1y2 + x2y1).

■ That is, to multiply two complex numbers expressed in Cartesian form, we
use the distributive law along with the fact that j2 =−1.

■ Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1z2 =
(

r1e jθ1
)(

r2e jθ2
)
= r1r2e j(θ1+θ2).

■ That is, to multiply two complex numbers expressed in polar form, we use
exponent rules.

■ For the purposes of multiplication, it is easier to work with complex
numbers expressed in polar form.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 594

Division

■ Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1

z2
=

z1z∗2
z2z∗2

=
z1z∗2
|z2|2

=
(x1 + jy1)(x2− jy2)

x2
2 + y2

2

=
x1x2− jx1y2 + jx2y1 + y1y2

x2
2 + y2

2
=

x1x2 + y1y2 + j(x2y1− x1y2)

x2
2 + y2

2
.

■ That is, to compute the quotient of two complex numbers expressed in
Cartesian form, we convert the problem into one of division by a real
number.

■ Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1

z2
=

r1e jθ1

r2e jθ2
=

r1

r2
e j(θ1−θ2).

■ That is, to compute the quotient of two complex numbers expressed in
polar form, we use exponent rules.

■ For the purposes of division, it is easier to work with complex numbers
expressed in polar form.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 595

Properties of the Magnitude and Argument

■ For arbitrary complex numbers z1 and z2, the following identities hold:

|z1z2|= |z1| |z2| ;∣∣∣∣
z1

z2

∣∣∣∣=
|z1|
|z2|

for z2 ̸= 0;

arg(z1z2) = argz1 + argz2; and

arg
(

z1

z2

)
= argz1− argz2 for z2 ̸= 0.

■ The above four identities trivially follow from the polar representation of
complex numbers.

■ The first and third identities above imply two additional identities, as given
below.

■ For all complex numbers z and all integers n, the following identities hold:

|zn|= |z|n ; and

arg(zn) = nargz.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 596

Euler’s Relation and De Moivre’s Theorem

■ Euler’s relation. For all real θ,

e jθ = cosθ+ j sinθ.

■ From Euler’s relation, we can deduce the following useful identities:

cosθ = 1
2(e

jθ + e− jθ) and

sinθ = 1
2 j (e

jθ− e− jθ).

■ De Moivre’s theorem. For all real θ and all integer n,

e jnθ =
(

e jθ
)n

.

[Note: This relationship does not necessarily hold for real n.]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 597

Roots of Complex Numbers

■ Every complex number z = re jθ (where r = |z| and θ = argz) has n
distinct nth roots given by

n
√

re j(θ+2πk)/n for k = 0,1, . . . ,n−1.

■ For example, 1 has the two distinct square roots 1 and −1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 598

Quadratic Formula

■ Consider the equation

az2 +bz+ c = 0,

where a, b, and c are real, z is complex, and a ̸= 0.

■ The roots of this equation are given by

z =
−b±

√
b2−4ac

2a
.

■ This formula is often useful in factoring quadratic polynomials.

■ The quadratic az2 +bz+ c can be factored as a(z− z0)(z− z1), where

z0 =
−b−

√
b2−4ac

2a
and z1 =

−b+
√

b2−4ac
2a

.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 599

Complex Functions

■ A complex function maps complex numbers to complex numbers. For
example, the function F(z) = z2 +2z+1, where z is complex, is a
complex function.

■ A complex polynomial function is a mapping of the form

F(z) = a0 +a1z+a2z2 + · · ·+anzn,

where z, a0,a1, . . . ,an are complex.

■ A complex rational function is a mapping of the form

F(z) =
a0 +a1z+a2z2 + . . .+anzn

b0 +b1z+b2z2 + . . .+bmzm ,

where a0,a1, . . . ,an,b0,b1, . . . ,bm and z are complex.

■ Observe that a polynomial function is a special case of a rational function.

■ Herein, we will mostly focus our attention on polynomial and rational
functions.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 600

Continuity

■ A function F is said to be continuous at a point z0 if F(z0) is defined and
given by

F(z0) = lim
z→z0

F(z).

■ A function that is continuous at every point in its domain is said to be
continuous.

■ Polynomial functions are continuous everywhere.

■ Rational functions are continuous everywhere except at points where the
denominator polynomial becomes zero.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 601

Differentiability

■ A function F is said to be differentiable at a point z = z0 if the limit

F ′(z0) = limz→z0
F(z)−F(z0)

z−z0

exists. This limit is called the derivative of F at the point z = z0.
■ A function is said to be differentiable if it is differentiable at every point in

its domain.
■ The rules for differentiating sums, products, and quotients are the same

for complex functions as for real functions. If F ′(z0) and G′(z0) exist, then
1 (aF)′(z0) = aF ′(z0) for any complex constant a;
2 (F +G)′(z0) = F ′(z0)+G′(z0);
3 (FG)′(z0) = F ′(z0)G(z0)+F(z0)G′(z0);
4 (F/G)′(z0) =

G(z0)F ′(z0)−F(z0)G′(z0)
G(z0)2 ; and

5 if z0 = G(w0) and G′(w0) exists, then the derivative of F(G(z)) at w0 is
F ′(z0)G′(w0) (i.e., the chain rule).

■ A polynomial function is differentiable everywhere.
■ A rational function is differentiable everywhere except at the points where

its denominator polynomial becomes zero.
Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 602

Open Disks

■ An open disk in the complex plane with center z0 and radius r is the set of
complex numbers z satisfying

|z− z0|< r,

where r is a strictly positive real number.

■ A plot of an open disk is shown below.

z0

r

Im

Re

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 603

Analyticity

■ A function is said to be analytic at a point z0 if it is differentiable at every
point in an open disk about z0.

■ A function is said to be analytic if it is analytic at every point in its domain.

■ A polynomial function is analytic everywhere.

■ A rational function is analytic everywhere, except at the points where its
denominator polynomial becomes zero.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 604

Zeros and Singularities

■ If a function F is zero at the point z0 (i.e., F(z0) = 0), F is said to have a
zero at z0.

■ If a function F is such that F(z0) = 0,F(1)(z0) = 0, . . . ,F(n−1)(z0) = 0
(where F(k) denotes the kth order derivative of F), F is said to have an
nth order zero at z0.

■ A point at which a function fails to be analytic is called a singularity.

■ Polynomials do not have singularities.

■ Rational functions can have a type of singularity called a pole.

■ If a function F is such that G(z) = 1/F(z) has an nth order zero at z0, F is
said to have an nth order pole at z0.

■ A pole of first order is said to be simple, whereas a pole of order two or
greater is said to be repeated. A similar terminology can also be applied
to zeros (i.e., simple zero and repeated zero).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 605

Zeros and Poles of a Rational Function

■ Given a rational function F , we can always express F in factored form as

F(z) =
K(z−a1)

α1(z−a2)
α2 · · ·(z−aM)αM

(z−b1)β1(z−b2)β2 · · ·(z−bN)βN
,

where K is complex, a1,a2, . . . ,aM,b1,b2, . . . ,bN are distinct complex
numbers, and α1,α2, . . . ,αM and β1,β2, . . . ,βN are strictly positive
integers.

■ One can show that F has poles at b1,b2, . . . ,bN and zeros at
a1,a2, . . . ,aM.

■ Furthermore, the kth pole (i.e., bk) is of order βk, and the kth zero (i.e., ak)
is of order αk.

■ When plotting zeros and poles in the complex plane, the symbols “o” and
“x” are used to denote zeros and poles, respectively.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 606

Part 14

Partial Fraction Expansions (PFEs)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 607

Motivation for PFEs

■ Sometimes it is beneficial to be able to express a rational function as a
sum of lower-order rational functions.

■ This can be accomplished using a type of decomposition known as a
partial fraction expansion.

■ Partial fraction expansions are often useful in the calculation of inverse
Laplace transforms, inverse z transforms, and inverse CT/DT Fourier
transforms.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 608

Strictly-Proper Rational Functions

■ Consider a rational function

F(v) =
αmvm +αm−1vm−1 + . . .+α1v+α0

βnvn +βn−1vn−1 + . . .+β1v+β0
.

■ The function F is said to be strictly proper if m < n (i.e., the order of the
numerator polynomial is strictly less than the order of the denominator
polynomial).

■ Through polynomial long division, any rational function can be written as
the sum of a polynomial and a strictly-proper rational function.

■ A strictly-proper rational function can be expressed as a sum of
lower-order rational functions, with such an expression being called a
partial fraction expansion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 609

Section 14.1

PFEs for First Form of Rational Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 610

Partial Fraction Expansions (PFEs) [CT and DT Contexts]

■ Any rational function F can be expressed in the form of

F(v) =
amvm +am−1vm−1 + . . .+a0

vn +bn−1vn−1 + . . .+b0
.

■ Furthermore, the denominator polynomial D(v) = vn +bn−1vn−1 + . . .+b0
in the above expression for F(v) can be factored to obtain

D(v) = (v− p1)
q1(v− p2)

q2 · · ·(v− pn)
qn ,

where the pk are distinct and the qk are integers.

■ If F has only simple poles, q1 = q2 = · · ·= qn = 1.

■ Suppose that F is strictly proper (i.e., m < n).
■ In the determination of a partial fraction expansion of F , there are two

cases to consider:
1 F has only simple poles; and
2 F has at least one repeated pole.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 611

Simple-Pole Case [CT and DT Contexts]

■ Suppose that the (rational) function F has only simple poles.

■ Then, the denominator polynomial D for F is of the form

D(v) = (v− p1)(v− p2) · · ·(v− pn),

where the pk are distinct.

■ In this case, F has a partial fraction expansion of the form

F(v) =
A1

v− p1
+

A2

v− p2
+ . . .+

An−1

v− pn−1
+

An

v− pn
,

where

Ak = (v− pk)F(v)|v=pk
.

■ Note that the (simple) pole pk contributes a single term to the partial
fraction expansion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 612

Repeated-Pole Case [CT and DT Contexts]

■ Suppose that the (rational) function F has at least one repeated pole.

■ In this case, F has a partial fraction expansion of the form

F(v) =
[

A1,1

v− p1
+

A1,2

(v− p1)2 + . . .+
A1,q1

(v− p1)q1

]

+

[
A2,1

v− p2
+ . . .+

A2,q2

(v− p2)q2

]

+ . . .+

[
AP,1

v− pP
+ . . .+

AP,qP

(v− pP)qP

]
,

where

Ak,ℓ =
1

(qk− ℓ)!

[[d
dv

]qk−ℓ [(v− pk)
qk F(v)]

]∣∣∣
v=pk

.

■ Note that the qkth-order pole pk contributes qk terms to the partial fraction
expansion.

■ Note that n! = (n)(n−1)(n−2) · · ·(1) and 0! = 1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 613

Section 14.2

PFEs for Second Form of Rational Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 614

Partial Fraction Expansions (PFEs) [DT Context]

■ Any rational function F can be expressed in the form of

F(v) =
amvm +am−1vm−1 + . . .+a1v+a0

bnvn +bn−1vn−1 + . . .+b1v+1
.

■ Furthermore, the denominator polynomial
D(v) = bnvn +bn−1vn−1 + . . .+b1v+1 in the above expression for F(v)
can be factored to obtain

D(v) = (1− p−1
1 v)q1(1− p−1

2 v)q2 · · ·(1− p−1
n v)qn ,

where the pk are distinct and the qk are integers.

■ If F has only simple poles, q1 = q2 = · · ·= qn = 1.

■ Suppose that F is strictly proper (i.e., m < n).
■ In the determination of a partial fraction expansion of F , there are two

cases to consider:
1 F has only simple poles; and
2 F has at least one repeated pole.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 615

Simple-Pole Case [DT Context]

■ Suppose that the (rational) function F has only simple poles.

■ Then, the denominator polynomial D for F is of the form

D(v) = (1− p−1
1 v)(1− p−1

2 v) · · ·(1− p−1
n v),

where the pk are distinct.

■ In this case, F has a partial fraction expansion of the form

F(v) =
A1

1− p−1
1 v

+
A2

1− p−1
2 v

+ . . .+
An−1

1− p−1
n−1v

+
An

1− p−1
n v

,

where

Ak = (1− p−1
k v)F(v)

∣∣
v=pk

.

■ Note that the (simple) pole pk contributes a single term to the partial
fraction expansion.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 616

Repeated-Pole Case [DT Context]

■ Suppose that the (rational) function F has at least one repeated pole.

■ In this case, F has a partial fraction expansion of the form

F(v) =

[
A1,1

1− p−1
1 v

+
A1,2

(1− p−1
1 v)2

+ . . .+
A1,q1

(1− p−1
1 v)q1

]

+

[
A2,1

1− p−1
2 v

+ . . .+
A2,q2

(1− p−1
2 v)q2

]

+ . . .+

[
AP,1

1− p−1
P v

+ . . .+
AP,qP

(1− p−1
P v)qP

]
,

where

Ak,ℓ =
1

(qk− ℓ)!
(−pk)

qk−ℓ
[[d

dv

]qk−ℓ [(1− p−1
k v)qk F(v)]

]∣∣∣
v=pk

.

■ Note that the qkth-order pole pk contributes qk terms to the partial fraction
expansion.

■ Note that n! = (n)(n−1)(n−2) · · ·(1) and 0! = 1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 617

Part 15

MATLAB

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 618

MATLAB

■ MATLAB is a proprietary programming language and numeric computing
environment developed by MathWorks.

■ MATLAB allows such things as: matrix computation, data visualization
(e.g., 2-D and 3-D plots), system simulation, implementation of algorithms,
and interfacing with code written in other programming languages.

■ The base functionality of MATLAB can be extended through the use of
numerous toolkits.

■ MATLAB is available on many platforms, including Windows, macOS,
Linux, and numerous other Unix variants.

■ Extensive information on MATLAB (including detailed guides and
manuals) is available from MathWorks web site:

2 https://www.mathworks.com.

■ Relative to general-purpose programming languages such as C++ and C,
MATLAB is much easier to learn, and therefore is particular well suited for
teaching purposes.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 619

https://www.mathworks.com

MATLAB (Continued)

■ The earliest version of MATLAB was a simple interactive matrix calculator
(without an associated programming language) developed by Cleve Moler
(then a professor at the University of New Mexico and later a cofounder of
MathWorks).

■ MATLAB stands for “matrix laboratory”, with this name reflecting the roots
of the software as a simple interactive matrix calculator.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 620

GNU Octave

■ GNU Octave (or simply Octave) is a software package that is very similar
in functionality to MATLAB.

■ In fact, Octave is largely (but not fully) compatible with MATLAB.

■ Unlike MATLAB, Octave is free software and is available under the GNU
General Public License.

■ The Octave software was created by John W. Eaton, and was named after
one of his professors, Octave Levenspiel.

■ The Octave software is available for many platforms, including Windows,
macOS, Linux, and other Unix variants, and can be obtained from its
official web site:

2 https://www.octave.org

■ For anyone who does not have a license to use MATLAB, the Octave
software provides an excellent alternative.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 621

https://www.octave.org

Section 15.1

Running MATLAB

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 622

MATLAB Command-Line Interface

■ MATLAB can be invoked using a command of the following form, where
options denotes a list of zero or more options:

matlab options

■ Some of the supported options are listed in the table below.

Option Description

-help Print help information and exit.
-desktop Enable the starting of the MATLAB desktop.
-nodesktop Disable the starting of the MATLAB desktop and use

the terminal window for commands.
-display display Set the X11 display to display.
-nodisplay Do not use any X11 display.
-nosplash Do not show the splash screen during startup.
-noFigureWindows Disable the display of figure windows.
-batch command Execute MATLAB command command upon startup

without the MATLAB desktop.

■ For example, to obtain help on the command-line interface of MATLAB,
use the command:

matlab -help

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 623

Remote Graphics Display Using X11

■ On Unix-based systems, the graphics output of MATLAB can typically be
displayed on a different machine from the one running the MATLAB
program (via the X11 protocol).

■ This is typically used in a scenario where the user logs into remote
machine and runs the MATLAB program on this remote machine with the
graphics output being directed to the user’s local machine.

■ In order to take advantage of this functionality, the following software is
required:

2 a Secure Shell (SSH) client (that supports X11 forwarding); and
2 an X11 server.

■ With the necessary configuration in place, one can simply login via SSH to
another machine with MATLAB installed and then run MATLAB.

■ Any graphics windows opened by the MATLAB program will appear on the
local machine via its X11 server.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 624

Secure Shell (SSH) Client Software

■ Most Unix variants, including Linux and macOS, typically provide SSH
client software (through a program that is usually called ssh).

■ Since recent versions of ChromeOS can run Linux in a container, the
preceding comment also applies to ChromeOS. For information on
containerized Linux in ChromeOS, see:

2 https://chromeos.dev/en/linux

■ Some popular SSH client software for non-Unix-based platforms is as
follows:

2 PuTTY
2 SSH client for Windows (and numerous Unix platforms as well)
2 open source implementation of SSH and telnet
2 web site: https://www.chiark.greenend.org.uk/~sgtatham/putty

2 MobaXterm
2 for Windows platform
2 provides both an X11 server and a SSH client
2 see slide on X11 server software for more details

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 625

https://chromeos.dev/en/linux
https://www.chiark.greenend.org.uk/~sgtatham/putty

X11 Server Software

■ Most Unix variants, including Linux but excluding macOS, typically provide
X11 server software.

■ Some popular X11 server software for various platforms is as follows:
2 MobaXterm

2 X11 server for Windows platform
2 enhanced terminal with X11 server and SSH client
2 commercial software but Home Edition is free
2 web site: https://mobaxterm.mobatek.net

2 Xming
2 X11 server for Windows platform
2 open source
2 web site: http://www.straightrunning.com/XmingNotes

2 XQuartz
2 X11 server for macOS platform
2 web site: https://www.xquartz.org

■ For ChromeOS, use containerized Linux for an X11 server. See:
2 https://chromeos.dev/en/linux

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 626

https://mobaxterm.mobatek.net
http://www.straightrunning.com/XmingNotes
https://www.xquartz.org
https://chromeos.dev/en/linux

MATLAB With Desktop

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 627

MATLAB Without Desktop

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 628

Section 15.2

MATLAB Examples

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 629

Plot of Univariate Functions

1 figure
2 t = linspace(-1, 1, 1024);
3 hold on
4 plot(t, sin(2 * pi * t), ’b’);
5 plot(t, cos(2 * pi * t), ’r:’, ’LineWidth’, 2);
6 hold off
7 grid
8 legend(’sin(2\pi{}t)’, ’cos(2\pi{}t)’);
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’, ’-opengl’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 630

Plot of Bivariate Function With Shading
1 figure
2 [x y] = meshgrid(linspace(-8, 8, 129));
3 r = sqrt(x .^ 2 + y .^ 2);
4 z = sinc(2 / pi * r);
5 surf(z);
6 shading interp;
7 light;
8 lighting phong;
9 material([0.9 0.5 0.5 1.0]);

10 colormap(parula);
11 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 631

Plot of Grid-Sampled Function With Wireframe

1 figure
2 d = @(x,y) sqrt(x .^ 2 + y .^2);
3 f = @(x,y) (d(x,y) <= 4) .* (4 - d(x,y));
4 fmesh(f, [-5 5 -5 5]);
5 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 632

Plot of Sequence

1 figure
2 n = 0 : 50;
3 h = stem(n, exp(-0.04 * n) .* sin(0.08 * pi * n), ’filled’, ’b’);
4 set(h(1), ’MarkerSize’, 3)
5 xlabel(’n’);
6 ylabel(’f(n)’);
7 title(’f(n) = e^{-0.04n} sin(0.08{\pi}n)’);
8 print(’output.pdf’, ’-dpdf’, ’-bestfit’, ’-opengl’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 633

Histogram
1 clip = @(x, low, high) max(min(x, high), low);
2 figure
3 randn(’seed’, 5);
4 x = clip(67 + 10 * randn(250, 1), 0, 100);
5 histogram(x, 10);
6 title(’Distribution of Student Grades’);
7 xlabel(’Grade (%)’);
8 ylabel(’Number of Students’);
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

Distribution of Student Grades

40 50 60 70 80 90

Grade (%)

0

10

20

30

40

50

60

N
um

be
r

of
 S

tu
de

nt
s

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 634

Pie Chart

1 figure
2 values = [65 18.5 9.5 3.2];
3 values = [values (100 - sum(values))];
4 names = {’Oxygen’, ’Carbon’, ’Hydrogen’, ’Nitrogen’, ’Other’};
5 explode = [0 0 0 0 0];
6 labels = cellstr([num2str(values’, ’%.1f%%’)])’;
7 pie(values, explode, labels);
8 legend(names, ’Location’, ’bestoutside’);
9 title(’Composition of Human Body’)

10 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

Composition of Human Body

65.0%

18.5%

 9.5%

 3.2%
 3.8% Oxygen

Carbon
Hydrogen
Nitrogen
Other

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 635

Design of Analog Lowpass Filter
1 figure
2 [a b] = butter(30, 2000, ’s’);
3 [f, w] = freqs(a, b, linspace(0, 6000, 512));
4 subplot(2, 1, 1);
5 plot(w, abs(f));
6 xlabel(’Frequency (rad/s)’); ylabel(’Magnitude’);
7 subplot(2, 1, 2);
8 plot(w, 180 / pi * unwrap(angle(f)));
9 xlabel(’Frequency (rad/s)’); ylabel(’Phase (\circ)’);

10 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

0 1000 2000 3000 4000 5000 6000

Frequency (rad/s)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de

0 1000 2000 3000 4000 5000 6000

Frequency (rad/s)

-2500

-2000

-1500

-1000

-500

0

P
ha

se
 (
°
)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 636

Design of Digital Bandpass Filter

1 [a b] = firpm(63, [0 0.40 0.45 0.55 .60 1], [0 0 1 1 0 0]);
2 freqz(a, b);
3 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-1000

-500

0

500

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (rad/sample)

-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 637

Solve Differential Equation: y′′ = 9y, y(0) = a, y′(0) = b

1 syms y(t) a b
2 eqn = diff(y, t, 2) == 9 * y;
3 Dy = diff(y, t);
4 ics = [y(0) == a, Dy(0) == b];
5 ySol(t) = dsolve(eqn, ics);
6 s = evalc(’pretty(ySol(t))’);
7 disp(sprintf(’y(t) = \n%s’, s))

y(t) =
/ a b \ / a b \

exp(-3 t) | - - - | + exp(3 t) | - + - |
\ 2 6 / \ 2 6 /

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 638

Solve Nonlinear System: x2 + y2 = a, 2x− y = 3

1 syms x y a
2 [solx soly] = solve(x ^ 2 + y ^ 2 == a, 2 * x - y == 3, [x y]);
3 pretty([solx, soly]);

/ / 16 a 144 \ / 16 a 144 \ \
| sqrt| ---- - --- | sqrt| ---- - --- | |
| 6 \ 5 25 / \ 5 25 / 3 |
| - - ------------------, - ------------------ - - |
| 5 4 2 5 |
| |
| / 16 a 144 \ / 16 a 144 \ |
| sqrt| ---- - --- | sqrt| ---- - --- | |
| \ 5 25 / 6 \ 5 25 / 3 |
| ------------------ + -, ------------------ - - |
\ 4 5 2 5 /

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 639

Image Processing
1 figure
2 color = imread(’peppers.png’);
3 mono = rgb2gray(color);
4 edges = 1 - edge(mono, ’canny’);
5 a = 8; blocky = imresize(imresize(color, 1/a), a, ’box’);
6 subplot(2, 2, 1); set(gca, ’Position’, [0 0.5 0.5 0.5])
7 imshow(color);
8 subplot(2, 2, 2); set(gca, ’Position’, [0.5 0.5 0.5 0.5])
9 imshow(mono);

10 subplot(2, 2, 3); set(gca, ’Position’, [0 0 0.5 0.5])
11 imshow(edges);
12 subplot(2, 2, 4); set(gca, ’Position’, [0.5 0 0.5 0.5])
13 imshow(blocky);
14 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 640

Some Basic MATLAB Commands

■ The quit or exit command terminate the MATLAB program.

■ The clc command clears the command window.

■ The clear command clears all variables.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 641

Section 15.3

Accessing MATLAB Documentation

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 642

Searching MATLAB Help Text

■ The lookfor command searches for a string in the first comment line of
the help text in all MATLAB files found on the MATLAB search path and
prints each first comment line for which a match occurs.

■ For example, to search for information that contains “butterworth” (as in
Butterworth filter), use the following command:

lookfor butterworth

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 643

lookfor butterworth Example

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 644

Displaying MATLAB Documentation

■ Two very helpful commands for accessing documentation about various
aspects of MATLAB are the help and doc commands.

■ The help command prints information to the command window about a
specified item, such as a function, command, operator symbol, or toolbox.

■ For example, the following command prints information about the abs
function:

help abs

■ For example, the following command prints information about the .*
operator:

help .*

■ The doc command opens the help browser (if not already open) and uses
the browser to display the documentation for the specified item, such as a
function, command, operator symbol, method, class, or toolbox.

■ For example, the following command displays documentation for the abs
function in the help browser:

doc abs

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 645

Command-Window Help Information for abs Function

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 646

Help Browser Information for abs Function

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 647

Section 15.4

Comments and Variables

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 648

Comments
■ Two styles of comments are provided:

1 block comments
2 short comments

■ A block comment:
2 starts with a line that contains a percent character (i.e., “%”) immediately

followed by a left-brace character (i.e., “{”) and has no other characters
except spaces and tabs;

2 ends with a line that contains a percent character immediately followed by a
right-brace character (i.e., “}”) with no other characters except spaces and
tabs.

■ A short comment starts with a percent character (i.e., “%”) that does not
start a block comment and continues until the end of line.

■ Some examples of comments are given in the following code fragment:
% This short comment continues until the end of line.
disp(sin(42)); % Print the sine of 42.
%{
This is a block comment.
This comment spans multiple lines.
%}

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 649

Identifiers

■ An identifier is a name for an entity such as a variable or function.

■ Identifiers are case sensitive and may consist of uppercase and lowercase
letters, underscores, and digits, but the first character cannot be a digit or
an underscore.

■ Although an identifier can be arbitrarily long, only the first n characters are
significant, where n depends on the particular version of MATLAB being
used.

■ The namelengthmax function can be used to query the precise value of n.

■ Some examples of valid and invalid identifiers are given below.
Name Valid Identifier

foo yes
foo2 yes
f_o_o yes
_foo no (due to leading underscore)
2foo no (due to leading digit)
foo$ no (due to dollar sign)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 650

Reserved Keywords

■ A reserved keyword (which has special meaning to MATLAB) cannot be
used as an identifier (e.g., variable or function name).

■ The iskeyword function can be used to obtain a list of all reserved
keywords.

■ The reserved keywords in MATLAB include those in the list below.

break
case
catch
classdef
continue
else
elseif

end
for
function
global
if
otherwise
parfor

persistent
return
spmd
switch
try
while

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 651

Semicolons and Commas

■ A comma or semicolon separates statements (or parts of statements)
within a single line of code.

■ For example, an if statement can be written on a single line using an
approach like the following:

if x == 0; x = 1; end

■ In the case of a comma, the result computed from the statement (if any) is
printed.

■ In the case of a semicolon, the result is not printed.

■ In order to avoid overly verbose program output, statements are typically
ended by a semicolon instead of a comma.

■ For example, the following line of code will not generate any output:
x = 1; y = 2 * x;

■ In contrast, the following line of code will print the values computed for x
and y:

x = 1, y = 2 * x,

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 652

Line Continuation

■ Sometimes, it is desirable (for reasons of readability) to split a logical line
of the source code across multiple physical lines in a program file.

■ Some language constructs, however, must appear on the same logical
line of the source code.

■ For this reason, the language provides a mechanism for saying that a
logical line of source code continues on the next physical line in the
program file.

■ In particular, an ellipsis consisting of at least three consecutive period (“.”)
characters can be used to continue a logical line of the source code on the
next physical line in the file.

■ Example:

x = 1 + 2 + 3 + ...
4 + 5 + 6;

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 653

Variables

■ A variable does not need to be declared prior to being used.

■ A variable simply comes into existence when it is first assigned a value.

■ The type of a variable is determined at run time based on the value
assigned to the variable.

■ Essentially, every variable in MATLAB is deemed to be an array, where a
scalar is simply a single-element array.

■ Elements of an array are essentially complex numbers, but may be
constrained to assume only real or integer values.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 654

Arrays

■ Array indices start numbering at 1 (not 0).

■ The specification of an array starts with a left (square) bracket and
continues to the corresponding right (square) bracket, where these
brackets need not be on the same line.

■ The elements for each row are specified contiguously.

■ Spaces or commas separate elements in the same row of an array.

■ Semicolons or newlines separate elements on different rows.

■ For example, the following specifies an array with 2 rows and 3 columns,
where the first row has the elements 1, 2, and 3, and the second row has
the elements 4, 5, and 6:

[1 2 3; 4 5 6]

■ The preceding matrix could also be written as each of the following:
[1, 2, 3; 4, 5, 6]
[1 2 3
4 5 6]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 655

Vectors With Equally-Spaced Elements

■ MATLAB provides a compact syntax for specifying a vector with
equally-spaced elements.

■ In particular, an expression of the following form is employed:
start : step : end

■ The above expression is equivalent to a row vector with its first element
equal to start and each of the subsequent elements increasing in value by
step (where step may be negative) until the value would surpass end.

■ The notation “start : 1 : end” can be further abbreviated to “start : end”.

■ Some examples of this abbreviated notation are shown below.
Abbreviated Form Long Form

1 : 4 [1 2 3 4]
0 : 0.2 : 1 [0 0.2 0.4 0.6 0.8 1]
1 : -1 : -2 [1 0 -1 -2]
0 : 10 : 25 [0 10 20]
-1.5 : -1 : -4 [-1.5 -2.5 -3.5]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 656

Array Subscripting

■ One or more elements of an array x can be accessed by specifying the
rows and columns in which the elements are contained using the
subscripting operator.

■ In particular, x(rowspec, colspec) is the array consisting of the elements
of x that are in the rows specified by rowspec and columns specified by
colspec.

■ Here, rowspec is either a vector containing row indices or the special
value “:” which means “all rows”.

■ Similarly, colspec is either a vector containing column indices or the
special value “:” which means “all columns”.

■ Example:
2 Suppose that x = [1 2 3; 4 5 6; 7 8 9].
2 x(1, 3) is 3 (i.e., the row 1 column 3 element of x).
2 x(:, 1) is [1; 4; 7] (i.e., the 1st column of x).
2 x(1, :) is [1 2 3] (i.e., the 1st row of x).
2 x(2 : 3, :) is [4 5 6; 7 8 9] (i.e., the 2nd and 3rd rows of x).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 657

Array Subscripting By Column-Major Index

■ One or more elements of an array x can also be accessed by specifying
their index when numbered in column-major order (which orders elements
first by column and then by row).

■ In particular, x(indspec) is an array that contains the elements of x having
the indices specified by indspec.

■ The dimensions of x(indspec) match the dimensions of indspec if x is a
matrix (i.e., not a row or column vector); otherwise, x(indspec) is either a
row or column vector to match x.

■ Here, indspec is either an array containing element indices or the special
value “:” which is equivalent to all indices of x specified in a column vector.

■ Example:
2 Suppose that x = [1 4 7; 2 5 8; 3 6 9] (i.e.,

[1 4 7
2 5 8
3 6 9

]
).

2 x(3) is 3 (i.e., the 3rd element of x in column-major order).
2 x([1 4 7]) is [1 4 7] (i.e., the 1st, 4th, and 7th elements of x in

column-major order).
2 x(:) is [1; 2; 3; 4; 5; 6; 7; 8; 9] (i.e., all elements of x in

column-major order placed in a column vector).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 658

Array-Subscripting Examples

Suppose that a is a 10×10 matrix and x is 10×1 vector.

Expression Meaning

a(1, :) first row of a
a(:, 1) first column of a
a(1 : 50) first 50 elements of a arranged in a row vector
a(1 : 10) first 10 elements of a arranged in a row vector (i.e.,

the first column of a)
a(1 : 2 : 10, :) odd-indexed rows of a
a(:, 2 : 2 : 10) even-indexed columns of a
a(1 : 5, :) rows 1 to 5 of a
a(:, 6 : 10) columns 6 to 10 of a
a(1 : 2, 9 : 10) submatrix consisting of elements that are in rows

1,2 and also in columns 9,10
x(1 : 3) first three elements of x (arranged as a row or col-

umn vector to match x)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 659

Strings

■ A string is simply an array whose elements are characters.

■ A string literal starts with a single-quote character (“’”) and continues until
the next single-quote character that is not part of a pair of consecutive
single-quote characters.

■ To include a single-quote character in a string, two consecutive
single-quotes characters can be used.

■ Some examples of string literals are as follows:
’Hello, World!’
’This is a test\n’
’Jane’’s computer’

■ The following denotes a string that consists of one single-quote character:
’’’’

■ For a string s, the expression s(length(s) : -1 : 1) corresponds to
the string reversed (i.e., backwards).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 660

Section 15.5

Operators and Expressions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 661

Operators

■ Operators (such as addition and subtraction) are used to perform
calculations.

■ An operator that takes one operand is said to be unary.

■ For example, the expression “-x” employs the unary minus (i.e., negation)
operator, where the minus operator has the single operand x.

■ An operator that takes two operands is said to be binary.

■ For example, the expression “x - y” employs the binary minus (i.e.,
subtraction) operator, where the operator has two operands x and y.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 662

Operators (Continued)

Symbol Description

+ unary plus (i.e., identity) and binary plus (i.e., addition)
- unary minus (i.e., negation) and binary minus (i.e., subtraction)
* multiplication
/ right division (a / b means a * b ^ (-1))
\ left division (a \ b means a ^ (-1) * b)
^ exponentiation
’ conjugate transpose
.* elementwise multiplication
./ elementwise division
.^ elementwise exponentiation
.’ transpose

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 663

Elementwise Versus Nonelementwise Operators

First Second
Operand Operand Operator Result

[1 -1
0 1]

[1
3]

*
[-2

3]

[1 -1
0 1]

[1 2
3 4]

*
[-2 -2

3 4]

[1 -1
0 1]

[1 2
3 4]

.*
[1 -2
0 4]

[1 -1] [2 2] .* [2 -2]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 664

Operator Examples

(Conceptual) Expression Meaning

a b
c d
e f

.*

g h
i j
k l

(a * g) (b * h)
(c * i) (d * j)
(e * k) (f * l)

a b
c d
e f

./

g h
i j
k l

(a / g) (b / h)
(c / i) (d / j)
(e / k) (f / l)

a b
c d
e f

.^ g

(a ^ g) (b ^ g)
(c ^ g) (d ^ g)
(e ^ g) (f ^ g)

a b
c d
e f

+ g

(a + g) (b + g)
(c + g) (d + g)
(e + g) (f + g)

a b
c d
e f

* g

(a * g) (b * g)
(c * g) (d * g)
(e * g) (f * g)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 665

Operator Precedence

■ When an expression involves multiple operators, the order in which the
operators are applied becomes significant.

■ Operators are applied in order of decreasing precedence (i.e., priority).

■ Operators with the same precedence are evaluated left to right.

■ Parentheses can be used to force a particular ordering of operations.

■ The precedence of operators in MATLAB is shown in the table below.

Precedence Level Operators

1 (highest) ()
2 .’ ’ .^ ^
3 unary+ unary- ~
4 .* * ./ .\ / \
5 binary+ binary-
6 :
7 < <= > >= == ~=
8 &
9 |
10 &&
11 (lowest) ||

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 666

Operator Precedence/Associativity Example

Expression Fully-Parenthesized Expression

a + b * x ^ 2 a + (b * (x ^ 2))
a + b .* x .^ 2 a + (b .* (x .^ 2))
a + b + c (a + b) + c
a > b && c < d || e == f ((a > b) && (c < d)) || (e == f)
x(m + 1 : 2 * n + 1) x((m + 1) : ((2 * n) + 1))
- x * + x (-x) * (+x)
0 <= x && x <= 1 (0 <= x) && (x <= 1)
0 <= x <= 1 (probably bug) (0 <= x) <= 1 (which is always 1)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 667

Relational Operators

■ A relational operator is an operator that tests an ordering or
equivalence/equality relationship between two values.

■ The following relational operators are provided by MATLAB:

Symbol Description

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
~= not equal

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 668

Logical Operators

■ A logical operator is an operator that computes a primitive Boolean
function.

■ MATLAB considers any nonzero number to be true and zero to be false.

■ The following logical operators are provided by MATLAB:

Symbol Description

& elementwise AND
| elementwise OR
~ NOT
&& short-circuit AND
|| short-circuit OR

■ The elementwise AND, elementwise OR, and NOT operators allow
nonscalar (i.e., matrix/vector) operands, whereas the short-circuit AND
and short-circuit OR operators require scalar operands.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 669

Examples of Expressions Involving Relational/Logical Operators

Variable Value

a [0 1 2 3 4]
b [4 3 2 1 0]

Expression Value

a == b [0 0 1 0 0]
a ~= b [1 1 0 1 1]
a > b [0 0 0 1 1]
a > 1 [0 0 1 1 1]
a < b [1 1 0 0 0]
a >= 1 & a <= 3 [0 1 1 1 0]
a < 1 | a > 3 [1 0 0 0 1]
~a [1 0 0 0 0]
0 <= a & a <= 1 [1 1 0 0 0]
0 <= a <= 1 (probably bug) [1 1 1 1 1] (always all ones)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 670

Short-Circuited Evaluation of Logical Expressions

■ The second operand of the short-circuit AND operator (&&) is not
evaluated if the first operand is false, since the second operand cannot
affect the result in this case.

■ The second operand of the OR operator (||) is not evaluated if the first
operand is true, since the second cannot affect the result in this case.

■ The above behavior is known as short-circuit evaluation.
■ Example:

2 Suppose that x and y are initialized as x = 0 and y = 1.
2 If MATLAB is asked to evaluate the logical expression

x ~= 0 && y < 1 / x, only x ~= 0 will be evaluated, since the result
must be false regardless of the value of y < 1 / x.

2 Note that short circuit evaluation guarantees division by zero cannot occur
during the evaluation of x ~= 0 && y < 1 / x.

2 If MATLAB is asked to evaluate the logical expression x ~= 42 || y > 0,
only x ~= 42 will be evaluated, since the result must be true regardless of
the value of y > 0.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 671

Section 15.6

Selection Constructs

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 672

if Statements

■ An if statement allows groups of statements to be conditionally
executed, and has a number of variants.

■ The simplest variant (i.e., the if variant) has the form:

if expression
statements

end

■ If the expression expression is true, then the statements statements are
executed.

■ Example:

if x < 0
disp(’x is negative’);

end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 673

if Statements (Continued 1)

■ The next simplest variant of the if statement (i.e., the if-else variant)
has the form:

if expression1
statements1

else
statements2

end

■ If the expression expression1 is true, then the statements statements1 are
executed; otherwise, the statements statements2 are executed.

■ Example:
if x < 0

disp(’x is negative’);
else

disp(’x is not negative’);
end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 674

if Statements (Continued 2)

■ Finally, the most general variant of the if statement has the following
form (where the elseif and else clauses are optional):

if expression1
statements1

elseif expression2
statements2

...
elseif expressionn−1

statementsn−1
else

statementsn
end

■ For each if/elseif clause in order of appearance, the expression
expressioni is evaluated, and if this expression is true, the statements
statementsi are executed and the remainder of the if statement is
skipped.

■ If none of the expressions in the if/elseif clauses are true and an
else clause is present, the statements statementsn in this clause are
executed.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 675

if Statement Example

1 % Read a real number and then print information
2 % about its sign.
3 x = input(’Enter a real number: ’);
4 if x > 0
5 disp(’x is strictly positive’);
6 elseif x < 0
7 disp(’x is strictly negative’);
8 else
9 disp(’x is zero’);

10 end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 676

switch Statements

■ The switch statement provides another means to conditionally execute
groups of statements.

■ The general form of a switch statement is as follows (where the
otherwise clause is optional):

switch expression
case test_expression1

statements1
case test_expression2

statements2
...

case test_expressionn−1
statementsn−1

otherwise
statementsn

end

■ The first test expression, say test_expressionk, matching the expression
expression has its corresponding statements statementsk executed.

■ If none of the test expressions match the expression expression and an
otherwise clause is present, the statements statementsn in this clause
are executed.

■ The switch expression expression must be either a scalar or string.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 677

switch Statement Example [Scalar]

1 % Get a real value and print some information about it.
2 n = input(’Enter real number: ’);
3 switch mod(n, 2)
4 case 0
5 disp(’number is even integer’);
6 case 1
7 disp(’number is odd integer’);
8 case {0.5, 1.5}
9 disp(’number is odd multiple of one half’);

10 otherwise
11 disp(’number is not multiple of one half’);
12 end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 678

switch Statement Example [String]

1 % Get the type of a polygon and then print the number of
2 % sides that the polygon has.
3 type = input(’Enter polygon type: ’, ’s’);
4 switch lower(type)
5 case ’triangle’
6 num_sides = 3;
7 case ’quadrilateral’
8 num_sides = 4;
9 case ’pentagon’

10 num_sides = 5;
11 case ’hexagon’
12 num_sides = 6;
13 case ’heptagon’
14 num_sides = 7;
15 case ’octagon’
16 num_sides = 8;
17 case ’nonagon’
18 num_sides = 9;
19 case ’decagon’
20 num_sides = 10;
21 otherwise
22 error(’unknown polygon type’);
23 end
24 fprintf(’The polygon has %d sides.\n’, num_sides);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 679

Section 15.7

Looping Constructs

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 680

for Statements

■ The for statement allows a group of statements to be repeated a fixed
number of times.

■ A for statement has the general form:
for variable = array

statements
end

■ The statements statements are executed once for each column in the
array array, where the variable variable is set to the corresponding array
column each time.

■ The following code fragment prints the integers 1, 3, 7, and 9:
for k = [1 3 7 9]

disp(k);
end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 681

for Statement Example

Code
1 fprintf(’Degrees Radians\n’);
2 for theta_deg = -180 : 30 : 180
3 theta_rad = theta_deg * pi / 180;
4 fprintf(’%7.1f %7.4f\n’, theta_deg, theta_rad);
5 end

Output
Degrees Radians
-180.0 -3.1416
-150.0 -2.6180
-120.0 -2.0944
-90.0 -1.5708
-60.0 -1.0472
-30.0 -0.5236

0.0 0.0000
30.0 0.5236
60.0 1.0472
90.0 1.5708

120.0 2.0944
150.0 2.6180
180.0 3.1416

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 682

while Statements

■ The while statement allows a group of statements to be executed an
indefinite number of times.

■ A while statement has the general form:
while expression

statements
end

■ The statements statements are executed repeatedly as long as the
condition expression is true.

■ The following code fragments prints random numbers obtained via the
rand function until a number not exceeding 0.1 is obtained:

x = rand;
while x > 0.1

disp(x);
x = rand;

end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 683

break Statements

■ Sometimes, it may be necessary to terminate a loop by code executing in
the body of the loop.

■ This can be accomplished using a break statement.

■ Typically, a break statement is used to terminate a loop from code that is
somewhere in the middle of the loop body.

■ The following code uses a break statement in order to terminate a
while loop when a particular condition is satisfied:

values = [];
while 1

x = rand;
if x > 0.9

break
end
values = [values x];

end
disp(values);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 684

continue Statements

■ Sometimes, it may necessary to start the next iteration of a loop without
completing the remainder of the code in the loop body.

■ This is accomplished using a continue statement.

■ The following code fragment uses a continue statement to skip over
the processing of any zero elements in the array a:

a = [1 0 3 2 0];
for i = a

if i == 0
% Skip over the processing of a
% zero element in the array.
continue

end
% Process the nonzero array element.
disp(i);

end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 685

Section 15.8

Using Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 686

Calling Functions

■ A function that can be called with no arguments can be invoked by
specifying either its name or its name followed by a pair of empty
parentheses (with the former usually being preferred since it is less
verbose).

■ For example, to invoke the built-in j function (which takes no arguments
and returns

√
−1), we would write either “j” or “j()”.

■ A function that requires one or more arguments is called by placing the list
of arguments to the function (separated by commas) in parentheses (i.e.,
round brackets) after the name of the function.

■ Examples:
2 To invoke the sin function with the single argument 42, we would write

“sin(42)”.
2 To invoke the atan2 function with the arguments y and x, we would write

“atan2(y, x)”.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 687

Built-In Functions

■ MATLAB has many built-in (i.e., automatically predefined) functions.

■ Although a built-in function can be overridden by a user-defined function
or variable, doing this can often lead to confusing code.

■ Consequently, it is recommended that the overriding of built-in functions
be avoided in most cases.

■ One exception to this rule might be overriding the built-in i and j functions
in code that does not use complex arithmetic, since this is unlikely to lead
to confusion and i and j are often desirable names for looping variables.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 688

Some Built-In Functions

Name Description

pi π
i

√
−1

j
√
−1

nan not-a-number (NaN)
inf infinity
ans last expression evaluated that was not assigned to vari-

able
date date
clock wall clock
realmin smallest usable positive real number
realmax largest usable positive real number

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 689

Built-In Math Functions

Elementary Math Functions
Name Description

abs magnitude of complex number
angle principal argument of complex number
imag imaginary part of complex number
real real part of complex number
conj conjugate of complex number
sign signum function
rem remainder (with same sign as dividend)
mod remainder (with same sign as divisor)

Rounding Functions
Name Description

round round to nearest integer
fix round towards zero
floor round towards −∞
ceil round towards ∞

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 690

Built-In Math Functions (Continued 1)

Basic Statistical Functions
Name Description

min minimum value
max maximum value
mean mean value
std standard deviation
median median value

Sum and Product Functions
Name Description

sum sum of elements
prod product of elements
cumsum cumulative sum of elements
cumprod cumulative product of elements

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 691

Built-In Math Functions (Continued 2)

Exponential and Logarithmic Functions
Name Description

exp exponential function
log natural logarithmic function
log10 base-10 logarithmic function
sqrt square root function

Trigonometric Functions
Name Description

sin sine function
cos cosine function
tan tangent function
asin arcsine function
acos arccosine function
atan arctangent function
atan2 two-argument form of arctangent function

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 692

Built-In Math Functions (Continued 3)

Radix Conversion Functions
Name Description

dec2bin convert decimal to binary
bin2dec convert binary to decimal
dec2hex convert decimal to hexadecimal
hex2dec convert hexadecimal to decimal
dec2base convert decimal to arbitrary radix
base2dec convert arbitrary radix to decimal

Other Math Functions
Name Description

sinc normalized sinc function
(

i.e., f (t) = sin(πt)
πt

)

polyval evaluate polynomial
cart2pol Cartesian-to-polar coordinate conversion
pol2cart polar-to-Cartesian coordinate conversion

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 693

Built-In Math Functions (Continued 4)

Matrix Computation Functions
Name Description

expm compute matrix exponential
det compute determinant of matrix
inv compute inverse of matrix
eig compute eigenvalues and eigenvectors of matrix
svd compute singular-value decomposition (SVD) of matrix
lu compute lower-upper (LU) decomposition of matrix
qr compute QR decomposition of matrix

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 694

Functions Related to Array Size

Name Description

size get row vector containing size of array in each di-
mension

width get number of columns in array
height get number of rows in array
length get size of largest array dimension (e.g., for vector,

yields vector’s length)
ndims get number of array dimensions (always at least

two)
numel get number of elements in array
isrow tests if array is row vector
iscolumn tests if array is column vector
isvector tests if array is row or column vector
ismatrix tests if array is matrix
isempty tests if array is empty (i.e., contains no elements)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 695

Array-Size Functions Example

1 x = input(’Enter a matrix/vector: ’);
2 if numel(x) < 2
3 error(’invalid matrix/vector (i.e., scalar or empty)’);
4 end
5 if isrow(x)
6 disp(’array is row vector’);
7 elseif iscolumn(x)
8 disp(’array is column vector’);
9 elseif ismatrix(x)

10 disp(’array is matrix’);
11 end
12 fprintf(’array contains %d elements\n’, numel(x));
13 fprintf(’array elements in row-major order:\n’);
14 for i = 1 : height(x)
15 for j = 1 : width(x)
16 fprintf("%.15f\n", x(i, j));
17 end
18 end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 696

Built-In Array Functions

Special Matrix/Vector Functions
Name Description

eye identity matrix
ones matrix of ones
zeros matrix of zeros
diag diagonal matrix
rand random matrix
linspace vector with linearly spaced elements
logspace vector with logarithmically spaced elements

Basic Array Manipulation Functions
Name Description

rot90 rotate array by 90 degrees
fliplr flip array horizontally
flipud flip array vertically
reshape change array dimensions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 697

Array-Functions Example

Expression Result

zeros(2, 3)
[0 0 0
0 0 0]

ones(2, 3)
[1 1 1
1 1 1]

eye(3)
[1 0 0
0 1 0
0 0 1]

linspace(0, 4, 5) [0 1 2 3 4]

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 698

Relational and Logical Functions

Name Description

any any element nonzero
all all elements nonzero
find find nonzero elements
exist check if variable/function exists
isfinite detect finite values
isinf detect infinities
isnan detect NaNs
isempty detect empty matrices
isstr detect strings
strcmp compare strings

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 699

Logical Functions Example

1 a = [1 2 3; 4 5 6; 7 8 9];
2 if all(a > 0)
3 disp(’All matrix elements are positive.’);
4 end
5 if ~any(a == 0)
6 disp(’All matrix elements are nonzero.’);
7 end
8 if all(real(a) == a)
9 disp(’All matrix elements are real.’);

10 end
11 i = find(a >= 8);
12 disp([’The following matrix elements are ’, ...
13 ’greater than or equal to 8:’]);
14 disp(a(i));

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 700

Section 15.9

Scripts and Functions

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 701

M Files

■ MATLAB code can be placed in a file, called an M file, for later execution.

■ An M file must have file name extension “.m” (which is where term “M file”
originates).

■ M files are used for scripts and specifying user-defined functions.

■ Depending on how the code in an M file is structured it can correspond to
either a script or user-defined function.

■ By using the MATLAB identifier name, one can execute the code stored in
an M file named “name.m”.

■ For example, the MATLAB identifier my_demo would refer to the MATLAB
code in the M file named my_demo.m (assuming that the identifier
my_demo is not used as a variable name).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 702

Scripts

■ An M file that does not define a function is referred to as a script.

■ Executing code in a script behaves as if the contents of the script were
pasted into the place where script is being referenced.

■ Since a script is executed in the context of its invoker, any changes made
to variables are visible to the invoker.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 703

Script Example: greet

Contents of file greet.m

1 % Print a greeting.
2 disp(’Hello, World.’);

■ The code in the file greet.m shown above can be executed by simply
typing the following in the MATLAB command window:

greet

■ Executing the code will result in the disp function being invoked to print
the message “Hello, World!”.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 704

Script Example: demo
Contents of file demo.m

1 t = [0 : .1 : 8];
2 f = sin(t);
3 plot(t, f);

■ The code in the file demo.m shown above can be executed by simply
typing the following in the MATLAB command window:

demo

■ Recall that a script is executed in the context of the invoker so any
changes made to variables by the script are visible to the invoker.

■ For example, if the code in the above script is invoked as follows, the
changes to the variables t and f are visible to the invoker:

clear t f % Make t and f undefined.
demo % execute code in demo.m script
disp(t); % OK: t was defined by script
disp(f); % OK: f was defined by script

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 705

MATLAB Search Path

■ The MATLAB search path is a list of directories that MATLAB examines in
order to locate various files, such as MATLAB program files (i.e., M files)
and files associated with toolboxes.

■ When trying to locate a file, MATLAB will look for the file in each directory
in the search path in order until the file is found.

■ The order in which directories appear in the search path is important,
since the directories are searched in that order.

■ Normally, the search path contains the current working directory (which
appears first) as well as any directories associated with files that are part
of the MATLAB software installation.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 706

How MATLAB Resolves Identifiers

■ When MATLAB encounters an identifier, it must decide the specific entity
to which the identifier refers (such as a variable, built-in function, or script
or function specified in an M file).

■ To do this for the identifier id, MATLAB employs an algorithm consisting of
the following steps (in order):

1 If a user-defined (i.e., not built-in) variable exists with id as its name, id is
deemed to refer to this variable.

2 Otherwise, if id has a corresponding M file (i.e., a file named id.m) in
current directory, id is deemed to refer to the function or script associated
with that M file.

3 Otherwise, if id has a corresponding M file (i.e., a file named id.m) in any
directory on the MATLAB search path, id is deemed to refer to the
function or script associated with the first such M file found on this path.

4 Otherwise, if a built-in variable/function exists with id as its name, id is
deemed to refer to this variable/function.

■ If multiple entities are associated with the same identifier id, the order of
the above steps becomes important in deciding which entity will be
referenced by MATLAB when id is used.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 707

Naming Conflicts

■ Generally, it is advisable to avoid naming variables and M files in ways that
could result in conflicts.

■ When multiple entities are associated with the same identifier, one entity
can hide (i.e., override) another.

■ The use of an identifier that would conflict with any built-in function should
be avoided in most cases.

■ A user-defined variable will hide a function of the same name. For
example:

sin = 42
% can no longer call sin function
sin(pi) % ERROR: trying to subscript with index pi

■ An M file in the current directory will hide all other M files of the same
name in the MATLAB search path.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 708

MATLAB Search Path

■ All of the directories in the MATLAB search path (i.e., all of the directories
in which MATLAB will look for M-file scripts) can be printed with the path
command:

path

■ The working directory for MATLAB can be changed to dirname using the
cd command:

cd dirname
■ The current working directory can be printed with the pwd command:

pwd

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 709

Functions

■ A function definition is introduced using the following syntax:

function [out1, out2, . . . , outn] = func(in1, in2, . . . , inm)

■ This indicates that the function has:
2 the name func,
2 the m input arguments in1, in2, . . . , inm, and
2 the n output arguments out1, out2, . . . , outn.

■ The body of a function extends from the function directive to a
corresponding end directive or, if no such end directive is present, the
end of the file.

■ The code in a function executes until either the end of the function is
reached or a return statement is encountered.

■ In order for the function func to be callable from code outside the source
file containing the function, the function must be placed in a file named
“func.m” and be the first function defined in that file.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 710

Functions (Continued)

■ Immediately following the line containing the function directive, one
should provide comments to be printed in response to a help inquiry for
the function.

■ In MATLAB all input arguments to a function are passed by value.

■ For this reason, changes to the input arguments made inside of a function
will not propagate to the caller.

■ Also, any variables accessed/manipulated inside of a function are local in
scope to that function.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 711

Function Scoping Example

demo.m
1 function demo
2 t = [0 : .1 : 8];
3 f = sin(t);
4 plot(t, f);
5 end

Code to Invoke demo Function (e.g., in Command Window)
1 clear t f % Make t and f undefined.
2 demo
3 disp(t); % ERROR: t undefined
4 disp(f); % ERROR: f undefined

■ The above is identical to an .. .earlier code example for scripts, except that
the code in demo.m has been moved into the body of the function demo.

■ The above example illustrates a key difference between invoking scripts
versus invoking functions, namely: a function introduces a new scope (i.e.,
variables defined/accessed in a function are local to that function).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 712

Function Example: my_sqr

my_sqr.m
1 function y = my_sqr(x)
2 % Compute the square of each element in an array.
3

4 % Use the elementwise product so that the code
5 % works in both the scalar and non-scalar cases.
6 y = x .^ 2;
7 end

my_sqr_main.m
1 a = my_sqr([1 2 3]);
2 disp(a);

Command Window Output
>> my_sqr_main

1 4 9

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 713

Function Example: fahrenheit_to_celsius
fahrenheit_to_celsius.m

1 function c = fahrenheit_to_celsius(f)
2 % Convert Fahrenheit to Celsius.
3 c = (5 / 9) * (f - 32);
4 end

fahrenheit_to_celsius_main.m
1 fprintf(’%10s %10s\n’, ’Fahrenheit’, ’Celsius’);
2 for f = 30 : 10 : 100
3 c = fahrenheit_to_celsius(f);
4 fprintf(’%10.2f %10.2f\n’, f, c);
5 end

Command Window Output
>> fahrenheit_to_celsius_main
Fahrenheit Celsius

30.00 -1.11
40.00 4.44
50.00 10.00
60.00 15.56
70.00 21.11
80.00 26.67
90.00 32.22
100.00 37.78

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 714

Function Example: roots_of_quadratic

roots_of_quadratic.m
1 function [r1 r2] = roots_of_quadratic(a, b, c)
2 % Find the two roots of the quadratic equation
3 % a * x ^ 2 + b * x + c = 0.
4 if a == 0
5 error(’leading coefficient is zero’);
6 end
7 d = sqrt(b ^ 2 - 4 * a * c);
8 r1 = (-b - d) / (2 * a);
9 r2 = (-b + d) / (2 * a);

10 end

roots_of_quadratic_main.m
1 [a b] = roots_of_quadratic(1, 0, -16);
2 fprintf(’The roots are %f and %f.\n’, a, b);

Command Window Output
>> roots_of_quadratic_main
The roots are -4.000000 and 4.000000.
>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 715

Function Example: my_mean

my_mean.m
1 function y = my_mean(x)
2 % Get the average of the elements in an array.
3 y = sum(x(:)) / numel(x);
4 end

my_mean_main.m
1 x = [1 5 7 3 8 4];
2 y = my_mean(x);
3 fprintf(’The mean is %f.\n’, y);

Command Window Output
>> my_mean_main
The mean is 4.666667.
>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 716

Function Example: my_factorial [Multiple Functions Per File]

my_factorial.m
1 function f = my_factorial(n)
2 % Compute the factorial of each element of an array.
3 f = arrayfun(@my_factorial_scalar, n);
4 end
5

6 function f = my_factorial_scalar(n)
7 % Compute the factorial of a single number.
8 if floor(n) ~= n || n < 0
9 error(’nonnegative integer required’);

10 end
11 f = 1;
12 while n >= 2
13 f = f * n;
14 n = n - 1;
15 end
16 end

my_factorial_main.m
1 f = my_factorial(1 : 5);
2 fprintf(’%d ’, f); fprintf(’\n’);

Command Window Output
>> my_factorial_main
1 2 6 24 120
>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 717

Variadic Functions

■ In MATLAB, functions may take a variable number of input arguments and
may return a variable number of output arguments.

■ In order for a function to determine the number of input and output
arguments and access these arguments, several variables are
automatically defined upon entry to a function, including those listed
below.

Name Description

nargin number of input arguments
nargout number of output arguments
varargin variable-length input argument
varargout variable-length output argument

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 718

Variadic Function Example: mysum

mysum.m
1 function y = mysum(a, b, c)
2 % mysum - calculate the sum (of one to three quantities)
3 if nargin == 1
4 % function called with one argument
5 y = a;
6 elseif nargin == 2
7 % function called with two arguments
8 y = a + b;
9 elseif nargin == 3

10 % function called with three arguments
11 y = a + b + c;
12 else
13 error(’invalid number of arguments’);
14 end
15 end

mysum_main.m
1 fprintf(’%f %f %f\n’, mysum(1), mysum(1, 2), mysum(1, 2, 3));

Command Window Output
>> mysum_main
1.000000 3.000000 6.000000
>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 719

Variadic Function Example: mysum2

mysum2.m
1 function y = mysum2(varargin)
2 % mysum2 - Compute the sum of the input arguments.
3 if nargin == 0
4 y = [];
5 return
6 end
7 y = varargin{1};
8 for i = 2 : nargin
9 y = y + varargin{i};

10 end
11 end

mysum2_main.m
1 fprintf(’%f %f\n’, mysum2(1, 1, 1, 1, 1, 1, 1, 1), ...
2 mysum(1, 2));

Command Window Output
>> mysum2_main
8.000000 3.000000
>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 720

Function Handles and Anonymous Functions
■ A function handle provides a means by which to refer to a function.
■ A handle to the function f is specified by the syntax @f.
■ For example:

func = @sin;
x = func(42); % set x to sin(42)

■ An anonymous function is a function with no name that is identified only
by a function handle and is specified using a special syntax.

■ This syntax specifies the function parameters and the function body all in
a single statement.

■ An anonymous function is introduced by an at-character (i.e., “@”) followed
by the parameter list for the function enclosed in parentheses followed by
the single-statement function body.

■ If an anonymous function is assigned to a variable, that variable can then
be used as a way invoke the anonymous function.

■ For example:
square = @(x) x .^ 2;
x = square(2); % set x to 2 .^ 2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 721

Sinc Function

■ The built-in MATLAB function sinc computes the normalized sinc
function (i.e., f (t) = sin(πt)

πt), not the sinc function (i.e., sinc(t) = sin(t)
t).

■ With some care to avoid division by zero, the (unnormalized) sinc function
can be implemented as the MATLAB function usinc as follows:

function f = usinc(t)
f = ([t == 0] + sin(t)) ./ ([t == 0] + t);

end

■ The above usinc function could be implemented more compactly using
an anonymous function as follows:

usinc = @(t) ([t == 0] + sin(t)) ./ ([t == 0] + t);

■ Of course, the above usinc function could also be implemented in terms
of MATLAB’s built-in sinc function as follows:

usinc = @(t) sinc(t / pi)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 722

Section 15.10

Data Visualization

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 723

Data Visualization and Plotting

■ MATLAB has extensive data-visualization capabilities with support for
many types of plots, including:

2 line plots in 2-D and 3-D (with support for such things as error bars, stacked
plots, and staircase plots)

2 scatter plots and bubble charts in 2-D and 3-D
2 histograms and pie charts in 2-D and 3-D and heat maps
2 discrete plots (such as stem, bar, and staircase plots) in 2-D and 3-D
2 geographic plots
2 polar plots
2 contour plots
2 quiver plots in 2-D and 3-D
2 surface and mesh plots
2 volume visualization (e.g., streams)
2 animated plots
2 images

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 724

Figures and Plotting

■ Data visualization output such as plots are generated in figure windows.

■ A new figure window can be created with the figure function.

■ A figure window is partitioned into an m×n rectangular grid of subfigures,
where a subfigure is simply an individual data visualization, such as a plot.

■ When a figure is first created, m and n are effectively defaulted to 1.

■ The values of m and n can be changed with the subplot function.

■ The subplot function is also used to control which subfigure should be
used when drawing new data visualizations (e.g., plots).

■ Normally, plotting data in a subfigure first erases any data already being
shown in the subfigure.

■ The hold function can be used to override this behavior so that new data
can be added to an already existing plot (e.g., to allow plotting multiple
lines on a single plot).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 725

Plotting-Related Functions

Basic 2-D Plotting Functions
Name Description

plot linear x-y plot
loglog log log x-y plot
semilogx semi-log x-y plot (x-axis logarithmic)
semilogy semi-log x-y plot (y-axis logarithmic)
polar polar plot
bar bar chart
stem stem plot
pcolor pseudocolor (checkerboard) plot
fplot plot function associated with function handle

Other Plotting-Related Functions
Name Description

axis control axis scaling and appearance
hold hold current plot
subplot multiple axes in single figure
figure create figure

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 726

Plotting-Related Functions

Plot Annotation Functions
Name Description

title graph title
xlabel x-axis label
ylabel y-axis label
grid grid lines
text arbitrarily-positioned text
gtext mouse-positioned text

Figure Saving/Printing Functions
Name Description

print print figure to file or device
saveas save figure to file

3-D Plotting Functions
Name Description

plot3 plot lines/points in 3-D space
surf plot surface in color

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 727

Symbols for Line Styles, Line Colors, and Marker Styles

Line Styles
Symbol Line Style

- solid
: dotted
-. dash dot
-- dashed

Line Colors
Symbol Line Color

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

Marker Styles
Symbol Marker Style

. point
o circle
x cross
+ plus sign
* asterisk
s square
d diamond
v triangle (down)
^ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 728

Special Symbols for Plot Annotations

String Symbol

\alpha α
\beta β
\delta δ
\gamma γ
\omega ω
\theta θ
\Delta ∆
\Omega Ω

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 729

Example: Simple Line Plot [figure, plot]

1 figure
2 t = linspace(-4 * pi, 4 * pi, 500);
3 y = sin(t);
4 plot(t, y);
5 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-15 -10 -5 0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 730

Example: Annotated Line Plot [title, xlabel, ylabel, grid]

1 figure
2 w = linspace(-10 * pi, 10 * pi, 500);
3 f = abs(w) .^ 2 .* sin(w);
4 plot(w, f);
5 title(’Plot of f(\omega) Versus \omega’);
6 xlabel(’\omega’);
7 ylabel(’f(\omega)’);
8 grid on
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’, ’-opengl’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 731

Example: Multiple Lines Per Plot [hold, legend]

1 figure
2 t = linspace(-2 * pi, 2 * pi, 500);
3 hold on
4 plot(t, sin(t), ’r--’);
5 plot(t, cos(t), ’b-’);
6 hold off
7 xlabel(’t’);
8 legend(’sin(t)’, ’cos(t)’);
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-8 -6 -4 -2 0 2 4 6 8

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sin(t)
cos(t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 732

Example: Multiple Plots Per Figure [subplot]

1 figure
2 t = linspace(-pi, pi, 500);
3 subplot(2, 1, 1);
4 plot(t, cos(t));
5 title(’The Cosine Function’)
6 subplot(2, 1, 2);
7 plot(t, sin(t));
8 title(’The Sine Function’);
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1
The Cosine Function

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1
The Sine Function

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 733

Example: Multiple Plots Per Figure [Different subplot Grids]

1 figure
2 t = [-40 40];
3 subplot(2, 2, 1);
4 fplot(@(t) sin(1 / 8 * pi * t), t);
5 title(’The Function f’); xlabel(’t’); ylabel(’f(t)’);
6 subplot(2, 2, 2);
7 fplot(@(t) cos(1 / 16 * pi * t), t);
8 title(’The Function g’); xlabel(’t’); ylabel(’g(t)’);
9 subplot(2, 1, 2);

10 fplot(@(t) sinc(t / pi), t);
11 title(’The Function h’); xlabel(’t’); ylabel(’h(t)’);
12 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-40 -20 0 20 40

t

-1

-0.5

0

0.5

1

f(
t)

The Function f

-40 -20 0 20 40

t

-1

-0.5

0

0.5

1

g(
t)

The Function g

-40 -30 -20 -10 0 10 20 30 40

t

-0.2

0

0.2

0.4

0.6

0.8

1

h(
t)

The Function h

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 734

Example: Plot of Sequences [stem]

1 figure
2 n = 0 : 50;
3 hold on
4 stem(n, cos(3/32 * pi * n), ’filled’, ’r’, ’markersize’, 5);
5 stem(n, 0.5*sin(1/16 * pi * n), ’filled’, ’b’, ’markersize’, 5);
6 hold off
7 legend(’cos(3{\pi}n/32)’, ’sin({\pi}n/16)/2’);
8 print(’output.pdf’, ’-dpdf’, ’-bestfit’, ’-opengl’);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 735

Example: Plot of Points/Path in the Plane [plot, axis]

1 figure
2 z = [1+j 0.5 1-j -0.5*j -1-j -0.5 -1+j 0.5*j 1+j];
3 hold on
4 plot(real(z), imag(z), ’b-’, ’linewidth’, 2);
5 plot(real(z), imag(z), ’r.’, ’markersize’, 60);
6 hold off
7 axis equal
8 grid on
9 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 736

Example: Plotting Directly From Function [fplot]

1 figure
2 hold on
3 t = [-8 8] * pi;
4 fplot(@(t) sinc(t / pi), t, ’b-’, ’linewidth’, 2);
5 fplot(@(t) sin(t) / 8, t, ’r:’, ’linewidth’, 2);
6 hold off
7 grid on
8 xlabel(’t’);
9 legend(’sinc(t)’, ’sin(t)/8’);

10 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-30 -20 -10 0 10 20 30

t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sinc(t)
sin(t)/8

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 737

Saving and Printing Figures

■ The print function is provided for saving or printing copies of figures.
■ MATLAB supports the generation of figures in many formats, including:

2 Portable Document Format (PDF)
2 PostScript (PS)
2 Encapsulated PostScript (EPS)
2 ISO/IEC 10918 (JPEG)
2 Portable Network Graphics (PNG)
2 Scalable Vector Graphics (SVG)

■ When saving figures that contain lines and/or text, vector formats (such as
PDF) should be preferred over raster formats (such as JPEG and PNG),
as vector formats allow distortion-free scaling.

■ In many of the earlier plotting examples, the figures generated were saved
to a file in PDF format using the print function.

■ The print function can also be used to send output directly to a printer.

■ For more information on the print function, use the help browser (i.e.,
“doc print”).

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 738

Additional Plotting Examples

■ Several additional examples demonstrating various plotting capabilities of
MATLAB can be found in theExamples section, including:

2 Aplot of a univariate function.
2 Aplot of a bivariate function as a shaded surface.
2 Aplot of a bivariate function as a surface with contour lines.
2 Astem plot of a sequence.
2 Ahistogram.
2 Apie chart.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 739

Section 15.11

Symbolic Computation

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 740

Symbolic Computation

■ Symbolic computation is sometimes quite helpful in solving engineering
problems.

■ For example, a very complicated formula or equation involving several
variables might need to be simplified without assuming specific values for
the variables in the formula/equation.

■ The Symbolic Math Toolbox provides MATLAB with such symbolic
computation capabilities.

■ Some computations that can be performed symbolically include:
2 simplification of formulas
2 integration
2 differentiation
2 solving systems of equations
2 transforms (e.g., forward/inverse unilateral Laplace transform)
2 plotting functions expressed in symbolic form

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 741

Symbolic Objects

■ The Symbolic Math Toolbox defines a new data type called a symbolic
object.

■ The toolbox uses symbolic objects to represent symbolic variables,
constants, and expressions.

■ A symbolic object can have as its value any valid mathematical
expression.

■ Symbolic objects can be used in many of the same ways as non-symbolic
objects.

■ One must, however, keep in mind that performing a computation
symbolically is quite different than performing it non-symbolically.

■ Generally speaking, symbolic computation is much slower than
non-symbolic computation.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 742

Creating Symbolic Objects

■ A symbolic variable is created using either the sym function or syms
directive.

■ For example, a symbolic variable x (whose value is simply itself) can be
created using the sym function with the code:

x = sym(’x’);

■ The same result can be achieved in a less verbose manner using the
syms directive as follows:

syms x;

■ The syms directive allows multiple variables to be specified.
■ For example, symbolic variables named x, y, and z can be created with

the code:
syms x y z;

■ The sym function can also be used to create symbolic constants.
■ For example, we can create a symbolic constant p that has the value π

with the code:
p = sym(pi);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 743

Creating Symbolic Objects (Continued)

■ The character string argument passed to the sym function can only contain
a variable name or constant (i.e., it cannot be an arbitrary expression).

■ For example, code like the following is not allowed:
f = sym(’a * x ^ 2 + b * x + c’);
% ERROR: cannot pass arbitrary expression to
% sym function

■ From symbolic variables and constants, more complicated symbolic
expressions can be constructed.

■ For example, a symbolic expression f with the value
a * x ^ 2 + b * x + c can be created with the code:

syms a b c x;
f = a * x ^ 2 + b * x + c;

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 744

Symbolic Versus Non-Symbolic Objects

■ Symbolic objects can often be used in similar ways as non-symbolic
objects.

■ For example, we can do things like:
syms t;
f = t + 1;
g0 = f ^ 3 - 2 * f - 21;
g1 = cos(f) * sin(f / 3);

■ Although symbolic and non-symbolic objects can often be used in similar
ways, they are very different things.

■ For example, the following two lines of code have very different effects:
x = pi;
x = sym(pi);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 745

Substitution With Symbolic Objects

■ To substitute some expression/variable for another variable, use the subs
function.

■ For example, to substitute t + 1 for t in the expression t ^ 2, we can
use the following code:

syms t;
f = t ^ 2;
g = subs(f, t, t + 1)

■ After executing the preceding code, g is associated with the expression:
(t + 1) ^ 2

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 746

Factoring of Symbolic Objects

■ To factor a symbolic expression, use the factor function.

■ For example, suppose that we want to factor the polynomial t2 +3t +2.

■ This could be accomplished with the following code:
syms t;
f = t ^ 2 + 3 * t + 2;
g = factor(f)

■ After executing the preceding code, g is associated with the (row-vector)
expression:

[t + 2, t + 1]

■ Note that, by default, the factor function will only produce factors with
real roots.

■ To obtain factors with complex roots, the ’FactorMode’ option must be
used; for example:

syms z;
g = factor(z ^ 2 + 4, ’FactorMode’, ’complex’)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 747

Simplification of Symbolic Objects

■ To simplify a symbolic expression, use the simplify function.

■ For example, suppose that we want to substitute 2 * t + 1 for t in the
expression t ^ 2 - 1 and simplify the result.

■ This can be accomplished with the following code:
syms t;
f = t ^ 2 - 1;
g = simplify(subs(f, t, 2 * t + 1))

■ After executing the preceding code, g is associated with the expression
(2 * t + 1) ^ 2 - 1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 748

Expansion of Symbolic Objects

■ To expand an expression, use the expand function.

■ For example, to compute (t +1)5, we can use the following code:
syms t;
f = (t + 1) ^ 5;
g = expand(f)

■ After executing the preceding code, g is associated with the expression:
t ^ 5 + 5 * t ^ 4 + 10 * t ^ 3 + 10 * t ^ 2 + 5 * t + 1

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 749

Pretty-Printing of Symbolic Objects

■ To display an expression in a human-friendly format, use the pretty
function.

■ For example, to compute
[1

2 t2 + 1
3(t +1)

]−4
in an expanded and

beautified format, we can use the following code:
syms t;
f = ((1/2) * t^2 + (1/3) * (t+1))^(-4);
pretty(expand(f))

■ The output of the pretty function in this case might look something like:
1

--
8 7 6 5 4 3 2

t t t 11 t 65 t 22 t 4 t 4 t 1
-- + -- + -- + ----- + ----- + ----- + ---- + --- + --
16 6 3 27 162 81 27 81 81

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 750

Plotting Symbolic Expressions

■ To plot a symbolic expression in one variable, the ezplot function can be
used.

■ For example, to plot the function f (t) = 3t2−4t +2, we can use the code:
syms t;
ezplot(3 * t ^ 2 - 4 * t + 2);

■ The range of the independent variable may optionally be specified.

■ For example, to plot the function f (t) = 3t2−4t +2 over the interval
[−1,1], we can use the code:

syms t;
ezplot(3 * t ^ 2 - 4 * t + 2, [-1 1]);

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 751

Simplification Example

sum_of_arithmetic_sequence.m
1 % Compute the formula for the sum of the arithmetic
2 % sequence:
3 % a, a + d, a + 2d, ... a + (n - 1)d.
4 clear
5 syms a d k n
6 f = simplify(symsum(a + k * d, k, 0, n - 1));
7 pretty(f);

Command Window Output
>> sum_of_arithmetic_sequence

d n (n - 1)
a n + -----------

2

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 752

Integration Example

integration_1.m
1 % Compute the integral, over the interval [a, b], of the
2 % function:
3 % x(t) = t sin(t) e^(-t)
4 clear
5 syms t a b
6 f = int(t * sin(t) * exp(-t), a, b);
7 pretty(f);

Command Window Output
>> integration_1
exp(-a) (cos(a) + a cos(a) + a sin(a))

2

exp(-b) (cos(b) + b cos(b) + b sin(b))
- --------------------------------------

2

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 753

Differentiation Example

differentiation_1.m
1 % Compute the derivative of the function:
2 % x(t) = t cos(t) e^(-t)
3 clear
4 syms t
5 f = diff(t * cos(t) * exp(-t), t);
6 pretty(f);

Command Window Output
>> differentiation_1
exp(-t) cos(t) - t exp(-t) cos(t) - t exp(-t) sin(t)

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 754

Unilateral Laplace Transform Example

ult_1.m
1 % Compute the (forward) unilateral Laplace transform of
2 % the function:
3 % x(t) = t e^(-t) sin(t)
4 clear
5 syms t
6 f = laplace(t * exp(-t) * sin(t));
7 pretty(f);

Command Window Output
>> ult_1

2 s + 2

2 2
((s + 1) + 1)

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 755

Inverse Unilateral Laplace Transform Example

iult_1.m
1 % Compute the inverse unilateral Laplace transform of
2 % the function:
3 % X(s) = 1 / [(s + 1) (s + 2)^2]
4 clear
5 syms s
6 f = ilaplace(1 / ((s + 1) * (s + 2)^2));
7 pretty(f);

Command Window Output
>> iult_1
exp(-t) - exp(-2 t) - t exp(-2 t)

>>

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 756

Plotting Example

1 clear
2 syms t
3 ezplot(cos(2 * pi * t) * exp(-abs(t)/2), [-10 10]);
4 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

-10 -8 -6 -4 -2 0 2 4 6 8 10

t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

exp (- abs (t)/ 2) cos (2 t)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 757

Section 15.12

Continuous-Time Signal Processing

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 758

Transfer Functions

■ Most CT LTI systems of practical interest are causal with rational transfer
functions.

■ For this reason, MATLAB has considerable functionality for working with
such systems.

■ Consider the rational transfer function H with a RHP ROC, where

H(s) =
∑m

k=1 aksm−k

∑n
k=1 bksn−k =

a1sm−1 +a2sm−2 + . . .+am

b1sn−1 +b2sn−2 + . . .+bn
.

■ Typically, MATLAB represents such a transfer function using two vectors of
coefficients, one for the {ak} and one for the {bk}.

■ For example, H(s) = s−1
s2+3s+2 would be represented by the vectors

[1 -1] and [1 3 2].

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 759

Frequency Response

■ Consider a causal LTI (CT) system with a transfer function H of the form

H(s) = ∑m
k=1 aksm−k

∑n
k=1 bksn−k = a1sm−1+a2sm−2+...+am

b1sn−1+b2sn−2+...+bn
.

■ The frequency response of such a system can be computed and
optionally plotted using the freqs function.

■ The freqs function has the interface:
2 [freq_resp w] = freqs(a, b, w)
2 a is vector whose elements are a1,a2, . . . ,am
2 b is vector whose elements are b1,b2, . . . ,bn
2 w is a vector whose elements are the frequencies at which to calculate the

frequency response (and may be omitted in which case w is chosen by the
freqs function)

2 freq_resp is the vector of frequency response values

■ If the return value of the freqs function is discarded, the function also
plots magnitude and phase responses, with the magnitude and frequency
plotted on logarithmic scales.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 760

Example: Plotting Frequency Response With freqs

1 freqs([1], [1 sqrt(2) 1]);
2 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

10 -1 10 0 10 1

Frequency (rad/s)

-200

-150

-100

-50

0

P
ha

se
 (

de
gr

ee
s)

10 -1 10 0 10 1

Frequency (rad/s)

10 -2

10 -1

10 0

M
ag

ni
tu

de

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 761

Example: Plotting Frequency Response With Linear Scale

1 function [freq_resp, omega] = my_freqs(tf_num, tf_denom, omega)
2 % my_freqs - Compute and optionally plot the frequency response.
3 % The optional plot uses a linear scale for both axes.
4 if nargin >= 3
5 [freq_resp, omega] = freqs(tf_num, tf_denom, omega);
6 else
7 [freq_resp, omega] = freqs(tf_num, tf_denom);
8 end
9 if nargout == 0

10 mag_resp = abs(freq_resp);
11 phase_resp = angle(freq_resp) / pi * 180;
12 subplot(2, 1, 1);
13 plot(omega, mag_resp);
14 title(’Magnitude Response’);
15 xlabel(’Frequency (rad/s)’);
16 ylabel(’Magnitude (unitless)’);
17 subplot(2, 1, 2);
18 plot(omega, phase_resp);
19 title(’Phase Response’);
20 xlabel(’Frequency (rad/s)’);
21 ylabel(’Angle (degrees)’);
22 end
23 end

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 762

Example: Plotting Frequency Response With my_freqs

1 my_freqs([1], [1 sqrt(2) 1]);
2 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

0 1 2 3 4 5 6 7 8 9 10

Frequency (rad/s)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 1 2 3 4 5 6 7 8 9 10

Frequency (rad/s)

-200

-150

-100

-50

0

A
ng

le
 (

de
gr

ee
s)

Phase Response

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 763

Functions for Continuous-Time Filter Design

Name Description

besself design (CT) Bessel filter
butter design (CT) Butterworth filter
cheby1 design (CT/DT) Chebyshev Type 1 filter
cheby2 design (CT/DT) Chebyshev Type 2 filter
ellip design (CT/DT) elliptic or Cauer filter

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 764

Butterworth Lowpass Filter Design

% 16th-order Butterworth (CT) lowpass filter with
% cutoff frequency 500 Hz
[a b] = butter(16, 2 * pi * 500, ’low’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-3500 -3000 -2500 -2000 -1500 -1000 -500 0

Real Part

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 765

Butterworth Highpass Filter Design

% 16th-order Butterworth (CT) highpass filter with
% cutoff frequency 500 Hz
[a b] = butter(16, 2 * pi * 500, ’high’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-3500 -3000 -2500 -2000 -1500 -1000 -500 0

Real Part

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 766

Butterworth Bandpass Filter Design

% 16th-order Butterworth (CT) bandpass filter with
% cutoff frequencies 250 and 750 Hz
[a b] = butter(16, 2 * pi * [250 750], ’bandpass’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0

Real Part

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 767

Butterworth Bandstop Filter Design

% 16th-order Butterworth (CT) bandstop filter with
% cutoff frequencies 250 and 750 Hz
[a b] = butter(16, 2 * pi * [250 750], ’stop’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-2000 -1500 -1000 -500 0 500

Real Part

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 768

Bessel Lowpass Filter Design

% 16th-order Bessel (CT) lowpass filter with
% cutoff frequency 500 Hz
[a b] = besself(16, 2 * pi * 500);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-3000 -2800 -2600 -2400 -2200 -2000 -1800 -1600 -1400 -1200 -1000

Real Part

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 769

Chebyshev Type-1 Lowpass Filter Design

% 16th-order Chebyshev Type-1 (CT) lowpass filter with
% cutoff frequency 500 Hz and 1 dB passband ripple
[a b] = cheby1(16, 1, 2 * pi * 500, ’low’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-300 -250 -200 -150 -100 -50 0

Real Part

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 770

Chebyshev Type-2 Lowpass Filter Design

% 16th-order Chebyshev Type-2 (CT) lowpass filter with
% cutoff frequency 500 Hz and 20 dB stopband ripple
[a b] = cheby2(16, 20, 2 * pi * 500, ’low’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000

Real Part

-4

-3

-2

-1

0

1

2

3

4

Im
ag

in
ar

y
P

ar
t

10 4 Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 771

Elliptic Lowpass Filter Design

% 16th-order elliptic (CT) lowpass filter with
% cutoff frequency 500 Hz, 1 dB passband ripple, and
% 20 dB stopband ripple
[a b] = ellip(10, 1, 20, 2 * pi * 500, ’low’, ’s’);

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1400 -1200 -1000 -800 -600 -400 -200 0 200

Real Part

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 772

Section 15.13

Discrete-Time Signal Processing

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 773

Transfer Functions

■ Most DT LTI systems of practical interest are causal with rational transfer
functions.

■ For this reason, MATLAB has considerable functionality for working with
such systems.

■ Consider the rational transfer function

H(z) =
∑m

k=1 akz−(k−1)

∑n
k=1 bkz−(k−1) =

a1 +a2z−1 + . . .+amz−(m−1)

b1 +b2z−1 + . . .+bnz−(n−1) .

■ Typically, MATLAB represents such a transfer function using two vectors of
coefficients, one for the {ak} and one for the {bk}.

■ For example, H(z) = 1+z−1

6+5z−1+z−2 would be represented by the vectors
[1 1] and [6 5 1].

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 774

Frequency Response

■ Consider a causal LTI (DT) system with a transfer function H of the form

H(z) = ∑m
k=1 akz−(k−1)

∑n
k=1 bkz−(k−1) =

a1+a2z−1+...+amz−(m−1)

b1+b2z−1+...+bnz−(n−1) .

■ The frequency response of such a system can be computed and
optionally plotted using the freqz function.

■ The freqz function has the interface:
2 [freq_resp w] = freqz(a, b, w)
2 a is vector whose elements are a1,a2, . . . ,am
2 b is vector whose elements are b1,b2, . . . ,bn
2 w is a vector whose elements are the frequencies at which to calculate the

frequency response (and may be omitted in which case w is chosen by the
freqz function)

2 freq_resp is the vector of frequency response values

■ If the return value of the freqz function is discarded, the function also
plots magnitude and phase responses.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 775

Example: Plotting Frequency Response With freqz

1 freqz([1/6 1/2 1/2 1/6], [1 0 1/3 0]);
2 print(’output.pdf’, ’-dpdf’, ’-bestfit’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-300

-250

-200

-150

-100

-50

0

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-150

-100

-50

0

M
ag

ni
tu

de
 (

dB
)

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 776

Functions for Discrete-Time Filter Design

Name Description

cheby1 design (CT/DT) Chebyshev Type 1 filter
cheby2 design (CT/DT) Chebyshev Type 2 filter
ellip design (CT/DT) elliptic or Cauer filter
fir1 design (DT) FIR filter using window method
fir2 design (DT) FIR filter using frequency-sampling

method
cfirpm complex and nonlinear-phase equiripple FIR filter

design
fircls linear-phase FIR filter design using constrained

least-squares method
firls linear-phase FIR filter design using least-squares

error minimization
firpm Parks-McClellan optimal equiripple FIR filter de-

sign

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 777

Butterworth Lowpass Filter Design

% 16th-order Butterworth (DT) lowpass filter with
% normalized cutoff frequency 0.5
[a b] = butter(16, 0.5, ’low’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1.5 -1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 778

Butterworth Highpass Filter Design

% 16th-order Butterworth (DT) highpass filter with
% normalized cutoff frequency 0.5
[a b] = butter(16, 0.5, ’high’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 779

Butterworth Bandpass Filter Design

% 16th-order Butterworth (DT) bandpass filter with
% normalized cutoff frequencies 0.4 and 0.6
[a b] = butter(16, [0.4 0.6], ’bandpass’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 780

Butterworth Bandstop Filter Design

% 16th-order Butterworth (DT) bandstop filter with
% normalized cutoff frequencies 0.4 and 0.6
[a b] = butter(16, [0.4 0.6], ’stop’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1.5 -1 -0.5 0 0.5 1 1.5

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 781

Chebyshev Type-1 Lowpass Filter Design

% 16th-order Chebyshev Type-1 (DT) lowpass filter with
% normalized cutoff frequency 0.5 and 1 dB passband ripple
[a b] = cheby1(16, 1, 0.5, ’low’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1.5 -1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 782

Chebyshev Type-2 Lowpass Filter Design

% 16th-order Chebyshev Type-2 (DT) lowpass filter with
% normalized cutoff frequency 0.5 and 20 dB stopband ripple
[a b] = cheby2(16, 20, 0.5, ’low’);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 (

un
itl

es
s)

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-200

-100

0

100

200

A
ng

le
 (

de
g)

Phase Response

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 783

Section 15.14

References

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 784

References I

1 B. D. Hahn and D. T. Valentine. Essential MATLAB for Engineers and
Scientists. Butterworth-Heinemann, Burlington, MA, USA, 3rd edition,
2007.

2 S. J. Chapman. MATLAB Programming for Engineers. Cengage Learning,
Boston, MA, USA, 5th edition, 2016.

3 S. Attaway. MATLAB — A Practical Introduction to Programming and
Problem Solving. Butterworth-Heinemann, Cambridge, MA, USA, 5th
edition, 2019.

4 H. Moore. MATLAB for Engineers. Pearson, Boston, MA, USA, 3rd
edition, 2012.

5 A. Gilat. MATLAB — An Introduction with Applications. John Wiley &
Sons, Hoboken, NJ, USA, 6th edition, 2017.

6 J. Sizemore and J. P. Mueller. MATLAB for Dummies. John Wiley & Sons,
Hoboken, NJ, USA, 2015.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 785

References II

7 D. M. Etter, D. C. Kuncicky, and D. Hull. Introduction to MATLAB 6.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2004.

8 D. Hanselman and B. Littlefield. Mastering MATLAB 6: A Comprehensive
Tutorial and Reference. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 786

Part 16

Miscellany

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 787

Sum of Arithmetic and Geometric Sequences

■ The sum of the arithmetic sequence a,a+d,a+2d, . . . ,a+(n−1)d is
given by

n−1

∑
k=0

(a+ kd) =
n[2a+d(n−1)]

2
.

■ The sum of the geometric sequence a,ra,r2a, . . . ,rn−1a is given by

n−1

∑
k=0

rka = a
rn−1
r−1

for r ̸= 1.

■ The sum of the infinite geometric sequence a,ra,r2a, . . . is given by

∞

∑
k=0

rka =
a

1− r
for |r|< 1.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 788

Part 17

References

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 789

Online Resources I

1 Michael Adams. 2020-05 ECE 260 Video Lectures Playlist on YouTube.
https://www.youtube.com/playlist?list=
PLbHYdvrWBMxYGMvQ3QG6paNu7CuIRL5dX.

2 Barry Van Veen. All Signal Processing Channel on YouTube.
https://www.youtube.com/user/allsignalprocessing.

3 Iman Moazzen. Signal Processing Hacks With Iman.
https://www.sphackswithiman.com.

4 Iman Moazzen. YouTube Channel for Signal Processing Hacks With Iman.
https://www.youtube.com/channel/UCVkatNMgkEdpWLhH0kBqqLw.

5 Wolfram Alpha Derivative Calculator.
https://www.wolframalpha.com/input/?i=derivative+.

6 Wolfram Alpha Integral Calculator.
https://www.wolframalpha.com/input/?i=integral+.

7 Wolfram Alpha Unilateral Laplace Transform Calculator. https://www.
wolframalpha.com/input/?i=laplace+transform+calculator.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 790

https://www.youtube.com/playlist?list=PLbHYdvrWBMxYGMvQ3QG6paNu7CuIRL5dX
https://www.youtube.com/playlist?list=PLbHYdvrWBMxYGMvQ3QG6paNu7CuIRL5dX
https://www.youtube.com/user/allsignalprocessing
https://www.sphackswithiman.com
https://www.youtube.com/channel/UCVkatNMgkEdpWLhH0kBqqLw
https://www.wolframalpha.com/input/?i=derivative+
https://www.wolframalpha.com/input/?i=integral+
https://www.wolframalpha.com/input/?i=laplace+transform+calculator
https://www.wolframalpha.com/input/?i=laplace+transform+calculator

Online Resources II

8 Wolfram Alpha Unilateral Z Transform Calculator. https:
//www.wolframalpha.com/input/?i=Z+transform+calculator.

9 DSP Stack Exchange. https://dsp.stackexchange.com.

10 Math Stack Exchange. https://math.stackexchange.com.

Copyright © 2013–2024 Michael D. Adams Signals and Systems Edition 6.0 791

https://www.wolframalpha.com/input/?i=Z+transform+calculator
https://www.wolframalpha.com/input/?i=Z+transform+calculator
https://dsp.stackexchange.com
https://math.stackexchange.com

	Title Slide
	Copyright Page
	License
	Other Textbooks and Lecture Slides by the Author
	Preface
	About These Lecture Slides
	Typesetting Conventions
	Video Lectures

	Introduction
	Preliminaries
	Functions, Sequences, System Operators, and Transforms
	Properties of Signals

	Continuous-Time (CT) Signals and Systems
	Independent- and Dependent-Variable Transformations
	Properties of Functions
	Elementary Functions
	Continuous-Time (CT) Systems
	Properties of (CT) Systems

	Continuous-Time Linear Time-Invariant (LTI) Systems
	Convolution
	Convolution and LTI Systems
	Properties of LTI Systems

	Continuous-Time Fourier Series (CTFS)
	Fourier Series
	Convergence Properties of Fourier Series
	Properties of Fourier Series
	Fourier Series and Frequency Spectra
	Fourier Series and LTI Systems

	Continuous-Time Fourier Transform (CTFT)
	Fourier Transform
	Convergence Properties of the Fourier Transform
	Properties of the Fourier Transform
	Fourier Transform of Periodic Functions
	Fourier Transform and Frequency Spectra of Functions
	Fourier Transform and LTI Systems
	Application: Filtering
	Application: Equalization
	Application: Circuit Analysis
	Application: Amplitude Modulation (AM)
	Application: Sampling and Interpolation

	Laplace Transform (LT)
	Laplace Transform
	Region of Convergence (ROC)
	Properties of the Laplace Transform
	Determination of Inverse Laplace Transform
	Laplace Transform and LTI Systems
	Application: Circuit Analysis
	Application: Design and Analysis of Control Systems
	Unilateral Laplace Transform

	Discrete-Time (DT) Signals and Systems
	Independent- and Dependent-Variable Transformations
	Properties of Sequences
	Elementary Sequences
	Discrete-Time (DT) Systems
	Properties of (DT) Systems

	Discrete-Time Linear Time-Invariant (LTI) Systems
	Convolution
	Convolution and LTI Systems
	Properties of LTI Systems

	Discrete-Time Fourier Series (DTFS)
	Fourier Series
	Properties of Fourier Series
	Discrete Fourier Transform (DFT)
	Fourier Series and Frequency Spectra
	Fourier Series and LTI Systems

	Discrete-Time Fourier Transform (DTFT)
	Fourier Transform
	Convergence Properties of the Fourier Transform
	Properties of the Fourier Transform
	Fourier Transform of Periodic Sequences
	Fourier Transform and Frequency Spectra of Sequences
	Fourier Transform and LTI Systems
	Fourier Transform Relationships
	Application: Filtering

	z Transform (ZT)
	z Transform
	Region of Convergence (ROC)
	Properties of the z Transform
	Determination of Inverse z Transform
	z Transform and LTI Systems
	Application: Analysis of Control Systems
	Unilateral z Transform

	Complex Analysis
	Partial Fraction Expansions (PFEs)
	PFEs for First Form of Rational Functions
	PFEs for Second Form of Rational Functions

	MATLAB
	Running MATLAB
	MATLAB Examples
	Accessing MATLAB Documentation
	Comments and Variables
	Operators and Expressions
	Selection Constructs
	Looping Constructs
	Using Functions
	Scripts and Functions
	Data Visualization
	Symbolic Computation
	Continuous-Time Signal Processing
	Discrete-Time Signal Processing
	References

	Miscellany
	References

