
Use Case View
1. Overview
2. Graphical Constructs
3. Textual Description
4. The Architectural View of the Use Case Model

Logical View Process View

Implementation
View

Process,Threads
Classes, interfaces,
collaborations

Source, binary, executable components

Deployment View

Nodes

Use Case View
Use cases

1. Overview
Use Case View

�Captures system functionality as seen by users
�Built in early stages of development
�Developed by analysts and domain experts
�System behavior, that is what functionality it must provide, is

documented in a use case model.

Use Case Model
�illustrates the system’s intended functions (use cases), its
surroundings (actors), and relationships between the use cases
and actors (use case diagrams).

•provides a vehicle used by the customers or end users and the
developers to discuss the system’s functionality and behavior.

•starts in the Inception phase with the identification of actors and
principal use cases for the system, and is then matured in the
elaboration phase, by adding more details and additional use cases.

2. Graphical Constructs

Actors
�represent anyone or anything that must interact with the system:

they are not part of the system.

�may:
•only input information to the system
•only receive information from the system
•input and receive information to and from the system

�In the UML, an actor is represented as a stickman with a name:

Administrator

Use Cases

�represent the functionality provided by the system; that is:
•what capabilities will be provided to an actor by the system or
•what tasks are performed by each actor?

�sequence of transactions performed by a system that yields a
measurable result of values for a particular actor.

Place Order

�In the UML, a use case is represented by an oval with a name
inside:

Use Case Relationships

�Association:
•a relationship that represents communication between an actor and a use case;
•can be navigable in both ways or in only one way.

�Two types of relationships that may exist between use cases: uses
and extends:

•An extends relationship is used to show:
-Optional behavior
-Behavior that is only run under certain conditions, such

as triggering an alarm
-Different flows which may be run based on actor selection

•A functionality shared by multiple use cases can be placed in a separate use case which
is related to these uses cases by a uses relationship.

�Inheritance:
•Generalization or specialization relationships that may exist between actors.

Use Case Diagrams
�A graphical view of the actors, use cases, and their interactions

identified for a system.
•Consists of the system boundary, and the graphical description of the actors, use cases,
and their relationships.

�Example: (Embedded) Cellular Telephone System

3. Textual Description of a Use Case
�Each use case is documented with a flow of events, which is a
description of the events needed to accomplish the required behavior.

�The flow of events is written in the language of the domain and
describe what the system should do and not how the system does it.

�The flow of events should include:
-When and how the use case starts and ends
-What interaction the use case has with the actors
-What data is needed by the use case
-The normal sequence of events for the use case
-The description of any alternate or exceptional flows

�Template:
X Flow of Events for the <name> Use Case

X.1 Preconditions
X.2 Main Flow
X.3 Subflows (if applicable)
X.4 Alternative Flows

Where X is a number from 1 to the number of use cases

4. The Architectural View of the Use Case Model
�Contains only architecturally significant use cases (whereas the final

use case model contains all the use cases).

•••• Is defined during inception and elaboration phases and allows the
establishment of a resilient architecture.

••••The logical view is derived using the use cases identified in the
architectural view of the use case model.

����Architecturally significant use cases:
••••are the ones that cover the main tasks or functions the system
is to accomplish.

••••could possibly impact the architecture
•••• include:

-critical use cases, those that are most important to the users of the system
-use cases that have the most important nonfunctional requirements, such
as performance, responses times etc.

����Secondary and optional use cases are not key to the architecture.

Example
-Provide the use case view for the architecture of an ATM System.

Overview of the Requirements

The Interbank Consortium, a hypothetical financial institution, has directed its software
development subsidiary, Interbank Software, to develop new services that support a
collection of automated teller machines (ATMs).

Customers use ATMs to make queries, withdrawals, deposits and funds transfers involving
their accounts. Thieves or crooks must be prevented from interfering with these actions.

Interactions with the ATM would work like this:
1. The customer inserts his/her bank card into the ATM.
2. The ATM prompts the customer for a "password" which the user enters at the ATM.
3. The customer then selects an action to be performed; the selected action is then

performed by the branch (perhaps causing dispersal of cash at the ATM).

Additionally, the bank would like to be able to use the system to maintain statistics about
customers’ behaviour in order to adapt its services to their needs, and also to send them
some advertisements when they are using the system.

Customer

Query

Withdrawal

Deposit

Transfer

Validation<<include>>

<<include>>

<<include>>

Foreign
Customer

Bank Customer

Maintain

Bank
Officer

ATM System

Handle Exception

<<extend>>

Check PIN

Collect statistics
<<include>> Advertise

�Example: Textual Description for Check PIN Use Case

X Flow of Events for the <name> Use Case
X.1 Preconditions
X.2 Main Flow
X.3 Subflows (if applicable)
X.4 Alternative Flows

Where X is a number from 1 to the number of use cases

Flow of Events for Check PIN Use Case

Main flow of events: The use case starts when the system prompts the User for a PIN
number. The User can now enter a PIN number via the keypad (E1). The User commits
the entry by pressing the Enter button (E2). The system then checks this PIN number to see
if it is valid (S1, E3). If the PIN number is valid, the system acknowledges the entry, thus
ending the use case.

Subflows:
S1: The system invokes Validate use case.

Alternative flow of events:
E1: The User can clear a PIN number any time before committing it and reenter a new PIN
number.

E2: The User can cancel a transaction at any time by pressing the Cancel button, thus
restarting the use case. No changes are made to the User’s account.

E3: If the User enters an invalid PIN number, the use case restarts. If this happens three
times in a row, the system cancels the entire transaction, preventing the User from
interacting with the ATM for 30 minutes.

